用户名: 密码: 验证码:
孔隙砂岩化学注浆浆液渗透扩散机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地是我国煤炭能源重点开发区,建井过程的水害问题普遍且突出,不但影响施工质量、延误进度、增加成本,甚至酿成严重工程事故。区内煤矿建井水害集中于洛河、直罗、下石盒子三组区域性富水层段,属微裂隙-孔隙型双重介质,揭露时呈孔隙性渗漏,水量大且稳定,是典型的弱渗富水型砂岩含水层。
     注浆是目前西部矿区治理弱渗富水砂岩水害较普遍采用的技术方法,已有的工程实践表明,常规水泥注浆方法治理此类砂岩水害因其可注性差而不适用,而化学注浆尚有诸多技术问题有待解决,其中最突出的是充填率及减渗效果偏低的问题。
     针对目前西部矿区弱渗富水砂岩含水层建井水害注浆防治存在的问题,本论文选择鄂尔多斯盆地建井水害严重且水害层段不同的几个矿井采集岩样,采用扫描电镜、物性指标测试等手段进行了砂岩的结构特征研究。在此基础上,通过模型试验和理论分析,系统研究了孔隙性砂岩的渗透通道条件、浆液的可注性、充填效果及其主要影响因素,揭示了化学浆液在砂岩孔隙中的渗透扩散规律、充填特点及减渗机理,为化学注浆材料性能改良、提高注浆防渗效果提供了基础依据。获得的主要认识如下。
     (1)对洛河、直罗、下石盒子三组砂岩分层取样进行的性状研究发现:三组砂岩具有相近的微、细观结构条件,物理、力学性质显现有共性特征,主要表现为颗粒级配不良、胶结性差、强度偏低、孔隙连通性好、孔隙率高。
     (2)孔隙性砂岩的微观渗流特征研究发现:砂岩的渗流孔道虽“四通八达”,但流体的渗流受到孔道特征的制约,仅在部分孔道渗流相对活跃,汇流及分流现象交替产生,且相对活跃的孔道中流体运动方向及通道尺度处于动态变化。
     (3)通过宏观、细观模拟试验及理论分析,探究了不同类型浆液对于孔隙砂岩的可注性差异及内在机制,研究发现:溶液型化学浆液在孔隙砂岩中的可注性主要受制于渗流通道的结构形态和浆液性能,由于化学浆液粘度较大,孔隙砂岩渗流通道微细,化学浆液在孔隙砂岩中虽具有可注性,但需要的注浆压力较大;水泥类颗粒悬浮型浆液可注性极差,其主要原因是浆液在渗流孔道的变径、变向处渗透扩散时的渗透阻力过大,浆液在孔道中受阻的机理为“相对减速集聚”。
     (4)依据砂岩孔道渗流特征构建了孔隙砂岩二维渗透模型单元,利用层流均匀流理论结合孔隙砂岩化学注浆模型试验结果,解释了混相、非混相注浆浆液在孔隙中的扩散规律及减渗机理,研究发现:非混相注浆浆液在孔道中呈类活塞式驱替流动,混相注浆浆液在孔道中流动的过程本质为水携带颗粒在孔道中混合运动;化学注浆后减渗率偏低的主要原因是已注入主渗孔道中浆液发生位置移动及浆液存在固结收缩性。
     (5)基于浆液扩散机理的研究成果,推导了可实现注浆扩散半径、注浆压力、注浆泵量、注浆持续时间等多因素计算分析的浆液柱形扩散理论模型,研究成果在梅花井煤矿副立井过直罗组下段砂岩含水层化学注浆的治理中得到有效检验。
Construction quality, coal production and coal mine workers’ safety have been deeply threatened by coal mine well construction water damages which always exist in the sandstone of Luohe Formation, the lower of Zhiluo Formation and Xiashihezi Formation in the Western and South margin of Ordos Basin nowadays. The aquifers, as typical poor seepage aquifers, often come from micro-cracks and pores dual media water that shows porous seepage and high flow rates.
     The water damages always be governed by cement grouting that has been proved to be non-suitable in this area due to some problems, i.e., the low groutability and unsatisfactory reduced permeability. Likewise, chemical slurry grouting also has lots of defects that low filled rate and reduced permeability rate are outstanding.
     Through comprehensive study of model experiments and theoretical analysis, the seepage channel of porous sandstone, slurries’ groutability and filled effect, as well as their main factors are analyzed, on the basis of rock sampled from several coal mines and structural characteristics of sandstone analysis by SEM and physical index test. Through the study, conclusions can be drawn as follows:
     (1) Rock were sampled from Luohe Formation, Zhiluo Formation and Xiashihezi Formation that have similar micro and meso structural characteristics, physical and mechanical properties, which show bad grain composition, strong water yield property, low strength, Good pore connectivity and high permeability.
     (2) From the micro-seepage characteristic analysis of porous sandstone, the result shows that the seepage channels of sandstone are extending in all directions, while still be influenced by seepage channels’characteristic, and only parts of them are active. Converge and by pass happen in turn, and the fluid direction and channel are being changing all the time.
     (3) The different groutabilty and internal mechanism of slurries are studied using macro and meso model experiments and theoretical analysis. The study shows that the groutabilty of solution chemical slurry is mainly affected by its properties and morphology of seepage channel. The groutabilty of chemical slurry is low due to its high viscosity and tiny seepage channel. Also, particles suspended grouting materials whose disruption mechanism shows “decelerate and gather” is lower due to the resistance of seepage is high in the diameter and direction changing positions.
     (4) Dimensional seepage unit of porous sandstone was built on the base of water seepage behavior of sandstone. The slurry diffusion and reduced permeability mechanism of miscible and immiscible were studied by the synthesized analysis of uniform laminar flow theory and chemical slurry grouting experimental result. The results show that immiscible slurry flows as piston driven flow in the porous channel. But the flow essence of miscible slurry may be considered as the water flow along with grains. The low reduced permeability after chemical slurry grouting may mainly caused by the changed position of slurry that has been grouted and the systole of slurry.
     (5) Slurry cylindrical diffusion theoretical model was deduced from the slurry diffusion mechanism. The grouting diffusion radius, grouting pressure, grouting flow rate and grouting lasting can be calculated by this model. The conclusions have been tested and verified effectively, during the chemical slurry grouting of lower sandstone aquifer of Zhiluo formation in the vice shaft of Meihua Coal Mine.
引文
[1]王蓬,姜振泉,段王拴,等.彬长矿区深厚黄土及富水弱渗地层普通法建井变形控制和防渗保障技术研究[R].陕西彬长矿业集团有限公司,中国矿业大学,2012.
    [2]钱自卫,姜振泉,曹丽文,等.弱胶结孔隙介质渗透注浆模型实验[J].岩土力学.2013(1):193-142.
    [3]穆文志.低渗透油层孔隙介质内微观流动机理研究[D].大庆:大庆石油学院,2009.
    [4]胡志明.低渗透储层的微观孔隙结构特征研究及应用[D].大庆:中国科学院渗流流体力学研究所,2006.
    [5]高辉.特低渗透砂岩储层微观孔隙结构与渗流机理研究[D].西安:西北大学,2009.
    [6]刘伟新,承秋泉,王延斌,等.油气储层特征微观分析技术及其应用[J].石油实验地质,2006,28(5):341-343.
    [7]任康绪.扫描电镜对低渗透储油层砂岩基质内孔隙铸体法分析的剖析[J].化工矿产地质,1997,19(1):69-72.
    [8]王金勋,杨普华,刘庆杰,等.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版),2003,27(4):66-69.
    [9]张人雄,李晓梅,王正欣,等.单向水平流动压汞与常规压汞技术对比研究[J].石油勘探与开发,1998,25(6):61-66.
    [10]王瑞飞,陈明强,孙卫,等.特低渗透砂岩储层微观孔隙结构分类评价[J].地球学报,2008,29(2):213-220.
    [11]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44.
    [12]曹绪龙,李玉彬,孙焕泉,等.利用体积CT法研究聚合物驱中流体饱和度分布[J].石油学报,2003,24(2):65-68.
    [13]孙卫,史成恩,赵惊蛰,等. X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用—以西峰油田庄19井区长82储层为例[J].地质学报,2006,80(5):775-778.
    [14]张顺康.水驱后剩余油分布微观实验与模拟[D].青岛:中国石油大学,2007.
    [15] Dullien F A L,现代渗流物理学.范玉平,赵东伟等译.北京:石油工业出版社,2001:109-131.
    [16]王金勋.应用孔隙水平网络模型研究两相渗流规律[D].北京:中国石油勘探开发研究院,2001.
    [17] Wong P Z, Koplik J, Tomanic J. Conductivity and Permeability of Rocks[J]. PhysicalReviewB,1984,30(11):6606-6614.
    [18]郭尚平.渗流力学几个方面的进展和建议[M].北京:气象出版社,2001:11-22.
    [19]张晓军,刘祖原,万明芳.Lattice Boltzmann方法及其应用[J].武汉理工大学学报,2002,24(2):46-49.
    [20]辛峰.用渗流网络模型研究多孔介质中的孔结构和气体扩散[D].天津:天津大学化学工程系,1996.
    [21] Liang F H, Song Y C, Liu Y, et al.Study of the permeability characteristics of porous media with Studyof the permeability characteristics of porous media with methane hydrate by pore network model[J].Journal of Natural Gas Chemistry,2010,19(3):255-260.
    [22] A.G Yiotis, A.K Stubos, A.G Boudouvis, et al.2-D pore-network model of the drying ofsingle-component liquids in porous media[J]. Advances in Water Resources,2001,24(3):439-460.
    [23] Kejian Wu, Marinus I. J. Van Dijke, et al.3D Stochastic Modelling of Heterogeneous Porous Media–Applications to Reservoir Rocks[J].2006,65(3):443-467.
    [24] G L Nogueira, Marcio S Carvalho, V Alvarado.Experiments and network model of flow of oil-wateremulsion in porous media[J]. Transport in Porous Media,2013,98(2):427-441.
    [25] Jonathan S. Ellis, Aimy Bazylak. Dynamic pore network model of surface heterogeneity in brine-filledporous media for carbon sequestration[J].Physical Chemistry Chemical Physics,2012,23(14):8382-8390.
    [26] Steven L. Bryant, Peter R. King, David W. Mellor.Network model evaluation of permeability andspatial correlation in a real random sphere packing[J].Transport in Porous Media,1993(11):53-57.
    [27] Hongbing Ji, Yixin Chen, Shengzhou Chen.Numerical and Experimental Fractal Pore Network Study onDrying of Porous Media: Model Building[J]. Advanced Materials Research,2012,26(10):557-559.
    [28]侯建,张顺康,李振泉,等.基于连续切片图像网络模型建立方法:中国,200910015604.2[P].2009-10-14.
    [29]邵红旗,王维.双液注浆法快速建造阻水墙封堵突水巷道[J].煤矿安全,2011,42(11):40-43.
    [30]白峰青,卢兰萍,缑书宝,等.德盛煤矿特大突水治理技术[J].煤炭学报,2007,32(7):741-743.
    [31]缑书宝,董传彤,张文增,等.德盛煤矿特大突水治理技术[R].邯郸矿业集团有限公司,2005.
    [32]袁智,郭德勇,宋建成.超化煤矿矿井突水特征及防治对策[J].煤炭科学技术,2007,35(1):29-32.
    [33]李沛涛,武强.底板破坏型采煤工作面突水机理及治理技术[J].辽宁工程技术大学学报(自然科学版),2008,27(5):653-656.
    [34]陈忠胜,杨思光,张成银.三河尖煤矿21102面底板奥灰特大突水原因及治理[J].煤田地质与勘探,2005,33(2):44-46.
    [35]吴志刚,朱亚平,汪善好,等.三河尖煤矿特高压奥灰水水害治理技术[J].煤炭科学技术,2004,32(5):18-20.
    [36]高建中,傅月之.义马新安煤矿特大型奥灰突水的治理[J].煤田地质与勘探,1997,25(12):24-29.
    [37]李松营.应用动水注浆技术封堵矿井特大突水[J].煤炭科学技术,2000,28(8):28-30.
    [38]睦文武,周欣.帷幕注浆在吴庄铁矿治水中的应用[J].中国矿山工程,2012,41(1):21-24.
    [39]郭春奎,宋峰,于同超,等.河北省沙河市中关铁矿帷幕注浆试验研究[R].华北有色工程勘察院,2012.
    [40]胡国信.新桥硫铁矿注浆帷幕截流方案的可行性研究[J].矿业研究与开发,2001,21(5):26-28.
    [41]王平,卢峰,韩龙.山东青州店子铁矿帷幕堵水工程设计研究与施工[J].探矿工程(岩土钻掘工程),2005,32(2):3-8.
    [42]潘志强.粗砂层中水泥渗透注浆渗透理论与计算机仿真研究[D].阜新:辽宁工程技术大学,2004.
    [43]张金顺.砂砾地层渗透注浆的可注性及应用矶究[D].长沙:中南大学地学与环境工程学院,2007.
    [44]杨秀竹,雷金山,夏力农,等.幂律型浆液扩散半径研究[J].岩土力学,2005,26(11):1803-1806.
    [45]杨坪.砂卵(砾)石层模拟注浆试验及渗透注浆机理研究[D].长沙:中南大学地学与环境工程学院,2005.
    [46]钱自卫,姜振泉,曹丽文.渗透注浆浆液扩散半径计算方法研究及应用[J].工业建筑,2012,42(7):100-104.
    [47]孙斌堂,凌贤长,凌晨,等.渗透注浆浆液扩散与注浆压力分布数值模拟[J].水利学报,2007,31(11):1402-1407.
    [48]彭振斌,胡焕校,许宏武.注浆工程设计计算与施工[M].武汉:中国地质大学出版社,1997.
    [49]王档良.破壁化学注浆模拟试验研究及工程应用[D].徐州:中国矿业大学:2005.
    [50]魏继红.岩质地基中的化学灌浆及其效果检测[D].南京:河海大学,2001.
    [51]郭密文.高压封闭环境孔隙介质中化学浆液扩散机制试验研究[D].徐州:中国矿业大学,2010.
    [52]王国际,黄小广,曾宪桃,等.注浆技术理论与实践[C].徐州:中国矿业大学出版社,2000.
    [53]陈彦生,董建军.电离子土壤强化剂施工指南[M].武汉:武汉工业大学出版社,1999.
    [54]张文煊.电离子土壤强化剂在交通道路工程中应用[M].武汉:武汉工业大学出版社,2000.
    [55]吴志广.电离子土壤强化剂(ISS)在防洪堤坝工程中应用[M].武汉:武汉工业大学出版社,2000.
    [56]张荣堂,周北雁.电离子土壤强化剂TFISS路用性能的应用研究[S].中南公路工程,2002,27(1):105-112.
    [57]任克昌,杨道印,梅锦煜.化学灌浆的吸渗理论和WJ88浆材的研究[J].水力发电,1991(10):77-80.
    [58]谭日升.湿面粘结理论[J].中国胶粘剂,1994(5):27-31.
    [59]谭日升.在有水裂隙中提高化学灌浆效果的研究[J].水利学报,1981(5):66-72.
    [60] Burwell E.B. Cement and clay grouting of foundations: Practice of the corps of engineering[J].SoilMech,1958(84):1-22.
    [61]李慎刚.砂性地层渗透注浆试验及工程应用研究[D].沈阳:东北大学,2010.
    [62]陈丽华.裂隙地层注浆技术及适用浆材的试验研究[D].淮南:安徽理工大学,2012.
    [63]杨米加,陈明雄,何永年.裂隙岩体注浆模拟实验研究[J].实验力学,2001,16(1):105-112.
    [64]杨米加.随机裂隙岩体注浆渗透机理及加固后稳定性分析[D].徐州:中国矿业大学,1999.
    [65]杨米加,陈明雄,何永年.裂隙岩体网络注浆渗透规律[J].水利学报,2001(7):41-46.
    [66]阮文军.新型注浆模拟装置:中国,CN00212923[P].2000-08-09.
    [67]韩羽.破碎煤体化学注浆加固模拟试验研究[D].徐州:中国矿业大学,2006.
    [68]徐志鹏.高压裂隙注浆试验台研制及塑性早强浆材注浆试验研究[D].北京:煤炭科学研究总院,2009.
    [69]湛铠瑜.单一裂隙动水注浆模拟实验研究[D].徐州:中国矿业大学,2010.
    [70]杨峰.砂砾石层灌浆试验研究及渗流计算分析[D].北京:中国水利水电科学研究院,2005.
    [71]杨坪,唐益群,彭振斌,等.砂卵(砾)石层中注浆模拟试验研究[J].岩土工程学报,2006,28(12):2134-2138.
    [72]姚普.水泥基复合注浆材料工程性能及模拟试验研究[D].徐州:中国矿业大学,2007.
    [73]张改玲.化学注浆固砂体高压渗透性及其微观机理[D].徐州:中国矿业大学,2011.
    [74] Au S. K. A. Fundamental study of compensation grouting in clay[D].London: University of Cambridge,2001.
    [75] R. Kleinlugtenbelt, A. Bezuijen, A. F. van Tol. Model tests on compensation grouting[J]. Tunnellingand Underground Space Technology,2006,21(3-4):435-436.
    [76] Chang Hong. Hydraulic fractures in particulate materials[D]. Atlanta: Georgia Institute of Technology,2004.
    [77] Tirupati Bolisetti. Experimental and numerical investigations of chemical grouting in heterogeneousporous media[D]. Ontario: University of Windsor,2005.
    [78] Adam Bezuijen. Compensation grouting in sand-Experiments, field fxperiences and mechanisms[D].Delft: Delft University of Technology,2010.
    [79] Eisa K. Compensation grouting in sand[D].London: University of Cambridge,2008.
    [80] R. te Grotenhuis. Fracture grouting in theory-Modelling of fracture grouting in sand[D]. Delft: DelftUniversity of Technology,2004.
    [81] Delfosse-Ribay, Estelle, Djeran-Maigre. Factors affecting the creep behavior of grouted sand[J]. Journalof Geotechnical and Geoenvironmental Engineering,2006,132(4):488-500.
    [82]姜春露,姜振泉.刘盛东,等.基于地电场响应的多孔岩石注水-注浆模拟试验[J].煤炭学报,2012,37(4):602-605.
    [83]姜春露.富水孔隙砂岩含水层扰动过程的水动力学特征[D].徐州:中国矿业大学,2013.
    [84]隋旺华,李永涛.煤矿立井微孔隙岩体注浆防渗及机理分析[J].岩土工程学报,2000,22(2):214-217.
    [85]兰玉波.化学驱波及系数及驱油效率的研究[D].大庆:大庆石油学院,2006.
    [86]李奋.中高渗砂岩油藏水驱油效率及波及规律研究[J].东营:中国石油大学,2009.
    [87] Donaldson E C, Thomas R D. Microscopic Observations of Oil Displacement in Water Wet and Oil WetSystems[J]. Society of Petroleum Engineers,1971(1):35-55.
    [88] Anderson W G. Wettability Literature Survey-Part6: The Effect of Wettability on Waterflooding[J].Journal of petroleum technology,1987(2):1605-1622.
    [89] Jadhunandan P P, Morrow N R. Effect of Wettability on Water flood Recovery for CrudeOil/Brine/Rock Systems[J]. SPE Reservoir Engineering,1995(2):40-46.
    [90] Morrow N R.Wettability and Its Effect on Oil Recovery[J]. Journal of petroleum technology,1990(12):1476-1484.
    [91] Babadagli T. Evaluation of EOR methods for heavy oil recovery in naturally fractured reservoirs[J].Journal of Petroleum Science and Engineering,2003,37:25-37.
    [92] Babadagli T, Al-Bemani A. Investigations on matrix recovery during steam injection into heavyoilcontaining carbonate rocks[J]. Journal of Petroleum Science and Engineering,2007,58:259-274.
    [93] Al-Hadhrami H S, Blunt M J. Thermally Induced Wettability Alteration To Improve Oil Recovery inFractured Reservoirs[J]. SPE Reservoir Evaluation and Engineering,2001,4(3):179-186.
    [94]周显民,马启贵,徐盛家.油藏润湿性对水驱油效率的影响[J].大庆石油地质与开发,1994,13(1):70-71
    [95]鄢捷年.油藏岩石润湿性对注水过程中驱油效率的影响[J].石油大学学报(自然科学版),1998,22(3):43-46
    [96]刘玉章.聚合物驱提高采收率技术[M].北京:石油工业出版社,2006.
    [97]夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报.2001,22(4):60-65.
    [98]王天明,王春燕,樊力鹏.大港油田开展二氧化碳驱油的前景分析[J].油气天地面工程,1999,18(5):17-18.
    [99]孙忠新.CO2驱油效果影响因素研究[D].大庆:大庆石油学院,2009.
    [100]房宝财,王允诚,王庆,等.葡萄花油田CO2吞吐采油现场试验[J].江汉石油学院学报,2003,25(2):93-94.
    [101]刘炳官,朱平,雍志强.江苏油田CO2混相驱现场试验研究[J].石油学报,2002,23(4):56-60.
    [102]邓示汗,尚朝辉,杜勇.单井CO2吞吐技术在桩西油藏开发中的应用[J].钻采土艺,2004,27(3):97-100.
    [103]周正平.稠油井CO2吞吐采油技术[J].海洋石油,2003,23(3):72-76.
    [104]陈德斌,曾贤辉.文中油田CO2吞吐矿场试验研究[[J].西部探矿工程,2006(5):75-77.
    [105]王双明,佟英梅,李锋莉,等.鄂尔多斯盆地聚煤规律及煤炭资源评价[M].北京:煤炭工业出版社,1996.
    [106]李洁.鄂尔多斯盆地西北部下石盒子组沉积体系[D].成都:成都理工大学,2008.
    [107]张忠义.鄂尔多斯盆地白坚系洛河组-环河华池组沉积特征研究[D].西安:长安大学,2005
    [108]鄂尔多斯盆地资料.鄂尔多斯新闻网.http://www.ordosnews.cn/local/01/20130307/13353.html,2013.3.7.
    [109]鄂尔多斯盆地.百度百科.http://baike.baidu.com/link?url=c-ghdVcguU5MwNWbVsSpYVwhCINOeKcYAZHJEIu5rJY0TUw4Qax-zTluw4OomBm9lxW5CKvwXtEWC6JVYMQ6_K.2014.3.13.
    [110]鄂尔多斯盆地.互动百科.http://www.baike.com/wiki/鄂尔多斯盆地.2012.9.18.
    [111]鄂尔多斯盆地.中国知网.http://xuewen.cnki.net/searchentry.aspx?key=鄂尔多斯盆地.
    [112]鄂尔多斯盆地将是中国最重要的能源基地.国际能源网.http://www.in-en.com/article/html/energy_1056105692166147.html.2008.2.28.
    [113]郝蜀民,惠宽洋,李良.鄂尔多斯盆地大牛地大型低渗气田成藏特征及其勘探开发技术[J].石油与天然气地质,2006,27(6):762-768.
    [114]杨华,席胜利,魏新善,等.鄂尔多斯多旋回叠合盆地演化与天然气富集[J].中国石油勘探,2006(1):17-24.
    [115]鄂尔多斯盆地地层表.百度文库http://wenku.baidu.com/link?url=5BJr-ugAsb28tTzT27g46VDGYf16s1KiNRI-tRxLRhbVFtZZixRmLhv7RwuvFG9KHh7IFYwI2lid5L_jcc_uwsu-VDGMa9HRlrUhikyswNe.2010.12.21.
    [116]王双明.鄂尔多斯盆地构造演化和构造控煤作用[J].地质通报,2011,30(4):544-551.
    [117]魏斌,张忠义,杨友运.鄂尔多斯盆地白垩系洛河组至环河华池组沉积相特征研究[J].地层学杂志,2006,30(4):367-372.
    [118]于波,张忠义,刘显阳,等.鄂尔多斯盆地白垩系洛河组至环河华池组砂体展布规律研究[J].地层学杂志,2008,32(3):285-288.
    [119]赵俊峰,刘池洋,赵建设,等.鄂尔多斯盆地侏罗系直罗组沉积相及其演化[J].西北大学学报(自然科学版),2008,38(3):480-486.
    [120]赵俊峰,刘池洋,喻林,等.鄂尔多斯盆地侏罗系直罗组砂岩发育特征[J].沉积学报,2007,25(4):535-544.
    [121]长庆石油地质志编写组.中国石油地质志(卷12)一长庆油田[M].北京:石油工业出版社,1992,1-46/62-69.
    [122]吝文.鄂尔多斯盆地二叠系山西组-石盒子组沉积特征研究[D].北京:中国地质大学(北京),2005.
    [123]武文慧.鄂尔多斯盆地上古生界储层砂岩特征及成岩作用研究[D].成都:成都理工大学,2011.
    [124]何自新,南珺祥.鄂尔多斯盆地上古生界储层图册[M].北京:石油工业出版社,2004.
    [125]罗蛰潭.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [126]王允诚.油层物理学[M].北京:石油工业出版社,1993.
    [127]汪新光,李茂,覃利娟,等.利用压汞资料进行低渗储层孔隙结构特征分析[J].海洋石油,2011,31(1):42-47.
    [128]林春明,张霞,周健,等.鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J].地球科学进展,2011,26(2):212-222.
    [129]铸体薄片的三维重建与定量分析系.四川大学图像信息研究所.http://www.westimage.com.cn/htm/west_nr33.htms.
    [130]徐安娜,汪泽成,赵文智,等.四川盆地须家河组二段储集体非均质性特征及其成因征[J].地质勘探,2011,31(11):53-58.
    [131]周恒鹏,田兴智.深井孔隙含水层工作面预注浆施工技术[J].安徽理工大学学报(自然科学版),2012,32(+1):115-117.
    [132]李晓龙,吴智明,姜振泉,等.新型溶胶树脂浆液在孔隙-微裂隙岩层治理中的应用[J].煤矿安全,2012,43(7):140-142.
    [133]沉积岩.维基百科. http://zh.wikipedia.org/wiki/沉积岩.
    [134]沉积岩.百度百科http://baike.baidu.com/link?url=GELbMhRNqWJDddhHRM5aW3Xyjo_fTbR-zCn0b_RM88q-BeMvGhET81cPBdPLQexY.
    [135]隋旺华,姜振泉.溶胶树脂浆液:中国, ZL201010278681[P].2011-01-26.
    [136]坪井直道.化学注浆法的实际应用[M].东京:鹿岛出版会,1976:38-39.
    [137]王大林.脲醛树脂基炭微球的制备及其形貌控制研究[D].天津:天津大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700