用户名: 密码: 验证码:
凹凸棒石基复合功能材料的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:硅酸盐矿物具有比表面积大、吸附能力强、表面活性位点多等优点,基于其结构与形貌特性建立矿物资源-材料一体化的体系,已成为硅酸盐矿物近年来开发利用的研究热点。我国硅酸盐矿物资源丰富,但是综合利用水平较低,因此开发高性能矿物基复合功能材料并实现低成本制备,对优化硅酸盐矿物资源综合利用和促进经济发展具有重要的现实意义。本论文以纤维状形貌的凹凸棒石粘土矿物为研究对象,通过表面活化与纳米化修饰实现功能改性,制备了矿物基复合功能材料并实现性能强化;基于硅酸盐矿物与多孔氧化硅具有相同的硅氧骨架,提出了一种由凹凸棒石粘土矿物制备有序介孔材料并原位组装功能纳米粒子的合成方法;构建了基于介孔材料自组装形成的新型微胶囊结构,为设计硅酸盐矿物微反应器提供技术指导。本论文主要的研究内容和结果如下:
     利用凹凸棒石的表面特性,在保持其纤维状形貌的基础上对其进行功能纳米粒子改性,制备凹凸棒石基复合功能材料。首先对凹凸棒石进行活化处理,增加其比表面积和表面硅羟基,以提高其对金属阳离子的吸附能力,进而以活化凹凸棒石为载体,利用原位沉淀法负载ZnO、NiO、CuO纳米粒子制备凹凸棒石基复合功能材料。通过X-射线衍射、透射电子显微镜等测试分析表明利用矿物负载,不仅可以解决纳米光催化剂颗粒的团聚问题,而且能有效的抑制颗粒尺寸长大。制备的ZnO/凹凸棒石复合材料具有较强的抗菌活性,对大肠杆菌的最小抑菌浓度可达0.1g/L,其值要低于纯ZnO的0.25g/L,复合材料增强的抗菌性能要归因于纳米粒子与矿物基体间的协同增强效应。对CuO/凹凸棒石复合材料进行Pd活化修饰获得了Pd-CuO/凹凸棒石复合光催化材料,测试结果表明CuO纳米颗粒均匀的负载于凹凸棒石表面且矿物的晶体结构得到有效保持。Pd-CuO/凹凸棒石复合材料对甲基橙表现出优异的光降解能力,在20min内对甲基橙的降解效率可达98%,增强的光催化降解性能可归功于凹凸棒石粘土的高吸附活性和贵金属Pd有效阻止光生电子-空穴结合的协同效应。
     基于凹凸棒石的层状结构特性,对其进行结构改型制备了有序介孔材料。通过对凹凸棒石不同前处理方法优化,筛选出对凹凸棒石进行煅烧碱浸前处理为硅、铝源,十六烷基三甲基溴化铵(CTAB)为模板,通过水热法制备了有序介孔材料Al-MCM-41,其比表面积高达1044m2/g。在此基础上,提出了有序介孔材料原位组装功能粒子制备介孔复合材料的合成方法,该方法可以克服在后组装过程中纳米颗粒易团聚、堵塞孔道等缺点。以CuO纳米颗粒为客体,通过原位组装制备了CuO/Al-MCM-41复合材料,考查了铜源和铜负载量对复合材料微结构的影响,通过小角x-射线衍射、透射电子显微镜、氮气吸附-脱附等测试分析表明所得复合材料均具有较高的孔道有序度和比表面积,且大部分CuO纳米颗粒存在于有序介孔材料的孔道中。利用氢气程序控温还原测试证明了原位组装比后组装样品具有更低的还原温度,说明原位组装样品中CuO纳米颗粒较易还原,意味着原位组装样品具有更好的氧化还原特性。通过原位组装Au纳米颗粒制备了Au/Al-MCM-41介孔复合材料,结果证明该方法可以有效的控制Au尺寸为3nm左右,且保证Au纳米颗粒在介孔孔道中的均匀负载。对原位组装纳米Au颗粒的合成机理研究认为CTAB包裹AuC14-形成棒状胶束是实现原位组装的关键。提出的原位组装方法可以确保纳米颗粒在介孔孔道中的均匀组装,从而实现复合材料的性能强化,拓展其应用范围。
     为研究介孔材料的组装效应及界面特性,利用正硅酸乙酯(TEOS)为硅源、CTAB和Brij56为模板剂合成了尺寸为60nm左右的介孔氧化硅球,该纳米球呈单分散特性,具有类MCM-41的介孔结构。基于此介孔硅球在Pickering乳液体系中的自组装行为构建了一种新型的具有介孔膜层的微胶囊(colloidosomes),该粒子稳定的乳液克服了由表面活性剂稳定的乳液存在有毒性等不足。光学显微镜测试结果表明有模板剂的介孔硅球可稳定水包油(O/W)和油包水(W/O)两种类型的微乳体系,而除模板剂的介孔硅球只能稳定水包油(O/W)微乳体系从而形成微胶囊结构。通过调节介孔硅球表面的亲/疏水程度,可以实现对微乳液体系类型的调控,相对亲水的介孔硅球易于稳定水包油(O/W)体系的微乳液,而相对疏水的介孔硅球则更倾向于稳定油包水(W/O)类型的微乳液。固定油包水乳液体系中的油水比例,调节表面修饰改性介孔硅球的加入量,可以有效实现微胶囊的尺寸在300~120μm之间调控,且微胶囊均能保持规则稳定的球形。通过荧光染料在微乳液体系中水油相的扩散行为证明了微胶囊的半透性和膜层的吸附释放特性。利用后合成法制备了Au/介孔氧化硅复合材料,基于此复合材料在油包水微乳液中的自组装设计了一种新型的界面催化反应体系。该界面催化体系有助于克服单一相催化体系中由于反应物的溶解性不同导致的催化反应效率低的问题,同时有利于解决催化反应过程中催化剂颗粒易团聚以及反应物与产物难分离等问题,可以为基于硅酸盐矿物微反应器的构建提供理论和技术借鉴。
     本论文旨在研究凹凸棒石粘土矿物的精细化加工及高值化利用。详细研究了通过表面纳米化修饰负载功能纳米粒子制备凹凸棒石基复合功能材料的制备方法与机理,设计的合成方法可为相关的硅酸盐矿物制备复合功能材料提供新的思路与技术参考。开发了由凹凸棒石粘土矿物制备有序介孔材料并原位组装纳米颗粒的合成方法,理清了硅酸盐矿物在制备介孔材料过程中的结构演变,确立了有序介孔材料原位组装纳米粒子的反应模型,建立了复合材料的微结构与性能之间的关系,初步探索了复合介孔材料作为催化材料的潜在应用,提出的矿物为原料制备有序介孔材料原位组装纳米颗粒可为其他矿物制备介孔复合材料提供理论基础。设计了基于介孔硅球自组装形成的新型微胶囊结构,可为多相界面催化反应体系提供新的思路,同时也可为基于硅酸盐矿物的微反应器提供技术参考。
Abstract:The silicate minerals have many extraordinary properties, such as huge specific surface area, high adsorption capacity, and abundant surface active sites and so on; therefore, it has been an important research focus for the development and utilization of silicate minerals that constructs the system of the integration of resources and materials. Our country is abundant in silicate minerals; however, the level of comprehensive utilization is too lower. Consequently, it is meaningful to optimize the silicate mineral resources utilization and promote the economic development that prepares minerals-based functional composites with high-performance at a low cost. This thesis focuses on the palygorskite clay mineral with a fibrous microstructure. Firstly, the palygorskite-based functional composites are prepared and the enhanced properties are realized by means of the surface activation and nanocrystallization modification. Secondly, a route that synthesize of ordered mesoporous materials and in-situ encapsulation nanoparticles using palygorskite as silicon and aluminum resources is proposed due to the silicate minerals has the same silicon-oxide skeleton with porous silica material. Finally, a novel microcapsules based on the self-assembly of mesoporous silica nanospheres in the emulsion phase is constructed, which will provide technical reference for the designing of silicate minerals-based microreactors. The main research contents and results of this thesis are as follows:
     In order to make better use of the unique surface properties of palygorskite, the palygorskite-based functional composites are prepared by surface functionalization of palygorskite with functional nanoparticles under the preservation of its fibrous morphology. The palygorskite is activated to increase its specific surface area and silicon hydroxyl to improve the adsorption capacity for metal cations, the palygorskite-based functional composites are successfully prepared via in-situ precipitation of loading ZnO、NiO、CuO nanoparticles onto activated palygorskite being as carrier. These samples are characterized by X-ray diffraction (XRD) and transmission electronic microscope (HRTEM) and the results show that the drawbacks of agglomeration of photocatalyst can be avoided and the size of nanoparticles can be restrained by loading photocatalyst nanoparticles onto the surface of palygorskite nanofibers. The ZnO/palygorskite composites demonstrate enhanced antibacterial activity with a minimum inhibitory concentration against E. coli of0.1g/L, which is lower than that of pure ZnO of0.25g/L. The enhanced antibacterial activity of ZnO/palygorskite composites can be ascribed to the synergistic effect between the high adsorption capacity of palygorskite clay carriers and the antibacterial property of ZnO nanoparticles. The Pd-CuO/palygorskite composites are obtained after the CuO/palygorskite composites modified with PVP-Pd solution. The results show that CuO nanoparticles are successfully anchored onto the surface of palygorskite fibers and uniformly dispersed, and the structure of palygorskite is well maintained after loading. The Pd-CuO/palygorksite composites display significantly high degradation ability for MO under UV irradiation, up to98%in20minutes; the enhanced photocatalytic activity of Pd-CuO/ATP composites can be interpreted by the fact that synergetic effect between the high adsorption capacity and active sites of palygorskite and the efficient electron-hole separation at the coupled Pd-CuO/ATP photocatalyst interface due to the introduction of Pd.
     The ordered mesoporous material is successfully synthesized from structure modulation of palygorskite based on its layered structure. Through the optimization of different pretreatment to palygorskite, the highly ordered Al-MCM-41mesoporous material can be obtained with alkaline leached palygorskite as source and cetyltrimethylammonium bromide (CTAB) as template via hydrothermal reaction, and the obtained Al-MCM-41mesoporous material has a high specific surface area of1044m2/g. The in-situ encapsulation route is proposed on the base of mesoporous materials incorporation of nanoparticles, which may avoid the problems of aggregation and blocked pores during the post-synthesis process. Taking CuO nanoparticles as guest, the CuO/Al-MCM-41composites are prepared by in-situ incorporation of CuO nanoparticles into the Al-MCM-41matrix. The effect of different copper sources and copper loading amount on the microstructure of mesoporous materials are investigated, the SAXRD, TEM and N2adsorption-desorption results manifest that the CuO/Al-MCM-41composites have high degree of channel order and specific surface area and the majority of CuO nanoparticles are incorporated into the pores of Al-MCM-41. H2temperature programmed reduction (H2-TPR) measurement results demonstrate that the in-situ synthesized sample has a lower reduction temperature than that of post-synthesized sample, confirming that the CuO nanoparticles in the in-situ synthesized sample can be reduced easier, meaning that the in-situ synthesized sample has a better redox property. Taking Au nanoparticles as another guest, the Au/Al-MCM-41composites are prepared by in-situ encapsulation of Au nanoparticles into the Al-MCM-41, Using this in-situ encapsulation route, the size of gold nanoparticles can be well controlled close to3nm, and ensure that the gold nanoparticles can be well confined in the pores of Al-MCM-41. The mechanism of the in-situ assembling gold nanoparticles into mesoporous materials reveals that the formation of the rod-like micelles by CTAB stabilized AuCl4" is the key for in-situ encapsulation. The proposed in-situ encapsulation technique guarantee that the nanoparticles can be well embedded in the mesopores, and ensure that the composites have an enhanced performance and expanded application.
     In order to study the behavior of self-assembly and property of interface of mesporoues materials, the mesoporous silica nanospheres with a size of60nm and MCM-41-like hexagonal structure are prepared with TEOS as silicon source, CTAB and Brij56as templates. A novel colloidosome microcapsules with mesoporous membrane is constructed by the self-assembly of various mesoporous silica in the emulsion phase, the particles-stabilized emulsion overcome the drawback of toxicity in the surfactant-stabilized emulsion. The optical microscope test results demonstrate that the mesoporous silica nanoparticles with template can stabilize the water-in-oil (W/O) and oil-in-water (O/W) emulsions, while the mesoporous silica nanoparticles with template removal can only stabilize the oil-in-water (O/W) emulsion to form the colloidosome microcapsules. The type of colloidosomes of water-in-oil or oil-in-water can be switched by the degree of the hydrophilic or hydrophobic surface properties of the mesoporous silica nanoparticles, the relative hydrophilic nanoparticles are willing to stabilize the oil-in-water emulsion, while the hydrophobic nanoparticles are inclined to stabilize the water-in-oil emulsion. By fixing the ratio of water and oil in the water-in-oil emulsion, and changing the amount of modified mesoporous silica nanoparticles, the size of colloidosomes can be effectively controlled from about300micrometers to120micrometers, and all the colloidosome microcapsules can maintain the regular and stable spherical shape. Meanwhile, the semipermeability and adsorbability of the mesoporous colloidosomes are demonstrated by the diffusion of fluorescent dye in the oil and water phase. Au/meso-SiO2composites are synthesized via post-synthesis route, and the composites are applied as emulsifiers to stabilize the water-in-oil emulsion to construct the interfacial catalytic reaction system. The Pickering emulsion-based interfacial catalytic system can overcome the drawback of the low efficiency in the single phase catalytic system due to the different solubility of substrate, and as well solve the problems of aggregation and difficult separation of substrate and product, and also provide theoretical and technical reference for the construction of microreactors based on silicate minerals.
     This thesis aims to study the fine processing and high-value utilization of palygorskite clay. It detailedly studies the mechanism and routes of preparation palygorskite-based functional composites via surface nanocrystallization modification to decorate functional nanoparticles, the designed synthetic method will provide the new concept and technical reference for the synthesis of functional composites using others relevant silicate minerals. Furthermore, this thesis develops a new synthetic route of preparation ordered mesoporous material and in-situ encapsulation nanoparticles using palygorskite caly mineral, clarifies the structure evolution of silicate mineral during the process of fabrication mesoporous material, establishes the reaction model of the ordered mesoporous material in-situ encapsulation nanoparticles, constructs the relation between the microstructure and property of the composite, explores the potential application of the composite being as catalyst, the proposed technique that produce the ordered mesoporous material and in-situ assemble nanoparticles using clay minerals can provide fundamental basis for the synthesis mesoporous composites using others minerals. Finally, this thesis creates a novel microcapsule structure based on the self-assembly of mesoporous silica spheres in the emulsion phase, it can not only offers new idea for the system of multi-phase interfacial catalytic reaction, but also supplies technical reference for the microreactor based on silicate minerals.
引文
[1]M. R. Mosaddeghi, M. A. Hajabbasi, H. Khademi. Tensile strength of sand, palygorskite and calcium carbonate mixtures and interpretation with the effective stress theory[J]. Geoderma,2006,134(1-2):160-170.
    [2]J. L. Post, S. Crawford. Varied forms of palygorskite and sepiolite from different geologic systems[J]. Applied Clay Science,2007,36(4):232-244.
    [3]B. Joy, S. Ghosh, P. Padmaja, et al. A facile 1,2 proton migration of chalcone epoxide using acid activated palygorskites[J]. Catalysis Communications,2005, 6(9):573-577.
    [4]H. Lu, H. Shen, Z. Song, et al. Rod-like silicate-epoxy nanocomposites[J]. Macromolecular Rapid Communications,2005,26(18):1445-1450.
    [5]M. P. S. Krekeler, S. Guggenheim. Defects in microstructure in palygorskite-sepiolite minerals:a transmission electron microscopy (TEM) study[J]. Applied Clay Science,2008,39(1):98-105.
    [6]J. Xu, W. Li, Q. Yin, et al. Direct electrochemistry of cytochrome c on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2[J]. Electrochimica Acta,2007,52(11):3601-3606.
    [7]A. Neaman, A. Singer. The effects of palygorskite on chemical and physico-chemical properties of soils:a review[J]. Geoderma,2004, 123(3-4):297-303.
    [8]W. L. Haden, Jr. I. A. Schwint. Attapulgite its properties and applications [J]. Industrial and Engineering Chemistry,1967,59(9):59-69
    [9]C. A. M. Baltar, A. B. Luz, L. M. Baltar, et al. Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid[J]. Applied Clay Science,2009,42(3-4):597-600.
    [10]H. H. Murray. Applied clay mineralogy today and tomorrow[J]. Clay Minerals, 1999,34(1):39-49.
    [11]金叶玲,陈静,钱运华,等.纯化凹凸棒石黏土的理化表征与纯化机理[J].煤炭学报,2005,30(5):642-646.
    [12]W. S. W. Mccarter, K. A. Krieger, H. Heinemann. Thermal activation of attapulgus clay:effect of physical and adsorptive properties [J]. Industrial and Engineering Chemistry,1950,42(3):529-533.
    [13]H. Chen, Y. Zhao, A. Wang. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite[J]. Journal of Hazardous Materials, 2007,149(2):346-354.
    [14]M. S. Barrios, L. V. F. Gonalez, M. A. V. Rodriguez, et al. Acid activation of a Palygosrkite with HCI:Development of physico-chemieal, textural and surface properties[J]. Applied Clay Science,1995,10(3):247-258.
    [15]陈天虎,徐惠芳,彭书传,等.凹凸棒石与酸反应纳米尺度研究-反应机理和表面积变化[J].高校地质学报,2004,10(1):98-103.
    [16]陈继浩.凹凸棒石复合颗粒的制备及净水性能研究[D].天津:河北工业大学,2006.
    [17]K. Boki, H. Mori, N. Kawasaki. Bleaching rapeseed and soybean oils with synthetic adsorbents and attapulgites[J]. Journal of the American Oil Chemists' Society,1994,71(6):595-601.
    [18]裘祖楠,沈祖勤,张谊,等.用凹凸棒石处理高浓含油废水的研究[J].上海环境科学,1995,14(2):22-26.
    [19]N. F. Srasra, E. Srasra. Acid treatment of south Tunisian palygorskite:removal of Cd(Ⅱ) from aqueous and phosphoric acid solutions[J]. Desalination,2010, 250(1):26-34.
    [20]Z. Zang, Z. Li, L. Zhang, et al. Chemically modified attapulgite with asparagine for selective solid-phase extraction and preconcentration of Fe(Ⅲ) from environmental samples[J]. Analytica Chimica Acta,2010,663(2):213-217.
    [21]W. Wang, H. Chen, A. Wang. Adsorption characteristics of Cd(Ⅱ) from aqueous solution onto activated palygorskite[J]. Separation and Purification Technology, 2007,55(2):157-164.
    [22]Y. Liu, W. Wang, A. Wang. Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite hydrogel composites[J]. Desalination,2010,259(1-3):258-264.
    [23]X. Wang, Y. Zheng, A. Wang. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites[J]. Journal of Hazardous Materials,2009,168(2-3):970-977.
    [24]H. Chen, A. Wang. Adsorption characteristics of Cu(Ⅱ) from aqueous solution onto poly(acrylamide)/attapulgite composite [J]. Journal of Hazardous Materials, 2009,165(1-3):223-231.
    [25]S. Zhou, A. Xue, Y. Zhao, et al. Competitive adsorption of Hg2+, Pb2+ and Co2+ ions on polyacrylamide/attapulgite[J]. Desalination,2011,270 (1-3):269-274.
    [26]J. H. Potgieter, S. S. P. Vermaak, P.D. Kalibantonga. Heavy metals removal from solution by palygorskite clay[J]. Minerals Engineering,2006,19 (5):463-470.
    [27]E. A. Ayuso, A. G. Sanchez. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils[J]. Environmental Pollution,2003,125 (3):337-344.
    [28]C. Pang, Y. Liu, X. Cao, et al. Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite[J]. Journal of Radioanalytical and Nuclear Chemistry,2010,286(1):185-193.
    [29]W. Wu, Q. Fan, J. Xu, et al. Sorption-desorption of Th(Ⅳ) on attapulgite:effects of pH, ionic strength and temperature [J]. Applied Radiation and Isotopes,2007, 65(10):1108-1114.
    [30]S. Akyuz, T. Akyuz, E. Akalin. Adsorption of isoniazid onto sepiolite-palygorskite group of clays:an IR study [J]. Spectrochimica Acta Part A,2010, 75(4):1304-1307.
    [31]P. Chang, Z. Li, T. Yu, et al. Sorptive removal of tetra-cycline from water by palygorskite[J]. Journal of Hazardous Materials,2009,165(1-3):148-155.
    [32]M. Shirvani, F. Nourbakhsh. Desferrioxamine-B adsorption to and iron dissolution from palygorskite and sepiolite[J]. Applied Clay Science,2010, 48(3):393-397.
    [33]S. Lin, R. Juang. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents:A review[J]. Journal of Environmental Management,2009,90(3):1336-1349.
    [34]H. Ye, F. Chen, Y. Sheng, et al. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Separation and Purification Technology,2006, 50(3):283-290.
    [35]Z. Li, C. A. Willms, K. Kniola. Removal of anionic contaminants using surfacetant-modified palygorskite and sepiolite[J]. Clays and Clay Minerals, 2003,51(4):445-451.
    [36]J. Huang, X. Wang, Q. Jin, et al. Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite[J]. Journal of Environmental Management,2007,84(2):229-236.
    [37]J. Pan, X. Zou, X. Wang, et al. Adsorptive removal of 2,4-didichlorophenol and 2,6-didichlorophenol from aqueous solution by β-cyclodextrin/attapulgite composites:equilibrium, kinetics and thermo-dynamics[J]. Chemical Engineering Journal,2011,166(1):40-48.
    [38]Y. Chang, X. Lv, F. Zha, et al. Sorption of p-nitrophenol by anion-cation modified palygorskite[J]. Journal of Hazardous Materials,2009,168(2-3):826-831.
    [39]M. Rafatullah, O. Sulaiman, R. Hashim, et al. Adsorption of methylene blue on low-cost adsorbents:a review[J]. Journal of Hazardous Materials,2010, 177(1-3):70-80.
    [40]A. A. Futaisi, A. Jamrah, R. A. Hanai. Aspects of cationic dye molecule adsorption to palygorskite[J]. Desalination,2007,214(1-3):327-342.
    [41]H. Chen, J. Zhao. Adsorption study for removal of Congo red anionic dye using organo-attapulgite[J]. Adsorption,2009,15(4):381-389.
    [42]J. Huang, Y. Liu, Q. Jin, et al. Adsorption studies of a water soluble dye, reactive red MF-3B, using sonication-surfactant-modified attapulgite clay[J]. Journal of Hazardous Materials,2007,143(1-2):541-548.
    [43]A. Xue, S. Zhou, Y. Zhao, et al. Adsorption of reactive dyes from aqueous solution by silylated palygorskite[J]. Applied Clay Science,2010,48(4):638-640.
    [44]L. Wang, J. Zhang, A. Wang. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly(acrylic acid)/attapulgite composite[J]. Desalination,2011,266(1-3):33-39.
    [45]Y. Wang, L. Zeng, X. Ren, et al. Removal of methyl violet from aqueous solutions using poly(acrylic acid-co-acrylamide)/attapulgite composite [J]. Journal of Environmental Sciences,2010,22(1):7-14.
    [46]J. Wang, W.Wang, A. Wang. Synthesis, characterization and swelling behaviors of hydroxyethyl cellulose-g-poly(acrylic acid)/attapulgite superabsorbent composite[J]. Polymer Engineering & Science,2010,50(5):1019-1027.
    [47]J. Zhang, Q. Wang, A. Wang. Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites[J]. Carbohydrate Polymers,2007,68(2):367-374.
    [48]J. Zhang, H. Chen, A. Wang. Study on superabsorbent composite-VII. effects of organification of attapulgite on swelling behaviors of poly(acrylic acid-co-acrylamide)/sodium humate/organo-attapulgite composite[J]. Polymers for Advanced Technologies,2006,17(5):379-385.
    [49]A. Li, J. Zhang, A. Wang. Utilization of starch and clay for the preparation of superabsorbent composite[J]. Bioresource Technology,2007,98(2):327-332.
    [50]郑水林.非金属矿物粉体表面改性技术进展[J].非金属矿工业导刊, 2010(1):3-10.
    [51]林海,松全元.矿物表面改性研究的现状与发展[J].矿产综合利用,1997,5:29-32.
    [52]胡佩伟,杨华明,霍成立.新型矿物基功能复合材料的制备技术及应用[J].功能材料,2010,41(10):1671-1675.
    [53]R. Kun, K. Mogyorosi, I. Dekany. Synthesis and structure and photocatalytic properties of TiO2/montmorillonite nanocomposites[J]. Applied Clay Science, 2006,32(1-2):99-110.
    [54]S. M. Ghnimi, N. F. Srasra. Promoting effect of cerium on the characteristic and catalytic activity of Al, Zr, and Al-Zr pillared clay[J]. Applied Clay Science, 2014,88-89:214-220.
    [55]H. He, D. Yang, P. Yuan, et al. A novel organoclay with antibacterial activity prepared from montmorillonite and chlorhexidini acetas[J]. Journal of Colloid and Interface Science,2006,297(1):235-243.
    [56]赵磊,董发勤,王光华,等.多孔矿物材料的孔道结构及应用进展[J].中国粉体技术,2008,1:46-49.
    [57]T. Kamegawa, R. Kido, D. Yamahana, et al. Design of TiO2-zeolite composites with enhanced photocatalytic performances under irradiation of UV and visible light[J]. Microporous and Mesoporous Materials,2013,165:142-147.
    [58]A. Jha, A.C. Garade, M. Shirai, et al. Metal cation-exchanged montmorillonite clay as catalysts for hydroxyalkylation reaction[J]. Applied Clay Science,2013, 74:141-146.
    [59]K. V. Bineesh, D. K. Kim, M. IL Kim, et al. Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia[J]. Applied Clay Science,2011,53(2):204-211.
    [60]S. Albertazzi, I. Baraldini, G. Busca, et al. Noble metal containing Al/Ce/Mg pillared montmorillonite clay as catalysts in the hydrotreating of LCO fractions[J]. Applied Clay Science,2005,29(3-4):224-234.
    [61]N. K. Boutoumi, H. Boutoumi, H. Khalaf, et al. Synthesis and characterization of Ti02-montmorillonite/polythiophene-SDS nanocomposites:Application in the sonophotocatalytic degradation of rhodamine 6G[J]. Applied Clay Science,2013, 80-81:56-62.
    [62]D. Karamanis, A.N. Okte, E. Vardoulakis, et al. Water vapor adsorption and photocatalytic pollutant degradation with TiO2-sepiolite nanocomposites [J]. Applied Clay Science,2011,53(2):181-187.
    [63]C. Wang, H. Shi, P. Zhang, et al. Synthesis and characterization of kaolinite/TiO2 nano-photocatalysts[J]. Applied Clay Science,2011,53(4):646-649.
    [64]D. Papoulis, S. Komarneni, A. Nikolopoulou, et al. Palygorskite-and halloysite-TiO2 nanocomposites:synthesis and photocatalytic activity[J]. Applied Clay Science,2010,50(1):118-124.
    [65]冯启明,董发勤,王维清,等.载Cu2+系列多孔非金属矿抗菌剂的制备及应用[J].中国矿业,2005,14(1):69-72.
    [66]K. Malachova, P. Praus, Z. Pavlickova, et al. Activity of antibacterial compounds immobilised on montmorillonite[J]. Applied Clay Science,2009, 43(3-4):364-368.
    [67]S. M. Magana, P. Quintana, D. H. Aguilar, et al. Antibacterial activity of montmorillonites modified with silver[J]. Journal of Molecular Catalysis A: Chemical,2008,281(1-2):192-199.
    [68]Y. Zhou, M. Xia, Y. Ye, et al. Antimicrobial ability of Cu2+ -montmorillonite[J]. Applied Clay Science,2004,27(3-4):215-218.
    [69]N. J. Coleman, A. H. Bishop, S. E. Booth, et al. Ag+-and Zn2+-exchange kinetics and antimicrobial properties of 11A tobermorites[J]. Journal of the European Ceramic Society,2009,29(6):1109-1117.
    [70]G. M. Nascimento, V. R. L. Constantino, R. Landers, et al. Aniline polymerization into montmorillonite clay:a spectroscopic investigation of the intercalated conducting polymer[J]. Macromolecules,2004,37(25):9373-9385.
    [71]B. K. Kuila, A. K. Nandi. Structural hierarchy in melt-processed poly (3-hexylthiophene)-montmorillonite clay nanocomposites:novel physical, mechanical, optical, and conductivity properties[J]. The Journal of Physical Chemistry B,2006,110(4):1621-1631.
    [72]B. K. Kuila, A. K. Nandi. Physical, mechanical, and conductivity properties of poly(3-hexylthiophene)-montmorillonite clay nanocomposites produced by the solvent casting method[J]. Macromolecules 2004,37(23):8577-8584.
    [73]K.Anuar, S. Murali, A. Fariz, et al. Conducting polymer/clay composites: preparation and characterization[J]. Materials Science,2004,10(3):255-258.
    [74]Y. Chang, Z. Liu, Z. Fu, et al. Preparation and characterization of one-dimensional core-shell sepiolite/polypyrrole nanocomposites and effect of organic modification on the electrochemical properties[J]. Industrial & Engineering Chemistry Research,2014,53(1):38-47.
    [75]P. Hu, H. Yang. Controlled coating of antimony-doped tin oxide nanoparticles on kaolinite particles[J]. Applied Clay Science,2010,48(3):368-374.
    [76]R. S. Hsu, W. H. Chang, J. J. Lin. Nanohybrids of magnetic iron-oxide particles in hydrophobic organoclays for oil recovery[J]. ACS Applied Materials & Interfaces,2010,2(5):1349-1354.
    [77]A. B. Bourlinos, M. A. Karakassides, A. Simopoulos, et al. Synthesis and characterization of magnetically modified clay composites[J]. Chemistry of Materials,2000,12(9):2640-2645.
    [78]A. P. Skoutelas, M. A. Karakassides, D. Petridis. Magnetically modified Al2O3 pillared clays[J]. Chemistry of Materials,1999, 11(10):2754-2759.
    [79]A. Mamedov, J. Ostrander, F. Aliev, et al. Stratified assemblies of magnetite nanoparticles and nontmorillonite prepared by the layer-by-layer assembly [J]. Langmuir 2000,16(8):3941-3949.
    [80]Y. Zhang, H. Yang. Halloysite nanotubes coated with magnetic nanoparticles[J]. Applied Clay Science,2012,56:97-102.
    [81]A. San, A. Karaipekli. Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage [J]. Materials Chemistry and Physics,2008,109(2-3):459-464.
    [82]A. Karaipekli, A. San. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage[J]. Renewable Energy,2008,33(12):2599-2605.
    [83]A. Sari, A. Karaipekli, C. Alkan. Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material[J]. Chemical Engineering Journal,2009,155(3):899-904.
    [84]D. Mei, B. Zhang, R. Liu, et al. Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials & Solar Cells,2011,95(10):2772-2777.
    [85]J. Zhang, X. Zhang, Y. Wan, et al. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material[J]. Solar Energy,2012,86(5):1142-1148.
    [86]C. Li, L. Fu, J. Ouyang, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage [J]. Scientific Reports,2013, doi:10.1038/srep01908.
    [87]木土春.矿物储氢研究[J].大地构造与成矿学,2005,29(1):122-130.
    [88]H.Nishihara, P. Hou, L. Li, et al. High-pressure hydrogen storage in zeolite-templated carbon[J]. The Journal of Physical Chemistry C,2009, 113(8):3189-3196.
    [89]吉亚莉,刘晓鹏,米菁,等.热处理温度对Pd/K复合材料微观形貌和储氢性能的影响[J].稀有金属,2010,34(3):352-356.
    [90]L. Zhang, Q. Jin, L. Shan, et al. H3PW12O40 immobilized on silylated palygorskite and catalytic activity in esterification reactions[J]. Applied Clay Science,2010,47(3-4):229-234.
    [91]X. Gao, J. Xu. A new application of clay-supported vanadium oxide catalyst to selective hydroxylation of benzene to phenol[J]. Applied Clay Science,2006, 33(1):1-6.
    [92]J. Cao, G. Shao, Y. Wang, et al. CuO catalysts supported on attapulgite clay for low temperature CO oxidation[J]. Catalysis Communications,2008, 9(15):2555-2559.
    [93]L. Bouna, B. Rhouta, M. Amjoud, et al. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers[J]. Applied Clay Science,2011,52(3):301-311.
    [94]L. Zhang, F. Lv, W. Zhang, et al. Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites[J]. Journal of Hazardous Materials,2009, 171(1-3):294-300.
    [95]朱海青,周杰,赵娣芳,等.凹凸棒石载铜抗菌剂的研制及其抗菌性能[J].中国非金属矿业导刊,2005,(4):31-33.
    [96]陈天虎,李宏伟,汪家权,等.凹凸棒石-银纳米复合抗菌材料制备方法和表征[J].硅酸盐通报,2005,(2):123-126.
    [97]D. Zhao, J. Zhou, N. Liu. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior [J]. Applied Clay Science,2006,33(3-4):161-170.
    [98]赵娣芳,周杰,刘宁.铜改性凹凸棒石/纳米二氧化钛复合粉体的微观结构[J].硅酸盐学报,2006,34(7):792-795.
    [99]汤庆国,沈上越,梁金生,等.磁性凹凸棒石靶向药物载体材料的制备及性能[J].硅酸盐学报,2006,34(1):93-97.
    [100]M. Li, Z. Wu, H. Ka. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials[J]. Applied Energy,2011,88(9):3125-3132.
    [101]K. S. W Sing, D. H. Everett, R. A. W. Haul, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry,1985,57(4):603-619.
    [102]R. M. Barrer, P. J. Denny. Hydrothermal chemistry of the silicate, part IX. nitrogenous aluminosilicates[J]. Journal of the Chemical Society,1961,971-982.
    [103]A. Corma. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chemical Reviews,1997,97(6):2373-2419.
    [104]F. D. Renzo, H. Cambon, R. Dutartre. A 28-year-old synthesis of micelle-templated mesoporous silica[J]. Microporous Materials,1997,10(4-6):283-286.
    [105]T. Yanagisawa, T. Shimizu, K. Kuroda, et al. The preparation of alkyltrimethyl ammonium-kanemite complexes and their conversion to microporous materials[J]. Bulletin of the Chemical Society of Japan,1990,63(4):988-992.
    [106]C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992,359:710-712.
    [107]J. S. Beck, J. C. VartUli, W. J. Roth, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of the American Chemical Society,1992,114(27):10834-10843.
    [108]D. Zhao, J. Feng, Q. Huo, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998; 279(5350):548-552.
    [109]C. Tsung, J. Fan, N. Zheng, et al. A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks [J]. Angewandte Chemie International Edition,2008,47(45):8682-8686.
    [110]J. Zhang, Y. Deng, J. Wei, et al. Design of amphiphilic ABC triblock copolymer for templating synthesis of large-pore ordered mesoporous carbons with tunable pore wall thickness[J]. Chemistry of Materials,2009,21(17):3996-4005.
    [111]Y. Wan, D. Zhao. On the controllable soft-templating approach to mesoporous silicates[J]. Chemical Reviews,2007,107(7):2821-2860.
    [112]C. Chen, S. L. Burkett, H. Li, et al. Studies on mesoporous materials Ⅱ. synthesis mechanism of MCM-41[J]. Microporous Materials,1993,2(1):27-34.
    [113]Q. Huo, D. I. Margolese, U. Ciesla, et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chemistry of Materials,1994,6(8):1176-1191.
    [114]T. Kimura, K. Kuroda. Ordered mesoporous silica derived from layered silicates[J]. Advanced Functional Materials,2009,19(4):511-527.
    [115]R. Mokaya. Synthesis of mesoporous aluminosilicates with enhanced stability and ion-exchange capacity via a secondary crystallization route[J]. Advanced Materials,2000,12 (22):1681-1685.
    [116]Y. Han, F. Xiao, S. Wu, et al. A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media[J]. The Journal of Physical Chemistry B,2001,105(33):7963-7966.
    [117]H. Yang, A. Tang, J. Ouyang, et al. From natural attapulgite to mesoporous materials:methodology, characterization and structural evolution[J]. The Journal of Physical Chemistry B,2010,114(7):2390-2398.
    [118]K. Kosuge, K. Shimada, A. Tsunashima. Micropore formation by acid treatment of antigorite[J]. Chemistry of Materials,1995,7(12):2241-2246.
    [119]P. Thiesen, K. Beneke, G. Lagaly. Alkylammonium derivatives of layered alkali silicates and micro-and mesoporous materials:I. lithium sodium silicate (silinaite) [J]. Journal of Materials Chemistry,2000,10:1177-1184.
    [120]J. Temuujin, G. Burmaa, J. Amgalan, et al. Preparation of porous silica from mechanically activated kaolinite[J]. Journal of Porous Materials,2001, 8(3):233-238.
    [121]T. Linssen, P. Cool, M. Baroudi, et al. Leached natural saponite as the silicate source in the synthesis of aluminosilicate hexagonal mesoporous materials[J]. The Journal of Physical Chemistry B,2002,106(17):4470-4476.
    [122]M. Kato, T. Shigeno, T. Kimura, et al. Influence of the kind of layered disodium disilicates on the formation of silica-organic mesostructured materials[J]. Chemistry of Materials,2004,16(17):3224-3230.
    [123]K. Okada, H. Yoshizaki, Y. Kameshima, et al. Synthesis and characterization of mesoporous silica from selectively acid-treated saponite as the precursors[J]. Journal of Colloid and Interface Science,2007,314(1):176-183.
    [124]S. Jin, G. Qiu, F. Xiao, et al. Investigation of the structural characterization of mesoporous molecular sieves MCM-41 from sepiolite[J]. Journal of the American Ceramic Society,2007,90(3):957-961.
    [125]H. Yang, C. Du, S. Jin, et al. Enhanced photoluminescence property of SnO2 nanoparticles contained in mesoporous silica synthesized with leached talc as Si source[J]. Microporous and Mesoporous Materials,2007,102(1-3):204-211.
    [126]G. Wang, Y. Wang, Y. Liu, et al. Synthesis of highly regular mesoporous Al-MCM-41 from metakaolin[J]. Applied Clay Science,2009,44(1-2):185-188.
    [127]J. Y. Rempel, M. G. Bawendi, K. F. Jensen. Insights into the kinetics of semiconductor nanocrystal nucleation and growth[J]. Journal of the American Chemical Society,2009,131(12):4479-4489.
    [128]H. Han, G. D. Francesco, M. M. Maye. Size control and photophysical properties of quantum dots prepared via a novel tunable hydrothermal route[J]. The Journal of Physical Chemistry C,2010,114(45):19270-19277.
    [129]Z. Wu, H. Wang, T. Zhuang, et al. Multiple functionalization of mesoporous silica in one-pot:direct synthesis of aluminum-containing plugged SBA-15 from aqueous nitrate solutions[J]. Advanced Functional Materials,2008,18(1):82-94.
    [130]H. Yang, Q. Lu, F. Gao, et al. One-step synthesis of highly ordered mesoporous silica monoliths with metal oxide nanocrystals in their channels [J]. Advanced Functional Materials,2005,15(8):1377-1384.
    [131]J. Shi. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts[J]. Chemical Reviews,2013,113 (3):2139-2181.
    [132]J. Zhu, X. Xie, S. A. C. Carabineiro, et al. Facile one-pot synthesis of Pt nanoparticles/SBA-15:an active and stable material for catalytic applications [J]. Energy & Environmental Science,2011,4:2020-2024.
    [133]H. Liu, D. Ma, R. A. Blackley, et al. Highly active mesostructured silica hosted silver catalysts for CO oxidation using the one-pot synthesis approach[J]. Chemical Communications,2008,23:2677-2679.
    [134]J. E. Hampsey, S. Arsenault, Q. Hu, et al. One-step synthesis of mesoporous metal-SiO2 particles by an aerosol-assisted self-assembly process[J]. Chemistry of Materials,2005,17(9):2475-2480.
    [135]C. Aprile, A. Abad, H. Garcia, et al. Synthesis and catalytic activity of periodic mesoporous materials incorporating gold nanoparticles[J]. Journal of Materials Chemistry,2005,15:440-4413.
    [136]C. Yacou, M. L. Fontaine, A. Ayral, et al. One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol-gel route[J]. Journal of Materials Chemistry,2008, 18:4274-4279.
    [137]Z. Liu, Y. Sakamoto, T. Ohsuna, et al. TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41[J]. Angewandte Chemie International Edition,2000,39(17):3107-3110.
    [138]S. Lim, D. Ciuparu, Y. Yang, et al. Improved synthesis of highly ordered Co-MCM-41[J]. Microporous and Mesoporous Materials,2007,101(1-2): 200-206.
    [139]A. Szegedi, M. Hegedus, J. L. Margitfalvi, et al. Low temperature CO oxidation over iron-containing MCM-41 catalysts[J]. Chemical Communications,2005, 11:1441-1443.
    [140]K. Yamamoto, Y. Sunagawa, H. Takahashi, et al. Metallic Ni nanoparticles confined in hexagonally ordered mesoporous silica material[J]. Chemical Communications,2005,3:348-350.
    [141]M. Froba, R. Kohn, G. Bouffaud. Fe2O3 nanoparticles within mesoporous MCM-48 silica:in situ formation and characterization[J]. Chemistry of Materials, 1999,11(10):2858-2865.
    [142]M. Alvaro, C. Aprile, H. Garcia, et al. Synthesis of a hydrothermally stable, periodic mesoporous material containing magnetite nanoparticles, and the preparation of oriented films[J]. Advanced Functional Materials,2006, 16(12):1543-1548.
    [143]M. Bandyopadhyay, A. Birkner, M. W. E. van den Berg, et al. Synthesis and characterization of mesoporous MCM-48 containing TiO2 nanoparticles [J]. Chemistry of Materials,2005,17(15):3820-3829.
    [144]D. Zhao, A. Rodriguez, N. M. Dimitrijevic, et al. Synthesis, structural characterization, and photocatalytic performance of mesoporous W-MCM-48[J]. The Journal of Physical Chemistry C,2010,114(37):15728-15734.
    [145]F. Gao, Q. Lu, X. Liu, et al. Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase[J]. Nano Letters,2001, 1(12):743-748.
    [146]E. A. Turner, H. Rolsner, D. Fenske, et al. Characterization of ZnE (E) S, Se, or Te) materials synthesized using silylated chalcogen reagents in mesoporous MCM-41[J]. The Journal of Physical Chemistry B,2006,110(33):16261-16269.
    [147]Z. Zhang, S. Dai, X. Fan, et al. Controlled synthesis of CdS nanoparticles inside ordered mesoporous silica using ion-exchange reaction[J]. The Journal of Physical Chemistry B,2001,105 (29):6755-6758.
    [148]S. Wang, D. G Choi, S. M. Yang. Incorporation of CdS nanoparticles inside ordered mesoporous silica SBA-15 via ion exchange [J]. Advanced Materials, 2002,14(18):1311-1314.
    [149]M. V. Regi, A. Ramila, R. P. del Real, et al. A new property of MCM-41:drug delivery system[J]. Chemistry of Materials,2001,13(2):308-311.
    [150]J. E. Lee, N. Lee, T. Kim, et al. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications[J]. Accounts of Chemical Research,2011,44(10):893-902.
    [151]P. Yang, S. Gai, J. Lin. Functionalized mesoporous silica materials for controlled drug delivery[J]. Chemical Society Reviews,2012,41:3679-3698.
    [152]S. Hudson, J. Cooney, E. Magner. Proteins in mesoporous silicates[J]. Angewandte Chemie International Edition,2008,47(45):8582-8594.
    [153]Y. Liu, Q. Xu, X. Feng, et al. Immobilization of hemoglobin on SBA-15 applied to the electrocatalytic reduction of H2O2[J]. Analytical and Bioanalytical Chemistry,2007,387(4):1553-1559.
    [154]A. Vinu, V. Murugesan, O. Tangermann, et al. Adsorption of cytochrome c on mesoporous molecular sieves:influence of pH, pore diameter, and aluminum incorporation[J]. Chemistry of Materials,2004,16 (16):3056-3065.
    [155]J. Lu, M. Liong, J. I. Zink, et al. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs[J]. Small,2007,3(8):1341-1346.
    [156]A. M. Chen, M. Zhang, D. Wei, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells[J]. Small,2009, 5(23):2673-2677.
    [157]R. Mellaerts, R. Mols, J. A.G. Jammaer, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica[J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,69(1):223-230.
    [158]C. Lai, B. G Trewyn, D. M. Jeftinija, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. Journal of the American Chemical Society,2003,125 (15):4451-4459.
    [159]K. Suzuki, K. Ikari, H. Imai. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system[J]. Journal of the American Chemical Society,2004,126 (2):462-463.
    [160]Q. Huo, J. Feng, F. Schuth, et al. Preparation of hard mesoporous silica spheres[J]. Chemistry of Materials,1997,9(1):14-17.
    [161]R. I. Nooney, D. Thirunavukkarasu, Y. Chen, et al. Synthesis of nanoscale mesoporous silica spheres with controlled particle size[J]. Chemistry of Materials,2002,14(11):4721-4728.
    [162]X. Huang, L. Zhou, C. Yu, et al. Self-assembly of monodispersed silica nano-spheres with a closed-pore Mesostructure[J]. Journal of Materials Chemistry, 2012,22:11523-11528.
    [163]D. Kuang, T. Brezesinski, B. Smarsly. Hierarchical porous silica materials with a trimodal pore system using surfactant templates [J]. Journal of the American Chemical Society,2004,126(34):10534-10535.
    [164]F. Hoffmann, M. Cornelius, J. Morell, et al. Silica-based mesoporous organic-inorganic hybrid materials [J]. Angewandte Chemie International Edition, 2006,45(20):3216-3251.
    [165]S. Inagaki, S. Guan, T. Ohsuna, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure[J]. Nature,2002,416:304-307.
    [166]L. Mercier, T. J. Pinnavaia. Direct synthesis of hybrid organic-inorganic nanoporous silica by a neutral amine assembly route:structure-function control by stoichiometric incorporation of organosiloxane molecules[J]. Chemistry of Materials,2000,12(1):188-196.
    [167]N. Liu, R. A. Assink, B. Smarsly, et al. Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable -NH2 groups[J]. Chemical Communications,2003,10:1146-1147.
    [168]C. E. Fowler, S. L. Burkett, S. Mann. Synthesis and characterization of ordered organo-silica-surfactant mesophases with functionalized MCM-41-type architecture[J]. Chemical Communications,1997,18:1769-1770.
    [169]Y. Wang, C. Yang, B. Zibrowius, et al. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Ia3d structure[J]. Chemistry of Materials,2003,15(26):5029-5035.
    [170]X. Feng, G. E. Fryxell, L. Q. Wang, et al. Functionalized monolayers on ordered mesoporous supports[J]. Science,1997,276(5314):923-926.
    [171]A. Walcarius, M. Etienne, B. Lebeau. Rate of access to the binding sites in organically modified silicates.2. ordered mesoporous silicas grafted with amine or thiol groups[J]. Chemistry of Materials,2003,15 (11):2161-2173.
    [172]C. Lei, Y. Shin, J. Liu, et al. Entrapping enzyme in a functionalized nanoporous support[J]. Journal of the American Chemical Society,2002,124 (38):11242-11243.
    [173]V. Antochshuk, M. Jaroniec. 1-Allyl-3-propylthiourea modified mesoporous silica for mercury Removal[J]. Chemical Communications,2002,3:258-259.
    [174]L. Mercier, T. J. Pinnavaia. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves:factors affecting Hg(II) uptake[J]. Environmental Science & Technology,1998,32 (18):2749-2754.
    [175]T. Kang, Y. Park, J. Yi. Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica[J]. Industrial& Engineering Chemistry Research,2004,43(6):1478-1484.
    [176]G. S. Armatas, C. E. Salmas, M. Louloudi, et al. Relationships among pore size, connectivity, dimensionality of capillary condensation, and pore structure tortuosity of functionalized mesoporous silica[J]. Langmuir,2003, 19(8):3128-3136.
    [177]F. Zheng, D. N. Tran, B. J. Busche, et al. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent[J]. Industrial & Engineering Chemistry Research,2005, 44(9):3099-3105.
    [178]T. Bollhorst, T. Grieb, A. Rosenauer, et al. Synthesis route for the self-assembly of submicrometer-sized colloidosomes with tailorable nanopores[J]. Chemistry of Materials,2013,25 (17):3464-3471.
    [179]D. Lee, D. A. Weitz. Double emulsion-templated nanoparticle colloidosomes with selective permeability [J]. Advanced Materials,2008,20(18):3498-3503.
    [180]A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, et al. Colloidosomes:selectively permeable capsules composed of colloidal particles[J]. Science,2002, 298:1006-1009.
    [181]M. Li, R. L. Harbron, J. V. M. Weaver, et al. Electrostatically gated membrane permeability in inorganic protocells[J]. Nature Chemistry,2013, doi: 10.1038/nchem.1644.
    [182]S. Cauvin, P. J. Colver, S. A. F. Bon. Pickering stabilized mini emulsion polymerization:preparation of clay armored latexes[J]. Macromolecules,2005, 38(19):7887-7889.
    [183]M. Shen, D. E. Resasco. Emulsions stabilized by carbon nanotube-silica nanohybrids[J]. Langmuir,2009,25(18):10843-10851.
    [184]K. L. Thompson, P. Chambon, R. Verber, et al. Can polymersomes form colloidosomes? [J]. Journal of the American Chemical Society,2012, 134(30):12450-12453.
    [185]X. Huang, M. Li, D. C. Green, et al. Interfacial assembly of protein-polymer nano-conjugates into stimulus-responsive biomimetic protocells[J]. Nature Communications,2013, doi:10.1038/ncomms3239.
    [186]O. Cayre, V. N. Paunov, O. D. Velev. Fabrication of dipolar colloid particles by microcontact printing[J]. Chemical Communications,2003,18:2296-2297.
    [187]Z. Ao, Z. Yang, J. Wang, et al. Emulsion-remplated liquid core-polymer shell microcapsule formation[J]. Langmuir,2009,25(5):2572-2574.
    [188]J. Li, A. P. Hitchcock, H. D. H. Stover. Pickering emulsion templated interfacial atom transfer radical polymerization for microencapsulation[J]. Langmuir,2010, 26(23):17926-17935.
    [189]K. L. Thompson, S. P. Armes, J. R. Howse, et al. Covalently cross-linked colloidosomes[J]. Macromolecules,2010,43(24):10466-10474;
    [190]J. Tian, L. Yuan, M. Zhang, et al. Interface-directed self-assembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization[J]. Langmuir,2012,28(25):9365-9371.
    [191]A. Kumar, B. J. Park, F. Tu, et al. Amphiphilic Janus particles at fluid interfaces[J]. Soft Matter,2013,9:6604-6617.
    [192]J. Faria, M. P. Ruiz, D. E. Resasco. Phase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles[J]. Advanced Synthesis & Catalysis, 2010,352(14-15):2359-2364.
    [193]J. A. Lee, K.C. Krogman, M. Ma, et al. Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers[J]. Advanced Materials,2009, 21(12):1252-1256.
    [194]G. Applerot, A. Lipovsky, R. Dror, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury [J]. Advanced Functional Materials,2009,19(6):842-852.
    [195]J. A. Switzer, H. M. Kothari, P. Poizot, et al. Enantiospecific electrodeposition of a chiral catalyst[J]. Nature,2003,425:490-493.
    [196]J. Chen, K. Wang, L. Hartman, et al. H2S detection by vertically aligned CuO nanowire array sensors[J]. The Journal of Physical Chemistry C,2008, 112(41):16017-16021.
    [197]P. Poizot, S. Laruelle, S. Grugeon, et al. Nano-sized transition- metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature,2000, 407:496-499.
    [198]M. D. Driessen, V. H. Grassian. Photooxidation of trichloroethylene on Pt/ TiO2[J]. The Journal of Physical Chemistry B,1998,102(8):1418-1423.
    [199]S. Zheng, J. Hu, L. Zhong, et al. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries[J]. Chemistry of Materials,2008,20(11):3617-3622.
    [200]A. N. Ejhieh, S. Hushmandrad. Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst[J]. Applied Catalysis A:General, 2010,388(1-2):149-159.
    [201]B. Wang, X. Wu, C. Shu, et al. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry,2010,20:10661-10664.
    [202]李艳,王程,于开宁,等.多孔矿物/纳米TiO2复合体系光催化降解有机污染物研究进展[J].水处理技术,2009,35(3):10-12.
    [203]D. M. A. Melo, J. A. C. Ruiz, M. A. F. Melo, et al. Preparation and characterization of lanthanum palygorskite clays as acid catalysts[J]. Journal of Alloys and Compounds,2002,344(1-2):352-355.
    [204]J. E. Chisholm. Powder diffraction patterns and structural models for palygorskite[J]. Canadian Mineralogist,1992,30:61-73.
    [205]R. L. Frost, Z. Ding. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites[J]. Thermochimica Acta,2003, 397(1-2):119-128.
    [206]Y. Cai, J. Xue, D. A. Polya. A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites[J]. Spectrochimica Acta Part A, 2007,66(2):282-288.
    [207]M. S. Augsburger, E. Strasser, E. Perino, et al. FTIR and Mossbauer investigation of a substituted palygorskite:silicate with a channel structure[J]. Journal of Physics and Chemistry of Solids,1998,59(2):175-180.
    [208]H. Ye, F. Chen, Y. Sheng, et al. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Separation and Purification Technology,2006, 50(3):283-290.
    [209]Q. Fan, Z. Li, H. Zhao, et al. Adsorption of Pb(II) on palygorskite from aqueous solution:Effects of pH, ionic strength and temperature[J]. Applied Clay Science, 2009,45(3):111-116.
    [210]X. Wang, L. Yu, P. Hu, et al. Synthesis of single-crystalline hollow octahedral NiO[J]. Crystal Growth & Design,2007,7(12):2415-2418.
    [211]B. Zhao, X. Ke, J. Bao, et al. Synthesis of flower-like NiO and effects of morphology on its catalytic properties[J]. The Journal of Physical Chemistry C, 2009,113(32):14440-14447.
    [212]Z. Wei, M. Arredondo, H. Peng, et al. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays:NiO as an example[J]. ACS Nano,2010,4(8):4785-4791.
    [213]M. M. Natile, A. Glisenti. New NiO/Co3O4 and Fe2O3/Co3O4 nanocomposite catalysts:synthesis and characterization[J]. Chemistry of Materials,2003, 15(13):2502-2510.
    [214]J. Li, C. Wang, C. Huang, et al. Mesoporous nickel oxides as effective catalysts for oxidative dehydrogenation of propane to propene[J]. Applied Catalysis A: General,2010,382(1):99-105.
    [215]R. L. Frost, O. B. Locos, H. Ruan, et al. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites[J]. Vibrational Spectroscopy, 2001,27(1):1-13.
    [216]R. Wang, G Jiang, Y. Ding, et al. Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes[J]. ACS applied materials & interface, 2011,3(10):4154-3158.
    [217]A. Aimable, A. T. Puentes, P. Bowen. Synthesis of porous and nanostructured particles of CuO via a copper oxalate route[J]. Powder Technology,2011, 208(2):467-471.
    [218]Z. Jia, L. Yue, Y. Zheng, et al. The convenient preparation of porous CuO via copper oxalate precursor[J]. Materials Research Bulletin,2008,43 (8-9):2434-2440.
    [219]G Avgouropoulos. T. Ioannides. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method[J]. Applied Catalysis A:General,2003,244(1):155-167.
    [220]A. Gniewek, A. M. Trzeciak, J. J. Ziolkowski, et al. Pd-PVP colloid as catalyst for Heck and carbonylation reactions:TEM and XPS studies [J]. Journal of Catalysis,2005,229(2):332-343.
    [221]M. Suarez, E. G. Romero. FTIR spectroscopic study of palygorskite:Influence of the composition of the octahedral sheet[J]. Applied Clay Science,2006, 31(1-2):154-163.
    [222]R. G Tailleur, C. J. G Garcia. Cu/P(4-PVP) stereochemistry in tetralin liquid-phase oxidation. I. Effect of the CuCl2/P(4-PVP) on selectivity [J]. Journal of Catalysis,2007,250(1):110-120.
    [223]T. Xu, Y. Cai, K. E. O'Shea. Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspendions[J]. Environmental Science & Technology,2007,41(15):5471-5477.
    [224]R. Leary, A. Westwood. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis[J]. Carbon,2011,49(3):741-772.
    [225]K. Kabra, R. Chaudhary, R. L. Sawhney. Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis:a review[J]. Industrial and Engineering Chemistry Research,2004,43(24):7683-7696.
    [226]A. N. Ejhieh, Z. Salimi. Heterogeneous photodegradation catalysis of o-phenylenediamine using CuO/X zeolite[J]. Applied Catalysis A:General,2010, 390(1-2):110-118.
    [227]M. Liong, B. France, K. A. Bradley, et al. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles[J]. Advanced Materials,2009,21(17):1684-1689.
    [228]H. Song, R. M. Rioux, J. D. Hoefelmeyer, et al. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties [J]. Journal of the American Chemical Society,2006,128(9):3027-3037.
    [229]A. B. Laursen, K. T. H(?)jholt, L. F. Lundegaard, et al. Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles [J]. Angewandte Chemie International Edition,2010,49(20):3504-3507.
    [230]K. P. Gierszal, S. B. Yoon, J. Yu, et al. Adsorption and structural properties of mesoporous carbons obtained from mesophase pitch and phenol-formaldehyde carbon precursors using porous templates prepared from colloidal silica[J]. Journal of Materials Chemistry,2006,16:2819-2823.
    [231]Y. Kong, H. Zhu, G. Yang, et al. Investigation of the structure of MCM-41 samples with a high copper content[J]. Advanced Functional Materials,2004, 14(8):816-820.
    [232]Y. Wang, Z. Wu, L. Shi, et al. Rapid functionalization of mesoporous materials: directly dispersing metal oxides into as-prepared SBA-15 occluded with template[J]. Advanced Materials,2005,17(3):323-327.
    [233]M. Kargol, J. Zajac, D. J. Jones, et al. Copper-and silver-containing monolithic silica-supported preparations for selective propene-propane adsorption from the gas phase[J]. Chemistry of Materials,2005,17(24):6117-6127.
    [234]L. Chen, J. Hu, R. Richards. Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust "green" catalyst for n-alkane oxidation[J]. Journal of the American Chemical Society,2009,131(3):914-915.
    [235]R. Silva, A. V. Biradar, L. Fabris, et al. Au/SBA-15-based robust and convenient-to-use nanopowder material for surface-enhanced raman spectroscopy[J]. The Journal of Physical Chemistry C,2011,115(46):22810-22817.
    [236]K. K. R. Datta, B. V. S. Reddy, K. Ariga, et al. Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction[J]. Angewandte Chemie International Edition,2010, 49(34):5961-5965.
    [237]F. Cui, Z. Hua, C. Wei, et al. Highly dispersed Au nanoparticles incorporated mesoporous TiO2 thin films with ultrahigh Au content[j]. Journal of Materials Chemistry,2009,19:7632-7637.
    [238]E. Rombi, M. G. Cutrufello, C. Cannas, et al. Modifications induced by pretreatments on Au/SBA-15 and their influence on the catalytic activity for low temperature CO oxidation[J]. Physical Chemistry Chemical Physics,2009, 11:593-602.
    [239]Q. Fu, H. Saltsburg, M. F. Stephanopoulos. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts[J]. Science,2003, 301(5635):935-938.
    [240]S. Minico, S. Scire, C. Crisafulli, et al. Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide[J]. Applied Catalysis B:Environmental,2001,34(4):277-285.
    [241]J. C. Yu, X. Wang, L. Wu, et al. Sono-and photochemical routes for the formation of highly dispersed gold nanoclusters in mesoporous titania films[J]. Advanced Functional Materials,2004,14(12):1178-1183.
    [242]M. P. Cabero, J. El Haskouri, B. Solsona, et al. Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials[J]. Journal of Materials Chemistry,2010,20:6780-6788.
    [243]I. O. Jimenez, V. Puntes. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions[J]. Journal of the American Chemical Society,2009, 131(37):13320-13327.
    [244]M. S. Dobrick, K. V. Sarathy, M. Jansen. Surfactant-free synthesis and functionalization of gold nanoparticles [J]. Journal of the American Chemical Society,2005,127(37):12816-12817.
    [245]L. Chen, J. Hu, Z. Qi, et al. Gold nanoparticles intercalated into the walls of mesoporous silica as a versatile redox catalyst[J]. Industrial & Engineering Chemistry Research,2011,50(24):13642-13649.
    [246]M. Chatterjee, Y. Ikushima, Y. Hakuta, et al. In situ synthesis of gold nano-particles inside the pores of MCM-48 in supercritical carbon dioxide and its catalytic application[J]. Advanced Synthesis & Catalysis,2006,348 (12-13):1580-1590.
    [247]L. Vigderman, B. P. Khanal, E. R. Zubarev. Functional gold nanorods: synthesis, self-assembly, and sensing applications[J]. Advanced Materials,2012, 24(36):4811-4841.
    [248]K. Zhang, W. Wu, K. Guo, et al. Synthesis of temperature-responsive poly(n-isopropyl acrylamide)/Poly(methyl methacrylate)/silica hybrid capsules from inverse pickering emulsion polymerization and their application in controlled drug release[J]. Langmuir,2010,26(11):7971-7980.
    [249]B. Brugger, S. Rutten, K. H. Phan, et al. The colloidal suprastructure of smart microgels at oil-water interfaces [J]. Angewandte Chemie International Edition, 2009,48(22):3978-3981.
    [250]C. Miesch, I. Kosif, E. Lee, et al. Nanoparticle-stabilized double emulsions and compressed droplets[J]. Angewandte Chemie International Edition,2012, 51(1):145-149.
    [251]M. Okada, H. Maeda, S. Fujii, et al. Formation of pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase[J]. Langmuir,2012, 28(25):9405-9412.
    [252]T. Chen, P. J. Colver, S. A. F. Bon. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized pickering emulsion polymerization[J]. Advanced Materials,2007,19(17):2286-2289.
    [253]J. Liu, G. Lan, J. Peng, et al. Enzyme confined in silica-based nanocages for biocatalysis in a Pickering emulsion[J]. Chemical Communications,2013, 49:9558-9560.
    [254]S. Crossley, J. Faria, M. Shen, et al. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface[J]. Science,2010,327(5961):68-72.
    [255]D. J. Cole-Hamilton. Janus catalysts direct nanoparticle reactivity[J]. Science, 2010,327(5961):41-42.
    [256]Q. He, X. Cui, F. Cui, et al. Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition[J]. Microporous and Mesoporous Materials,2009,117(3):609-616.
    [257]D. M. Vriezema, P. M. L. Garcia, N. S. Oltra, et al. Positional assembly of enzymes in polymersome nanoreactors for cascade reactions [J]. Angewandte Chemie International Edition,2007,46(39):7378-7382.
    [258]C. Wu, S. Bai, M. B. Ansorge-Schumacher, et al. Nanoparticle cages for enzyme catalysis in organic media[J]. Advanced Materials,2011,23 (47):5694-5699.
    [259]M. Li, D. C. Green, J. L. R. Anderson, et al. In vitro gene expression and enzyme catalysis in bio-inorganic protocells[J]. Chemical Science,2011, 2:1739-1745.
    [260]L. Li, J. Shi, L. Zhang, et al. A novel and simple in-situ reduction route for the synthesis of an ultra-thin metal nanocoating in the channels of mesoporous silica materials[J]. Advanced Materials,2004,16(13):1079-1082.
    [261]G. L. Hallett-Tapley, M. J. Silvero, M. Gonzalez-Bejar, et al. Plasmon-mediated catalytic oxidation of sec-phenethyl and benzyl alcohols[J]. The Journal of Physical Chemistry C,2011,115(21):10784-10790.
    [262]C. Pereira, C. Alves, A. Monteiro, et al. Designing novel hybrid materials by one-pot co-condensation:from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles[J]. ACS Applied Materials & Interfaces,2011, 3(7):2289-2299.
    [263]P. Mondal, S. Banerjee, A. Singha Roy, et al. In situ prepared mesoporous silica nanosphere supported palladium(II) 2-aminopyridine complex catalyst for Suzuki-Miyaura cross-coupling reaction in water[J]. Journal of Materials Chemistry,2012,22:20434-20442.
    [264]K. Qian, J. Wan, X. Huang, et al. A smart glycol-directed nanodevice from rationally designed macroporous materials[J]. Chemistry-A European Journal, 2010,16(3):822-828.
    [265]R. Aveyard, B. P. Binks, J. H. Clint. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science,2003,100-102:503-546.
    [266]A. Schrade, K. Landfestera, U. Ziener. Pickering-type stabilized nanoparticles by heterophase Polymerization[J]. Chemical Society Reviews,2013,42:6823-6839.
    [267]M. Schulz-Dobrick, K. V. Sarathy, M. Jansen. Surfactant-free synthesis and functionalization of gold nanoparticles [J]. Journal of the American Chemical Society,2005,127(37):12816-12817.
    [268]M. Turner, V. B. Golovko, O. P. H. Vaughan, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters[J]. Nature, 2008,454:981-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700