用户名: 密码: 验证码:
深部倾斜岩层巷道非均称变形演化规律及稳定控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用工程调研、理论分析、物理模拟和数值计算等研究手段,总结归纳了倾斜岩层巷道顶板、底板和两帮及四角的分区变形破坏特征,描述了不同区域内的应力分布特征,阐明了巷道不同区域围岩非均称变形的产生机理,揭示了巷道围岩不同区域不均匀变形的时空演化规律,在此基础上提出了控制倾斜岩层巷道非均称变形的稳定控制技术,并进行工程验证研究。主要结论如下:
     (1)深部倾斜岩层巷道围岩变形表现出明显的时序性特征。围岩变形破坏的一般顺序依次是巷道顶板和岩层层面相切部位、巷道底板和高帮底角、低帮底角,最后发展到高帮肩角处。力学分析表明,巷道表面切应力方向和岩层倾向夹角越小,非均称变形的显现时间越早,其中巷道高帮表现为拉伸破坏,低帮表现为剪切破坏。
     (2)参与研制了20MPa-“三向五面”竖向主加载实验系统。系统采用新型模块化设计,采用计算机集成控制和自动采集模型的应力和应变数据。该系统能够对试块进行三个方向5个面的独立伺服加载,每个面主动加载应力为20MPa,各面加载互不干扰,能够根据设计要求较好地实现不同的三维应力状态。模拟试块最大尺度为1000×1000×400mm。
     (3)利用三维物理模拟实验揭示了深部倾斜岩层巷道围岩变形的非均称特征。开展了30°和45°两种倾角的实验,测试分析均表明:巷道高帮表面变形小,但是内部围岩裂纹发育丰富,横向裂纹沿巷道轴向相互贯穿;巷道低帮表面变形较大,但内部横向裂纹发育相对较少;巷道顶板高帮肩角的变形量小,低帮肩角变形量大;底板变形量表现出高帮底角处侧变形量大,低帮底角侧的变形量小。大倾角时两帮非均称现象更加显著,底板的非均称现象减弱。
     (4)采用数值模拟揭示了不同倾角下巷道围岩非均称变形的发展态势。采用3DEC数值模拟软件建立了10°到90°角度范围内的14种不同岩层倾角的巷道模型,模拟结果表明:巷道底板变形非均称性随岩层倾角的增加而单调减小,当倾角大于45°后底板变形非均称性趋缓;巷道两帮水平位移随岩层倾角倾角增加而逐渐增加,垂直位移则逐渐减小;顶板位移峰值点在岩层和巷道相切点两侧,并随岩层倾角增加而逐渐向低帮转移,巷道顶板水平位移量逐渐增加,垂直位移量逐渐减小。当岩层倾角小于15°或者大于80°时,巷道围岩的最大主应力等值线呈圆形分布,此时岩层倾角对于巷道主应力分布影响小。当岩层倾角大于15°而小于80°时,以岩层倾向和法向线为坐标系,在每个象限的平分线上有较大的主应力靠近巷道表面。巷道围岩周围的最大主应力等值线呈“四叶草”型分布,其中分布中心在巷道中心。
     (5)以30°倾角为例研究了围岩应力状态对巷道非均称变形的影响规律。侧压系数等于1时,巷道围岩位移等值线沿通过岩层和巷道切点的岩层法线左右对称,岩层层间滑移离层显现近似的对称特征;侧压系数大于1时,巷道围岩位移区集中在巷道两帮内,层间滑移离层区集中在巷道顶底板内;侧压系数小于1时,巷道围岩位移区集中在巷道顶底板中,岩层层间滑移离层区集中在巷道两帮。巷道围岩位移量、围岩位移范围、层间滑移量、层间滑移范围和巷道围岩应力大小成正比,应力越大变形特征越明显。
     (6)提出围岩“应力优化-性能提升-结构强化”技术思路,系统创新了控制非均称变形的加固技术。提出了巷道围岩优先加固区的概念,即倾斜岩层在围岩应力作用下早期出现的非均称变形破裂区域,将导致巷道围岩的持续加速变形和结构性失稳,应优先加固。
     (7)提出采用注浆及注浆锚索深孔注浆相结合的分步全长锚固技术提升围岩力学性能;结合优先加固区和局部支护结构强化技术、“三高”锚固技术和预应力锚索桁架支护结构强化技术控制围岩支护结构的薄弱环节;通过构建内外承载的耦合支护体系及壁后充填技术提高支护结构的强度。
     (8)结合深部全岩巷道曲江矿-850m东大巷、深部半煤岩巷道曲江矿601巷道和淮南谢桥矿小煤柱沿空巷道三种条件下的倾斜岩层巷道案例给出了工程验证。
High intensity of mining status has been existed in China for many years, wheremore and more collieries trying to enter deeper and with the downward speed more than8~10m/a. Certain amount of inclined coal seam exist among them, where theexcavation shows a series of distinctive deformation characteristics like durativeasynchronism and spatial asymmetry. It is obvious that the consequential hiddendangers, like supporting failure or structural instability, will bottleneck the highrecovery of inclined coal seam.
     Combined measures of engineering research, theoretical analysis, physicalsimulation and numerical calculation are applied in this dissertation and thussuccessfully summarize the deformation and breakage characteristics of different areasof roadway, including roof, floor, sides and corners, there also further analyzes the stressdistribution law of these areas and illuminates the mechanism of unsymmetricaldeformation in different areas, then prosperously reveal the space-time evolution lawof the unsymmetrical deformation in different areas, finally the corresponding stablecontrolling technology for unsymmetrical deformation of roadway buried in inclinedstrata is proposed and also been verified in field application, the main conclusions areshown as follows,
     (1) Entry’s deformation of inclined deep strata is featured by distinctive timesequence,the general breakage sequence is: Roof, area that tangent to the layer of strata,floor, base angle of higher side and then lower side, and the last one is shoulder ofhigher side. The mechanical analysis manifests that unsymmetrical deformation willshow out sooner as the smaller angle that between the shear stress direction and strata’sinclination.
     (2) We manufactured Dthree-dimensional and five face vertical primaryload testsystem which is configured by neotype modular design, compute integrated controlling,and automatic strain/stress gathering model, it thus can realize independent load (threedirections and five faces) on the test block, the active load stress of each face can reach20MPa, then ideal different three-dimensional stress state can come true according tothe design requirements. The maximum size of the test block is1000×1000×400mm.
     (3) Unsymmetrical deformation speciality of deep inclined strata was revealedbased on the three-dimensional physical experiments. There set up two simulatedinclination, namely,30°and45°, results indicated that though deformation of higher rib side was small, interior joints were greatly developed and horizontal joints run throughalong the entry’s axial direction. Deformation of lower rib side was relative large butthe interior horizontal joints were rare. Considering the deformation of entry’s roof,shoulder of higher rib side was relative smaller than the lower rib side. But it showncomplete contrary as to entry’s floor, base angle of higher rib side was relative largerthan lower rib side. This phenomenon tends to be much more dramatic in sides as theinclination increases, however, it tends to mitigate as to floor.
     (4) Numerical simulation also testified the unsymmetrical deformation ofsurrounding rock, computational software3DEC was adopted here and fourteeninclinations varied from10°to90°had been initiated. The simulated resultsdemonstrated that unsymmetrical deformation decreased versus the increase ofinclinations and it would head for alleviation as the inclination surpasses45°.Horizontal displacement of sides would increase with the inclination’s increasing whilethe vertical shown contrary variation. The peak value of roof’s displacement located atthe both sides of the tangency point between the strata and entry, which also wouldtransfer to the lower rib side as the inclination increases and simultaneously roof’shorizontal displacement increased gradually while vertical displacement decreasedgradually. Under the circumstance that the inclination of strata is less than15°or morethan80°, the contour lines of maximum main stress shown circular distribution and thestress distribution was little influenced by the inclination, when beyond theaforementioned range, however, if build a coordinate system by strata inclination andnormal firstly, then there had relative large main stress located at the quadrant bisector,the stress was close to the surface of roadway, and the contour lines of maximum mainstress shown clover distribution and whose distribution center coincided with theentry’s center.
     (5) Influence on unsymmetrical deformation which applied by stress state ofsurrounding rock was analyzed when the inclination was30°. Displacement contourlines was symmetrical along the normal line which went through the tangency pointbetween strata and entry under the condition that the side pressure coefficient equaledto1, in addition, the slippage and separation of strata also shown approximate symmetry.The displacement of surrounding rock was concentrate in entry’s sides and slippagearea in the roof and floor if side pressure coefficient surpassed1, if the side pressurecoefficient was less than1, however, the other way around. It was thus obvious that allof displacement value, displacement range, slippage value and slippage range were directly proportional to rock’s stress, the former ones shown distinctive variation aslatter seriously changed.
     (6) This dissertation also initiated the new technical thoughts of Dstressoptimization-property improvement-structure strengthen, which systematicallyinnovated the reinforcement on unsymmetrical deformation, there also put forward thetheory of priority reinforcement, as what it called, it focused on the priorityreinforcement on the areas where the early formed unsymmetrical deformation located,thus to avoid the continuous deformation and structural instability under the high stressin inclined strata.
     (7) This dissertation also came up with the technique of step-by-step anchoringmethod to improve mechanical property of surrounding rock, whose kernel was thecombination of grouting and deep hole cable grouting, based on priority reinforcement,regional structural strengthen technique, Dthree highs anchoring technology, andprestressed cable truss structure, vulnerable region can be efficiently supported, and thestrength of supporting structure also can be improved by interior-exterior bearedcoupling system and backfill grouting technology
     (8) Different engineering practices that concerned inclined strata verifiedaforementioned theoretical results, they were-850m eastern rocky roadway of QujiangMine,601numbered half-coal roadway of Qujiang Mine, and gob-side side entryretaining with little coal pillar retained of Xieqiao Mine, Huainan Mining Group.
引文
[1]煤炭科学院北京煤化学研究所编.工业的粮食[M].北京:煤炭工业出版社,1985.
    [2]《能源中长期发展规划纲要》草案原则通过[J].中国能源,2004,26(7):24.
    [3]袁亮.煤矿瓦斯灾害防治理论与关键技术[D]..
    [4]王永炜.中国煤炭资源分布现状和远景预测[J].煤,2007(05):44-45.
    [5]毛节华,许惠龙.中国煤炭资源分布现状和远景预测[J].煤田地质与勘探,1999(03):2-5.
    [6]张农,李希勇,郑西贵,等.深部煤炭资源开采现状与技术挑战:全国煤矿千米深井开采技术座谈会,中国山东泰安,2013.
    [7]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究:第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议,中国北京,2009.
    [8]辛亚军,勾攀峰,贠东风,等.大倾角软岩回采巷道围岩失稳特征及支护分析[J].采矿与安全工程学报,2012(05):637-643.
    [9]刘少伟,张辉,张伟光,等.倾斜煤层回采巷道上帮煤体滑移危险分析与应用[J].中国矿业大学学报,2011(01):14-17.
    [10]于远祥,洪兴,陈方方.回采巷道煤体荷载传递机理及其极限平衡区的研究[J].煤炭学报,2012(10):1630-1636.
    [11]于远祥.巷道底鼓机理及其控制技术研究:岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会,中国湖北武汉,2010.
    [12]杨科,谢广祥.大倾角煤层回采巷道非对称锚网索支护与实践[J].地下空间与工程学报,2013(04):924-927.
    [13]李树清,王卫军,潘长良.深部巷道围岩承载结构的数值分析[J].岩土工程学报,2006(03):377-381.
    [14]李树清,潘长良,王卫军.锚注联合支护煤巷两帮塑性区分析[J].湖南科技大学学报(自然科学版),2007(02):5-8.
    [15]张农,李宝玉,李桂臣,等.薄层状煤岩体中巷道的不均匀破坏及封闭支护[J].采矿与安全工程学报,2013(01):1-6.
    [16]王宁波,张农,蓝海东,等.急倾斜特厚煤层采空区现场地面与地下协同探测分析[J].西安科技大学学报,2013(01):7-11.
    [17]勾攀峰,辛亚军.大倾角煤层回采巷道顶板结构体稳定性分析[J].煤炭学报,2011(10):1607-1611.
    [18]勾攀峰,辛亚军,张和,等.深井巷道顶板锚固体破坏特征及稳定性分析[J].中国矿业大学学报,2012(05):712-718.
    [19]勾攀峰,辛亚军,申艳梅,等.深井巷道两帮锚固体作用机理及稳定性分析[J].采矿与安全工程学报,2013(01):7-13.
    [20]贠东风,王晨阳,苏普正,等.大倾角软顶软煤回采巷道支护技术[J].煤炭科学技术,2010(10):13-16.
    [21]贠东风,辛亚军,姬红英,等.大倾角D三软突出煤层回采巷道顶板监测与支护[J].西安科技大学学报,2010(03):260-265.
    [22]贠东风,辛亚军,苏普正,等.大倾角软岩顶板回采巷道支护系统耗散结构平衡分析[J].煤炭技术,2010(05):84-86.
    [23]王卫军,侯朝炯.急倾斜煤层放顶煤顶煤破碎与放煤巷道变形机理分析[J].岩土工程学报,2001(05):623-626.
    [24]王卫军,朱川曲,熊仁钦.急倾斜煤层顶煤可放性识别的神经网络模型[J].煤炭学报,2000(01):38-41.
    [25]王卫军,侯朝炯.急倾斜煤层放顶煤顶煤破碎与放煤巷道变形机理分析[J].岩土工程学报,2001(05):623-626.
    [26]王卫军,陈良棚.急倾斜煤层巷道放顶煤放煤巷道合理定位分析[J].湘潭矿业学院学报,1999(02):12-15.
    [27]常聚才,谢广祥,罗勇,等.急倾斜煤层全煤巷道锚网索支护参数设计[J].煤炭科学技术,2007(01):46-48.
    [28]张国锋,曾开华,张春,等.旗山矿倾斜煤夹层巷道破坏机理及支护设计研究[J].采矿与安全工程学报,2011(01):22-27.
    [29]冯仁俊,王俊超.急倾斜煤层巷道围岩变形破坏机理及支护研究[J].世界科技研究与发展,2013,35(3):360r-364r.
    [30]来兴平,马敬,张卫礼,等.急倾斜煤层煤岩变形局部化特征现场监测[J].西安科技大学学报,2012(04):409-414.
    [31]孟波,靖洪文,陈坤福,等.软岩巷道围岩剪切滑移破坏机理及控制研究[J].岩土工程学报,2012(12):2255-2262.
    [32]杨旭旭,靖洪文,陈坤福,等.深部原岩应力对巷道围岩破裂范围的影响规律研究[J].采矿与安全工程学报,2013(04):495-500.
    [33]姜耀东,赵毅鑫,刘文岗,等.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004(14):2396-2401.
    [34]何满潮,齐干,程骋,等.深部复合顶板煤巷变形破坏机制及耦合支护设计[J].岩石力学与工程学报,2007(05):987-993.
    [35] Kjellman W. Report on an apparatus for consummate investigation of the mechanicalproperties of soils: Proc.,1st Int. Conf. on Soil Mechanics and Foundation Engineering,1936[C].
    [36]张坤勇,殷宗泽,徐志伟.国内真三轴试验仪的发展及应用[J].岩土工程技术,2003(05):289-293.
    [37]吴国溪.真三轴仪的研制和试验及其参数在地基基础与上部结构共同作用中的应用:[学位论文][D].,1987.
    [38]杨正,杨克修.DMS100800大型真三轴自动伺服控制模型试验设备的设计[J].岩土力学,1994(01):74-79.
    [39]朱俊高,卢海华,殷宗泽.土体侧向变形性状的真三轴试验研究[J].河海大学学报,1995(06):28-33.
    [40]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004(21):3727-3731.
    [41]张强勇,李术才,尤春安,等.新型组合式三维地质力学模型试验台架装置的研制及应用[J].岩石力学与工程学报,2007(01):143-148.
    [42]张强勇,李术才,尤春安.新型岩土地质力学模型试验系统的研制及应用[J].土木工程学报,2006(12):100-103.
    [43]张强勇,李术才,郭晓红.组合式地质力学模型试验系统及其在分岔隧道工程中的应用[J].岩土工程学报,2007(09):1337-1343.
    [44]朱维申,张乾兵,李勇,等.真三轴荷载条件下大型地质力学模型试验系统的研制及其应用[J].岩石力学与工程学报,2010(01):1-7.
    [45]石露,李小春.真三轴试验中的端部摩擦效应分析[J].岩土力学,2009(04):1159-1164.
    [46]张平松,胡雄武,刘盛东.采煤面覆岩破坏动态测试模拟研究[J].岩石力学与工程学报,2011(01):78-83.
    [47]勾攀峰,李德海.回采巷道周边锚固体变形破坏特征的实验研究:第六次全国岩石力学与工程学术大会,中国湖北武汉,2000.
    [48]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报,2002(06):596-600.
    [49]伍永平,曾佑富,解盘石,等.急倾斜重复采动软岩巷道失稳破坏分析[J].西安科技大学学报,2012(04):403-408.
    [50]伍永平,王俊超,解盘石,等.相似模拟实验中锚杆测力计的研制与应用[J].采矿与安全工程学报,2012(03):371-375.
    [51]伍永平,于水,高喜才,等.深部软岩煤巷底鼓控制技术[J].煤炭科学技术,2012(06):5-7.
    [52]张永涛.急倾斜煤层巷道围岩变形破坏特征及支护技术研究[D].西安科技大学,2011.
    [53]张永涛,古江林,王道成,等.大倾角煤层回采巷道相似模拟研究[J].陕西煤炭,2011(02):37-39.
    [54]王宁波,张农,崔峰,等.急倾斜特厚煤层综放工作面采场运移与巷道围岩破裂特征[J].煤炭学报,2013(08):1312-1318.
    [55]王宇锋,王飞,张洪乐.急倾斜煤层巷道支护结构轴向变形模拟试验[J].煤炭科学技术,2011(05):37-40.
    [56]李丹,夏彬伟,陈浩,等.缓倾角层理各向异性岩体隧道稳定性的物理模型试验研究[J].岩土力学,2009(07):1933-1938.
    [57]刘刚,赵坚,宋宏伟,等.断续节理岩体中围岩破裂区的试验研究[J].中国矿业大学学报,2008(01):62-66.
    [58]刘刚,赵坚,宋宏伟,等.断续节理方位对巷道稳定性的影响[J].煤炭学报,2008(08):860-865.
    [59]牛双建,靖洪文,杨旭旭,等.深部巷道破裂围岩强度衰减规律试验研究[J].岩石力学与工程学报,2012(08):1587-1596.
    [60]牛双建,靖洪文,杨大方.深井巷道围岩主应力差演化规律物理模拟研究[J].岩石力学与工程学报,2012(S2):3811-3820.
    [61]牛双建,靖洪文,张忠宇,等.深部软岩巷道围岩稳定控制技术研究及应用[J].煤炭学报,2011(06):914-919.
    [62]牛双建,靖洪文,梁军起.不同加载路径下砂岩破坏模式试验研究[J].岩石力学与工程学报,2011(S2):3966-3974.
    [63]侯圣权,靖洪文,杨大林.动压沿空双巷围岩破坏演化规律的试验研究[J].岩土工程学报,2011(02):265-268.
    [64]陈坤福,靖洪文,杨圣奇.深部巷道围岩应力演化规律的模型试验研究:岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会,中国湖北武汉,2010.
    [65]张明建,郜进海,魏世义,等.倾斜岩层平巷围岩破坏特征的相似模拟试验研究[J].岩石力学与工程学报,2010(S1):3259-3264.
    [66]曾开华,许家雄,张国锋.深部巷道破坏过程相似模拟实验研究[J].金属矿山,2011(09):44-48.
    [67]杨永康,季春旭,康天合,等.大厚度泥岩顶板煤巷破坏机制及控制对策研究[J].岩石力学与工程学报,2011(01):58-67.
    [68]王忠福,刘汉东,王四巍,等.深部高地应力区软岩巷道模型试验及数值优化[J].地下空间与工程学报,2012(04):710-715.
    [69]查文华,谢广祥,罗勇.不同支护形式下急倾斜煤层巷道支护对比实验研究[J].煤矿安全,2006(06):4-7.
    [70] Kent F L, Coggan J S, Altounyan P. Investigation into factors affecting roadway deformationin the Selby coalfield[J]. Geotechnical&Geological Engineering,1998,16(4):273-289.
    [71]张蓓,曹胜根,王连国,等.大倾角煤层巷道变形破坏机理与支护对策研究[J].采矿与安全工程学报,2011(02):214-219.
    [72]冯俊伟,冯光明,郑保才.大倾角煤层回采巷道锚杆支护的数值模拟分析[J].煤炭工程,2007(02):73-75.
    [73]郝光生.非对称回采巷道围岩稳定性分析及围岩控制研究[J].2011.
    [74]杨仁树,朱衍利,吴宝杨,等.大倾角松软厚煤层巷道优化设计及数值分析[J].中国矿业,2010(09):73-77.
    [75]何满潮,王晓义,刘文涛,等.孔庄矿深部软岩巷道非对称变形数值模拟与控制对策研究[J].岩石力学与工程学报,2008(04):673-678.
    [76]王晓义,何满潮,刘文涛,等.孔庄矿深部软岩巷道非对称变形数值模拟与控制对策研究:岩土工程数值方法与高性能计算学术研讨会暨中国岩石力学与工程学会岩体物理与数学模拟专委会年会,中国辽宁大连,2007.
    [77]李刚,梁冰,张国华.高应力软岩巷道变形特征及其支护参数设计[J].采矿与安全工程学报,2009(02):183-186.
    [78]秦涛,刘永立,冯俊杰,等.急倾斜煤层巷帮变形失稳数值模拟[J].辽宁工程技术大学学报:自然科学版,2013,32(5):582-586.
    [79] Kulatilake P H S W, Wu Q, Yu Z, et al. Investigation of stability of a tunnel in a deep coalmine in China [J]. International Journal of Mining Science and Technology,2013(04):567-577.
    [80] S. D, K. S, P. M, et al.3-D modeling of rock burst in pillar No.19of Fetr6chromite mine[J].International Journal of Mining Science and Technology,2013(02):237-242.
    [81] Backstrom A, Jonsson M, Chistiansson R, et al. Analysis of Factors That Affect And Controlsthe Excavation Disturbance/Deformation Zone In Crystalline Rock: ISRM InternationalSymposium on Rock Mechanics-Sinorock2009,2009[C]. International Society for RockMechanics.
    [82]荣冠,朱焕春,王思敬.锦屏一级水电站左岸边坡深部裂缝成因初探[J].岩石力学与工程学报,2008(S1):2855-2863.
    [83]郭东明,杨仁树,王雁冰,等.大倾角松软厚煤层巷道支护的不连续变形分析[J].煤炭科学技术,2011(04):21-24.
    [84]唐治,潘一山,阎海鹏,等.急倾斜煤柱开采后对巷道影响的数值模拟[J].中国地质灾害与防治学报,2010(02):64-67.
    [85]王连国,缪协兴,董健涛,等.深部软岩巷道锚注支护数值模拟研究[J].岩土力学,2005(06):983-985.
    [86]包海玲,孟益平,巫绪涛,等.深部倾斜巷道变形机理的数值模拟[J].合肥工业大学学报(自然科学版),2012(05):673-677.
    [87]陶连金,张倬元,王泳嘉.大倾角煤层回采巷道的锚固分析[J].地质灾害与环境保护,1997(04):27-32.
    [88]贾蓬,唐春安,杨天鸿,等.具有不同倾角层状结构面岩体中隧道稳定性数值分析[J].东北大学学报,2006(11):1275-1278.
    [89]李学华,杨宏敏,张东升.下伏煤层开采引起的大巷变形规律模拟研究[J].煤炭学报,2006(01):1-5.
    [90]来兴平,程文东,刘占魁.大倾角综采放顶煤开采数值计算及相似模拟分析[J].煤炭学报,2003(02):117-120.
    [91] Yang X, Pang J, Liu D, et al. Deformation mechanism of roadways in deep soft rock atHegang Xing’an Coal Mine[J]. International Journal of Mining Science and Technology,2013(02):307-312.
    [92] Yang J, Cao S, Li X. Failure laws of narrow pillar and asymmetric control technique of gob-side entry driving in island coal face[J]. International Journal of Mining Science andTechnology,2013(02):271-276.
    [93] Yan S, Bai J, Li W, et al. Deformation mechanism and stability control of roadway along afault subjected to mining [J]. International Journal of Mining Science and Technology,2012,22(4):559-565.
    [94] Mu Z, Dou L, He H, et al. F-structure model of overlying strata for dynamic disasterprevention in coal mine [J]. International Journal of Mining Science and Technology,2013,23(4):513-519.
    [95]何满潮,高尔新.软岩巷道耦合支护力学21世纪学科生长点:世纪之交的煤炭科学技术学术年会,中国北京,1997.
    [96]何满潮,高尔新.软岩巷道耦合支护力学原理及其应用[J].锚杆支护,1997(04):1-4.
    [97]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004(05):34-37.
    [98]张农,侯朝炯,王培荣.深井三软煤巷锚杆支护技术研究[J].岩石力学与工程学报,1999(04):69-72.
    [99]张农,侯朝炯,陈庆敏,等.岩石破坏后的注浆固结体的力学性能[J].岩土力学,1998(03):50-53.
    [100]张农,王成,高明仕,等.淮南矿区深部煤巷支护难度分级及控制对策[J].岩石力学与工程学报,2009(12):2421-2428.
    [101]张农,李桂臣,许兴亮.顶板软弱夹层渗水泥化对巷道稳定性的影响[J].中国矿业大学学报,2009(06):757-763.
    [102]张农,袁亮,王成,等.卸压开采顶板巷道破坏特征及稳定性分析[J].煤炭学报,2011(11):1784-1789.
    [103]王卫军,彭刚,黄俊.高应力极软破碎岩层巷道高强度耦合支护技术研究[J].煤炭学报,2011(02):223-228.
    [104]王卫军,杨磊,林大能,等.松散破碎围岩两步耦合注浆技术与浆液扩散规律[J].中国矿业,2006(03):70-73.
    [105]邵光宗,冯增强,柳耀财.深部软岩耦合支护实践:中国岩石力学与工程学会软岩工程专业委员会第二届学术大会,中国北京,1999.
    [106] Wattimena R K, Kramadibrata S, Sidi I D, et al. Developing coal pillar stability chart usinglogistic regression[J]. Intnational Journal of Rock Mechanics and Mining Sciences,2013,58:55-60.
    [107] Petho S Z, Selai C, Mashiyi D, et al. Managing the geotechnical and mining issuessurrounding the extraction of small pillars at shallow depths at Xstrata Coal South Africa[J].Journal of The Southn African Institute of Mining and Metallurgy,2012,112(2):105-118.
    [108] Wang H W, Jiang Y D, Zhao Y X, et al. Numerical Investigation of the Dynamic MechanicalState of a Coal Pillar During Longwall Mining Panel Extraction[J]. Rock Mechanics andMechanics Rock Engineing,2013,46(5):1211-1221.
    [109] van der Merwe J N. Rock engineering method to pre-evaluate old, small coal pillars forsecondary mining[J]. Journal of The Southn African Institute of Mining and Metallurgy,2012,112(1):1-6.
    [110]马念杰,赵志强,冯吉成.困难条件下巷道对接长锚杆支护技术[J].煤炭科学技术,2013(09):117-121.
    [111]李学华,侯朝炯,柏建彪,等.高应力巷道围岩应力转移技术与工程应用研究[J].煤矿支护,2010(01):1-7.
    [112]孙晓明,张国锋,蔡峰,等.深部倾斜岩层巷道非对称变形机制及控制对策[J].岩石力学与工程学报,2009(06):1137-1143.
    [113]李术才,王琦,李为腾,等.深部厚顶煤巷道让压型锚索箱梁支护系统现场试验对比研究[J].岩石力学与工程学报,2012(04):656-666.
    [114]王琦,李术才,李为腾,等.深部厚顶煤巷道让压型锚索箱梁支护系统布置方式对比研究[J].岩土力学,2013(03):842-848.
    [115]刘泉声,刘学伟,黄兴,等.深井软岩破碎巷道底臌原因及处置技术研究[J].煤炭学报,2013(04):566-571.
    [116]孙利辉,杨本生,杨万斌,等.深部巷道连续双壳加固机理及试验研究[J].采矿与安全工程学报,2013(05):686-691.
    [117]高玮.岩石力学[G].北京:北京大学出版社,2010.
    [118]陈祖煜.岩质边坡稳定分析[G].北京:中国水利水电出版社,2005.
    [119]张辉.超千米深井高应力巷道底鼓机理及锚固技术研究[D].中国矿业大学(北京),2013.
    [120]刘鸿文.材料力学[G].北京:高等教育出版社,2011.
    [121] Goodman R E. Introduction to rock mechanics [M]. New York, USA: John willeg&sons,1989.
    [122]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004(21):3727-3731.
    [123]蔡美峰.岩石力学与工程[G].北京:科学出版社,2002.
    [124] Kastner H. Statik des tunel und stollenbauess [G]. Berlin: Springer-Verlag,1962.
    [125]刘拴亮.全长锚固锚杆的锚固效应分析[J].山西煤炭,2005(03):1-3.
    [126]李树清.深部煤巷围岩控制内、外承载结构耦合稳定原理的研究[D].中南大学,2008.
    [127]王进锋.高应力软岩回采巷道锚杆(索)耦合支护技术研究[D].西安科技大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700