用户名: 密码: 验证码:
瓦斯爆炸多参数时空演化及气固射流幕抑爆特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯爆炸事故是我国煤矿井下最严重的灾害事故之一,容易造成大量的人身伤亡和巨大的国家财产损失。为了从源头上防止瓦斯积聚,越来越多的煤矿加大了瓦斯抽采的投入,但是我国低浓度瓦斯的抽采量占有较大比重,在通过管道长距离输送至瓦斯利用端的过程中也存在着严重的安全隐患。考虑到瓦斯爆炸特征参数众多,其发展过程中可能会呈现特殊性和复杂性,因此需要研究巷道(或瓦斯输送管道)内瓦斯爆炸的多参数时空演化特征,继而开发新型抑爆设备,把瓦斯爆炸灾害控制在小的范围内。
     本文采用理论分析、数值模拟和实验研究等方法,研究了瓦斯爆炸超压及火焰瞬时速度与传播距离的耦合关系、瓦斯爆炸多参数的加速发展特征、瓦斯爆炸多参数的衰减特征、瓦斯爆炸防爆安全距离及防火距离等,以此为指导,开发了高压气固两相射流幕抑爆惰化技术及装置,并测试了抑爆装置的响应时间和抑爆效果。取得的主要创新性成果如下:
     基于一定假设条件建立了瓦斯爆炸强冲击波衰减后的超压、气流速度、冲击波传播速度与传播距离的耦合关系式,发现超压与传播距离和巷道断面积成反比,与瓦斯爆炸释放总能量成正比,而气流速度、冲击波传播速度均与传播距离和巷道断面积的平方根成反比,均与瓦斯爆炸总能量的平方根成正比。在一定实验条件下得到了充满燃料平直钢管内瓦斯爆炸火焰瞬时传播速度与传播距离的耦合关系式,发现火焰瞬时速度随着传播距离的增大而增大,但增大幅度逐渐减小。
     计算了各种初始温度、初始压力、初始球形火焰半径和瓦斯积聚体积量等条件下的瓦斯爆炸防爆安全距离及防火距离。揭示了这些因素对爆炸多参数衰减特征及防爆距离的影响规律,发现初始温度的增大导致最大超压、最大密度、最大气流速度和最大燃烧速率呈线性关系减小,最高温度和防火距离呈线性关系增大,防爆安全距离逐渐增大;初始压力的增大可使最大超压、最大密度和最大燃烧速率线性增大,对防爆安全距离的影响不存在明显规律性,对防火距离的影响可以忽略;初始球形火焰半径的变化对最大超压、最大密度、最高温度、最大气流速度和最大燃烧速率的影响小,对防爆安全距离的影响不存在明显规律性,对防火距离的影响可以忽略;瓦斯积聚体积量的增大导致最大超压、最大密度、最大气流速度、最高温度和防爆安全距离呈增大趋势变化,防火距离呈明显线性关系增大。
     采用氮气与ABC干粉灭火剂的混合物作为抑爆剂,开发了高压气固两相射流幕抑爆惰化技术及装置。装置的喷撒效率比国家标准AQ1079-2009规定的参考值提高了24.73%,ABC干粉喷撒完成时间缩短了20%,从传感器接受火焰信号到喷撒出最大质量干粉灭火剂的总时间缩短了24.86%,只要抑爆剂喷射口前方某一火焰传感器与触发火焰传感器得到的火焰到达时间差介于117~919ms之间,则抑爆成功。通过抑爆试验发现,喷撒氮气与ABC干粉对爆炸超压及火焰速度的抑制作用比较明显,超压降幅最高为76.7%,火焰速度降幅最高为100%;火焰熄灭的位置基本处于抑爆剂喷射口前后3m范围内,小于标准规定的6m;喷撒一次高压氮气与普通ABC干粉抑爆后,剩余抑爆剂的存在还可以抑制至少5次瓦斯爆炸的传播。气固两相射流幕抑爆技术的研发成功可以为煤矿井下巷道或瓦斯输送管道内的瓦斯爆炸隔爆抑爆提供一种新的技术途径,研究成果对防止瓦斯爆炸灾害事故的扩大具有十分重要的科学价值和实际意义。
Gas explosion is one of the most serious disasters in the coal mining accidents,and it can cause a large number of losses of human lives and property. More and moreinputs to gas drainage have been made in order to prevent gas aggregation at source.But in China, the amount of low concentration coal mine gas drainage accounts for alarge proportion, the serious safety hazards still exist in the process of gastransmission by long distance pipelines. Considering the parameters of a gasexplosion are multiple, the gas explosion propagation may present some particularitiesand complexities. So it is necessary to study on the multiparameter temporal andspatial evolution of gas explosions in roadways (or gas transmission pipelines), thento develop a new explosion suppression equipment which may control the gasexplosion disasters in a small area.
     In this paper, the methods of theoretical analysis, numerical simulation, andexperimental research were used to study on the coupling relationships of the gasexplosion overpressure and the flame instantaneous speed respectively with thepropagation distance, the multiparameter acceleration and attenuation characteristicsof gas explosions, and the explosion-proof safety distance and flameproof distance ofgas explosions. Based on these above, the active explosion suppression and inertingdevices using high-pressure gas-solid jet curtain were developed, and their responsetime and explosion-suppression effectiveness were also tested. The main innovativeresults are shown as follows.
     Based on some assumptions, the formulae for the coupling relationships of theoverpressure, the gas velocity, and the shock-wave propagation speed respectivelywith the propagation distance after the strong shock wave of a gas explosionattenuated were established. It was found that the overpressure was inverselyproportional to the propagation distance and the roadway cross-sectional area, anddirectly proportional to the total energy of the gas explosion. However, the gasvelocity and the shock-wave propagation speed were both inversely proportional tothe square root of the propagation distance and roadway cross-sectional area, and bothdirectly proportional to the square root of the total energy of the gas explosion. Undersome experimental conditions, the formula for the theoretical coupling relationshipbetween the flame instantaneous speed of a gas explosion occurred in a straight steelpipe filled with fuel and the propagation distance was built. It was found that the flame instantaneous speed increased with increasing distance from the ignition source,but the increasing amplitude gradually decreased.
     The explosion-proof safety distances and the flameproof distances of gasexplosions for various initial temperatures, initial pressures, initial spherical flameradii, and fuel volumes were calculated, and the influences of these factors on themultiparameter attenuation characteristics and explosion-proof distances of gasexplosions were also revealed. It was found that increasing initial temperaturedecreased the maximum overpressure, the maximum density, the maximum gasvelocity, and the maximum combustion rate linearly, increased the maximumtemperature and the flameproof distance linearly, and increased the explosion-proofsafety distance gradually. Increasing initial pressure increased the maximumoverpressure, the maximum density, and the maximum combustion rate linearly, butits effect on the explosion-proof safety distance had no obvious regularity and theeffect on the flameproof distance could be ignored. The effect of changing the initialspherical flame radius on the maximum overpressure, the maximum density, themaximum temperature, the maximum gas velocity, and the maximum combustion ratewas small, had no obvious regularity on the explosion-proof safety distance and couldbe ignored on the flameproof distance. Increasing fuel volume increased themaximum overpressure, the maximum density, the maximum gas velocity, themaximum temperature, and the explosion-proof safety distance, and increased theflameproof distance linearly.
     The explosion suppression and inerting devices using high-pressure gas-solid jetcurtain were developed, and the explosion suppressant was the two-phase mixture ofnitrogen and ABC dry powder. The spurt efficiency increased24.73%than thereference value setting by national standard AQ1079-2009, the spurt completion timeshortened by20%, and the total time from accepting flame sensor signal to spurtingthe maximum quality of ABC dry powder decreased by24.86%. If the difference offlame arrival time between the flame sensor in front of spurting powder position andthe trigger flame sensor was in117~919ms, the explosion suppression would besuccessful. By explosion suppression experiments, it was found that spurting nitrogenand ABC dry powder had an obvious suppression effect on the explosion overpressureand the flame speed, and the maximum decreasing amplitudes of overpressure andflame speed were76.7%and100%respectively. The flame extinction position waswith the scope of3m around the position of spurting explosion suppressant, less than 6m referred to the national standard. After the high-pressure nitrogen and ABC drypowder had suppressed the gas explosion propagation successfully, the surplusexplosion suppressants would still prevent at least five gas explosions. The successfuldevelopment of the explosion suppression technology using gas-solid two-phase jetcurtain might provide a new technical way for the isolation and suppression of gasexplosions in underground roadways of coal mines or the gas transmission pipelines.Research results might have very important scientific value and practical significanceon preventing the expansion of gas explosion disasters.
引文
[1] http://www.chinasafety.gov.cn/newpage/
    [2] http://www.cdc.gov/niosh/mining/statistics/disasters.htm
    [3] http://www.nea.gov.cn/2014-01/28/c_133080152.htm
    [4]刘志超,郝晶晶,齐博.细水雾在低浓度瓦斯输送管道中沉降规律的研究[J].煤炭工程,2013,(2):91-93.
    [5] Lee J H S, Solohukhin R I, Oppenheim A K. Current views on gaseous detonation[J].Astonautica Acta,1969,(14):565-584.
    [6] Bjerketvedt D, Bakke J R, van Wingerden K. Gas explosion handbook[J]. Journal ofHazardous Materials,1997,52(1):1-150.
    [7] Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progressin Energy and Combustion Science,2008,34(4):499-550.
    [8] Oran E S, Vadim N, Gamezo V N. Origins of the deflagration-to-detonation transition ingas-phase combustion[J]. Combustion and Flame,2007,148(1-2):4-47.
    [9] Dorofeev S B. Flame acceleration and explosion safety applications[J]. Proceedings of theCombustion Institute,2011,33(2):2161-2175.
    [10] Blanchard R, Arndt D, Gr tz R, et al. Effect of ignition position on the run-up distance toDDT for hydrogen-air explosions[J]. Journal of Loss Prevention in the Process Industries,2011,24(2):194-199.
    [11] Chan C K, Dewit W A. Deflagration-to-detonation transition in end gases[J]. Symposium(International) on Combustion,1996,26(2):2679-2684.
    [12] Grune J, Sempert K, Haberstroh H, et al. Experimental investigation of hydrogen-airdeflagrations and detonations in semi-confined flat layers[J]. Journal of Loss Prevention inthe Process Industries,2013,26(2):317-323.
    [13] Silvestrini M, Genova B, Parisi G, et al. Flame acceleration and DDT run-up distance forsmooth and obstacles filled tubes[J]. Journal of Loss Prevention in the Process Industries,2008,21(5):555-562.
    [14] Thomas G, Oakley G, Bambrey R. An experimental study of flame acceleration anddeflagration to detonation transition in representative process piping[J]. Process Safety andEnvironmental Protection,2010,88(2):75-90.
    [15] Yageta J, Shimada S, Matsuoka K, et al. Combustion wave propagation and detonationinitiation in the vicinity of closed-tube end walls[J]. Proceedings of the Combustion Institute,2011,33(2):2303-2310.
    [16]萨文科.井下空气冲击波[M].北京:冶金工业出版社,1979.
    [17] Kitagawa K, Yokoyama M, Yasuhara M. Attenuation of shock wave by porous materials[J].Shock Waves,2005:1247-1252.
    [18] Kitagawa K, Takayama K, Yasuhara M. Attenuation of shock waves propagating inpolyurethane foams[J]. Shock Waves,2006,15:437-445.
    [19] Kitagawa K, Yamashita S, Takayama K, et al. Attenuation properties of blast wave throughporous layer[J]. Shock Waves,2009:73-78.
    [20] Golub V V, Lu F K, Medin S A. Blast wave attenuation by lightly destructable granularmaterials[J]. Shock Waves,2005:989-994.
    [21] Nakazawa S, Watanabe S, Iijima Y, et al. Experimental investigation of shock waveattenuation in basalt[J]. Icarus,2002,156:539-550.
    [22] Rochette D. Contributions to numerical developments in shock waves attenuation in porousfilters[J]. Shock Waves,2007,17:103-112.
    [23] Britan A, Ben-Dor G, Igra O, et al. Shock waves attenuation by granular filters[J].International Journal of Multiphase Flow,2001,27:617-634.
    [24]王磊,司荣军,张延松,等.瓦斯浓度对爆炸传播影响的实验研究[J].中国矿业,2009,18(5):107-109.
    [25]王磊.瓦斯浓度对瓦斯爆炸传播的影响研究[D].重庆:煤炭科学研究总院重庆研究院,2009.
    [26] Ning J G, Wang C, Lu J. Explosion characteristics of coal gas under various initialtemperatures and pressures[J]. Shock Waves,2006,15:461-472.
    [27] Dupont L, Accorsi A. Explosion characteristics of synthesised biogas at varioustemperatures[J]. Journal of Hazardous Materials,2006,136(3):520-525.
    [28] Huzayyin A S, Moneib H A, Shehatta M S, et al. Laminar burning velocity and explosionindex of LPG-air and propane-air mixtures[J]. Fuel,2008,87(1):39-57.
    [29] Shu C M, Wen P J, Chang R H. Investigations on flammability models and zones for o-xyleneunder various initial pressures, temperatures and oxygen concentrations[J]. ThermochimicaActa,2002,392:271-287.
    [30] Tang C L, Huang Z H, Jin C, et al. Explosion characteristics of hydrogen-nitrogen-airmixtures at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy,34(1):554-561.
    [31] Cammarota F, Di Benedetto A, Russo P, et al. Experimental analysis of gas explosions atnon-atmospheric initial conditions in cylindrical vessel[J]. Process Safety and EnvironmentalProtection,2010,88(5):341-349.
    [32] Cammarota F, Di Benedetto A, Di Sarli V, et al. Combined effects of initial pressure andturbulence on explosions of hydrogen-enriched methane/air mixtures[J]. Journal of LossPrevention in the Process Industries,2009,22(5):607-613.
    [33] Razus D, Brinzea V, Mitu M, et al. Explosion characteristics of LPG-air mixtures in closedvessels[J]. Journal of Hazardous Materials,2009,165(1-3):1248-1252.
    [34] Miao H Y, Jiao Q, Huang Z H, et al. Effect of initial pressure on laminar combustioncharacteristics of hydrogen enriched natural gas[J]. International Journal of Hydrogen Energy,2008,33(14):3876-3885.
    [35] Bradley D, Hicks R A, Lawes M, et al. The measurement of laminar burning velocities andmarkstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevatedtemperatures and pressures in an explosion Bomb[J]. Combustion and Flame,1998,115(1-2):126-144.
    [36] Gieras M, Klemens R, Rarata G, et al. Determination of explosion parameters of methane-airmixtures in the chamber of40dm3at normal and elevated temperature[J]. Journal of LossPrevention in the Process Industries,2006,19(2-3):263-270.
    [37] Zhai C, Lin B Q, Ye Q, et al. Influence of geometry shape on gas explosion propagation lawsin bend roadways[J]. Procedia Earth and Planetary Science,2009,1(1):193-198.
    [38] Kindracki J, Kobiera A, Rarata G, et al. Influence of ignition position and obstacles onexplosion development in methane-air mixture in closed vessels[J]. Journal of LossPrevention in the Process Industries,2007,20(4-6):551-561.
    [39] Park D J, Green A R, Lee Y S, et al. Experimental studies on interactions between a freelypropagating flame and single obstacles in a rectangular confinement[J]. Combustion andFlame,2007,150(1-2):27-39.
    [40] Park D J, Lee Y S, Green A R. Experiments on the effects of multiple obstacles in ventedexplosion chambers[J]. Journal of Hazardous Materials,2008,153(1-2):340-350.
    [41] Park D J, Lee Y S, Green A R. Prediction for vented explosions in chambers with multipleobstacles[J]. Journal of Hazardous Materials,2008,155(1-2):183-192.
    [42]何学秋,杨艺,王恩元,等.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J].煤炭学报,2004,29(2):186-189.
    [43]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,24(1):56-59.
    [44]林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107.
    [45] Phylaktou H, Foley M, Andrews G E. Explosion enhancement through a90°curved bend[J].Journal of Loss Prevention in the Process Industries,1993,6(1):21-29.
    [46] Blanchard R, Arndt D, Gr tz R, et al. Explosions in closed pipes containing baffles and90degree bends[J]. Journal of Loss Prevention in the Process Industries,2010,23(2):253-259.
    [47] Kosinski P. Numerical analysis of shock wave interaction with a cloud of particles in achannel with bends[J]. International Journal of Heat and Fluid Flow,2007,28(5):1136-1143.
    [48] Zhou B, Sobiesiak A, Quan P. Flame behavior and flame-induced flow in a closedrectangular duct with a90°bend[J]. International Journal of Thermal Sciences,2006,45(5):457-474.
    [49] Frolov S M, Aksenov V S, Shamshin I O. Reactive shock and detonation propagation inU-bend tubes[J]. Journal of Loss Prevention in the Process Industries,2007,20(4-6):501-508.
    [50] Frolov S M, Aksenov V S, Shamshin I O. Shock wave and detonation propagation throughU-bend tubes[J]. Proceedings of the Combustion Institute,2007,31(2):2421-2428.
    [51] Frolov S M. Fast deflagration-to-detonation transition[J]. Russian Journal of PhysicalChemistry,2008, B2:442-455.
    [52] Zhang Q, Pang L, Liang H M. Effect of scale on the explosion of methane in air and itsshockwave[J]. Journal of Loss Prevention in the Process Industries,2011,24(1):43-48.
    [53] Zhang Q, Pang L, Zhang S X. Effect of scale on flame speeds of methane-air[J]. Journal ofLoss Prevention in the Process Industries,2011,24(5):705-712.
    [54] Dorofeev S B. Evaluation of safety distances related to unconfined hydrogen explosions[J].International Journal of Hydrogen Energy,2007,32(13):2118-2124.
    [55] Lobato J, Ca izares P, Rodrigo M A, et al. A comparison of hydrogen cloud explosion modelsand the study of the vulnerability of the damage caused by an explosion of H2[J].International Journal of Hydrogen Energy,2006,31(12):1780-1790.
    [56]张其中,李晓飞.爆破安全法规标准讲析[J].工业安全与防尘,1996,(9):31-37.
    [57]王新建.爆破空气冲击波及其预防[J].中国人民公安大学学报(自然科学版),2003,(4):41-43.
    [58]徐英仲.井下大爆破空气冲击波的计算[J].矿业研究与开发,1996,16(S):136-138.
    [59]刘殿中.井下爆炸材料库空气冲击波安全距离计算[J].冶金安全,1980,(5):21-26.
    [60]孙艳馥,王欣.爆炸冲击波对人体损伤与防护分析[J].火炸药学报,2008,31(4):50-53.
    [61]李正宇,龙源,唐献述.爆炸冲击荷载对动物杀伤作用距离的试验研究[J].安全与环境学报,2005,5(1):84-86.
    [62]王中黔.关于水下爆破人身安全距离的探讨[J].爆炸与冲击,1982,1:109-116.
    [63]李铮,项续章,郭梓熙.各种炸药的殉爆安全距离[J].爆炸与冲击,1994,14(3):231-241.
    [64]侯海周,胡毅亭,卫延安.工业雷管殉爆安全距离的试验研究和分析[J].科技导报,2011,29(22):58-60.
    [65]王艳平,崔岗,王斯永.风电机组与民爆危险品建筑物间安全防护距离的研究与选定[J].工业安全与环保,2012,38(3):15-17,44.
    [66]周家红,许开立.地下储罐爆炸事故源强估算[J].中国安全生产科学技术,2005,1(6):47-50.
    [67]郭涛,齐世福,王树民,等.大批量废旧弹药爆破销毁技术的应用[J].工程爆破,2011,17(2):89-91
    [68]曲树盛,李忠献.地铁车站内爆炸波的传播规律与超压荷载[J].2010,27(9):240-247.
    [69]陈林泉,毛根旺,张胜勇.高能固体火箭发动机爆炸冲击波毁伤效应研究[J].固体火箭技术,2008,31(6):588-590.
    [70]殷雅侠,刘平,谷乃古.固体火箭发动机不点火自毁爆炸危险性研究[J].固体火箭技术,2004,27(2):111-113.
    [71]高轩能,江媛,王书鹏.建筑玻璃的爆炸动力响应及防爆距离[J].计算力学学报,2011,28(4):560-565.
    [72]王书鹏,高轩能.建筑玻璃安全防爆距离研究[J].江西科学,2008,26(2):194-197.
    [73]佐建君,张光雄,杨军.汽车爆炸的超压分布规律实验研究[J].2006,6(1):31-33.
    [74]刘艳菊,张震,李巍,等.油田生产设施环境安全距离理论与估算[J].安全与环境工程,2006,13(1):77-80,84.
    [75]赵永涛.天然气爆炸效应及应用探讨[J].爆破,2006,23(4):90-92.
    [76]温亚男.天然气钻井井场安全距离研究[D].北京:首都经济贸易大学,2005.
    [77]温亚男,王起全.天然气钻井井口安全距离研究分析[J].中国安全科学学报,2007,17(12):95-101.
    [78]于畅,田贯三.天然气储气罐破坏效应分析[J].中国安全科学学报,2010,20(5):75-79.
    [79]王晓华.超高层建筑防火疏散设计的探讨[D].长沙:湖南大学,2007.
    [80]李丽霞.储罐区池火灾状态下防火间距的理论基础研究[D].南京:南京工业大学,2004.
    [81]李丽霞,张礼敬,孟亦飞,等.池火灾热辐射下的最小安全距离[J].中国安全科学学报,2004,14(3):16-19.
    [82]李丽霞.有风情况池火灾热辐射下的最小安全距离[J].安全与环境学报,2006,6(S):113-117.
    [83]姜虹,李丽霞,沙锡东.甲苯池火灾热辐射数值模拟[J].中国安全生产科学技术,2011,7(4):34-39.
    [84]曹彬,张礼敬,张村峰,等.比较FDS和FLUENT在池火灾模拟中的应用[J].中国安全生产科学技术,2011,7(9):45-49.
    [85]李慧.工业罐区池火灾灾害过程的数值模拟研究[D].南京:南京工业大学,2005.
    [86]邢志祥,常建国,蒋军成.池火灾最小安全距离的确定[J].消防技术与产品信息,2005,(9):22-26.
    [87]夏建军,傅学成,张宪忠,等.油罐火灾模型试验的安全性分析[J].消防科学与技术,2012,31(2):122-125.
    [88]冯力群.液化石油气火灾扑救中安全距离的确定[J].武警学院学报,2007,23(10):19-21.
    [89]费国云.煤矿瓦斯煤尘爆炸原因和防治对策[J].矿业安全与环保,2002,29(6):4-6.
    [90]费国云,王陈.防潮岩粉棚抑制煤尘爆炸传播[J].煤炭工程师,1995,(6):10-11.
    [91]蔡周全. MGS型密封式隔爆水袋的研究[J].矿业安全与环保,2004,31(3):11-14.
    [92]费国云,周奠邦.新型隔爆棚抑制弱爆炸的研究[J].煤炭工程师,1998,(3):7-9.
    [93]蔡周全.产气式抑爆器基本参数确定[J].矿业安全与环保,2000,27(1):29-31.
    [94]蔡周全,夏自柱,廖继卿. ZYB-S型实时产气式自动抑爆器的研究[J].煤炭工程师,1997,(4):9-12.
    [95]潘峰.隔(抑)爆装置在平顶山矿区的应用[J].煤矿安全,2005,36(8):15-18.
    [96]王云海,何学秋,王恩元.煤矿隔爆棚隔爆作用分析[J].江苏煤炭,2003,(1):30-32.
    [97]胡千庭,文光才,张延松,等.矿井瓦斯防治技术优选:煤与瓦斯突出和爆炸防治[M].徐州:中国矿业大学出版社,2008.
    [98]蔡周全,李永怀,罗振敏. CNG加气站抑爆系统研制[J].2009,29(4):109-111.
    [99]马骊,李跃忠,喻晟.关于HS矿井阻燃抑爆系统在我国煤矿应用的探讨[J].中国安全生产科学技术,2009,5(1):176-180.
    [100]牛德文. HS煤矿主动抑爆系统的推广使用问题探讨[J].煤炭科学技术,2009,37(12):43-46.
    [101]王俊峰,邬剑明,白云龙.南非HS抑爆系统性能的试验研究[J].中国安全科学学报,2010,20(6):63-68.
    [102]马骊, Louis,李素丽,等. HS煤矿用主动抑爆防火技术的试验研究[J].中国煤炭,2010,36(9):102-105.
    [103]陆守香,何杰,于春红,等.水抑制瓦斯爆炸的机理研究[J].煤炭学报,1998,23(4):417-421.
    [104]秦友花,沈兆武,陆守香,等.水雾对气体火焰传播特性影响的实验研究[J].安全与环境学报,2001,1(1):27-29.
    [105] Acton M R, Sutton P, Wichens M J. An investigation of mitigation of gas cloud explosionsby water sprays[C]. British Gas MRS E595, Piper Alpha: Lessons for Life Cycle SafetyManagement Symposium, Institution of Chemical Engineers, London,1990,26-27.
    [106] Van Wingerden K, Wilkins B, Bakken J, et al. The influence of water sprays on gasexplosions. Part2: mitigation[J]. Journal of Loss Prevention in the Process Industries,1995,8(2):61-70.
    [107] Thomas G O, Jones A, Edwards M J. Influence of water sprays on explosion development infuel-air mixtures[J]. Combustion Science and Technology,1991,80(1-3):47-61.
    [108] Thomas G O. On the conditions required for explosion mitigation by water sprays[J].Process Safety and Environmental Protection,2000,78(5):339-354.
    [109]刘晅亚,陆守香,秦俊,等.水雾抑制气体爆炸火焰传播的实验研究[J].中国安全科学学报,2003,13(8):71-77.
    [110]余明高,赵万里,安安.超细水雾作用下瓦斯火焰抑制特性研究[J].采矿与安全工程学报,2011,28(3):493-498.
    [111] Lazzarini A K, Krauss R H, Chelliah H K, et al. Extinction conditions of non-premixedflames with fine droplets of water and water/NaOH solutions[J]. Proceedings of theCombustion Institute,2000,28(2):2939-2945.
    [112] Chelliah H K, Lazzarini A K, Wanigarathne P C, et al. Inhibition of premixed andnon-premixed flames with fine droplets of water and solutions[J]. Proceedings of theCombustion Institute,2002,29(1):369-376.
    [113] Laffitte P, Bouchet R. Suppression of explosion waves in gaseous mixtures by means of finepowders[J]. Symposium (International) on Combustion,1958,7(1):504-508.
    [114] Kauffman C W, Wolanski P, Arisoy A, et al. Dust, hybrid and dusty detonations[C]. AIAAProgress in Astronautics and Aeronautics: Dynamics of shock waves, explosions anddetonations,1984,94:221-240.
    [115]范宝春,李鸿志.惰性颗粒抑爆过程的数值模拟[J].爆炸与冲击,2000,20(3):208-214.
    [116]范宝春,谢波,张小和,等.惰性粉尘抑爆过程的实验研究[J].流体力学实验与测量,2001,15(4):20-25.
    [117]邢晓江,范宝春,杨宏伟.管内粉尘抑爆效果的实验研究[J].弹道学报,2000,12(4):72-76.
    [118]谢波,范宝春.人型管道中主动式粉尘抑爆现象的实验研究[J].煤炭学报,2006,31(1):54-57.
    [119]蔡周全,张引合.干粉灭火剂粒度对抑爆性能的影响[J].矿业安全与环保,2001,28(4):14-16.
    [120]张景林,肖林,寇丽平,等.气体爆炸抑制技术研究[J].兵工学报,2000,21(3):261-263.
    [121]程方明,邓军,文虎,等. SiO2纳米粉体抑制瓦斯爆炸的试验研究[J].煤炭科学技术,2010,38(8):73-76.
    [122]罗振敏.瓦斯爆炸抑制材料的特性及抑爆作用研究[D].西安:西安科技大学,2009.
    [123]张宇明,邹高万,郜冶,等. ABC干粉对爆燃火焰传播抑制实验[J].哈尔滨工程大学学报,2012,33(4):449-453.
    [124]张宇明,邹高万,郜冶,等. ABC干粉对爆炸超压的抑制[J].燃烧科学与技术,2012,18(5):456-460.
    [125]文虎,曹玮,王开阔,等. ABC干粉抑制瓦斯爆炸的实验研究[J].中国安全生产科学技术,2011,7(6):9-12.
    [126]戴晓静.磷酸二氢盐抑爆剂的制备与抑爆作用研究[D].南京:南京理工大学,2013.
    [127]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992.
    [128]林柏泉,朱传杰,江丙友,等.煤矿瓦斯爆炸机理及防治技术[M].徐州:中国矿业大学出版社,2012.
    [129]陈彩云,张国枢.瓦斯爆炸对通风网络的影响研究综述及展望[J].中国煤层气,2009,6(5):14-16,34.
    [130]菅从光.管内瓦斯爆炸传播特性及影响因素研究[D].徐州:中国矿业大学,2003.
    [131]徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素研究[D].北京:中国矿业大学(北京),2003.
    [132]曲志明,周心权,王海燕,等.瓦斯爆炸冲击波超压的衰减规律[J].煤炭学报,2008,33(4):410-414.
    [133]张连玉,汪令羽,苗瑞生.爆炸气体动力学基础[M].北京:北京工业学院出版社,1987.
    [134]林柏泉,菅从光,周世宁.湍流的诱导及对瓦斯爆炸火焰传播的作用[J].中国矿业大学学报,2003,32(2):107-110.
    [135]王从银,何学秋.瓦斯爆炸火焰厚度及其持续时间的实验研究[J].煤炭科学技术,2001,29(8):74-95.
    [136]黎体发,张莉聪,徐景德.瓦斯爆炸火焰波与冲击波伴生关系的实验研究[J].矿业安全与环保,2005,32(2):4-6.
    [137]徐景德,徐胜利,杨庚宇.矿井瓦斯爆炸传播的试验研究[J].煤炭科学技术,2004,32(7):55-57.
    [138]司荣军.矿井瓦斯煤尘爆炸传播实验研究[J].中国矿业,2008,17(12):81-84.
    [139]王新,李润之,张延松.瓦斯爆炸引起沉积煤尘爆炸传播实验研究[J].中国安全科学学报,2009,19(4):73-77.
    [140]吴红波,郭子如,张立.瓦斯火焰传播规律及其加速机理的实验研究[J].矿业安全与环保,2007,34(6):51-62.
    [141] Alexiou A, Andrews G E, Phylaktou H. Side-vented gas explosions in a long vessel: theeffect of vent position[J]. Journal of Loss Prevention in the Process Industries,1996,9(5):351-356.
    [142] Ye Q, Lin B Q, Jia Z Z, et al. Propagation law and analysis of gas explosion in bend duct[J].Procedia Earth and Planetary Science,2009,1(1):316-321.
    [143] Wu Z Y, Jiang S G, Wang L Y, et al. Experimental study on explosion suppression of vacuumchambers with different scales[J]. Procedia Earth and Planetary Science,2009,1(1):396-401.
    [144]徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究[J].中国安全科学学报,2001,11(6):36-40.
    [145]翟成,林柏泉,菅从光.壁面粗糙度对瓦斯爆炸火焰波传播的影响[J].中国矿业大学学报,2006,35(1):39-43.
    [146]汪泉.管道中甲烷-空气预混气爆炸火焰传播的研究[D].淮南:安徽理工大学,2006.
    [147]陈先锋.丙烷-空气预混火焰微观结构及加速传播过程中的动力学研究[D].合肥:中国科学技术大学,2007.
    [148]何学超,孙金华,陈先锋.管道内甲烷-空气预混火焰传播特性的实验与数值模拟研究[J].中国科学技术大学学报,2009,39(4):419-423.
    [149]陈东梁,孙金华,刘义.甲烷/空气预混气体火焰的传播特征[J].爆炸与冲击,2008,28(5):385-390.
    [150]杨艺.瓦斯爆炸火焰细微结构与火焰传播机理的研究[D].徐州:中国矿业大学,2003.
    [151]江丙友,林柏泉,施书磊,等.匀强电场对瓦斯爆炸过程中火焰和爆炸波的影响[J].东北大学学报(自然科学版),2011,32(S2):302-306.
    [152]林柏泉,翟成.煤炭开采过程中诱发的瓦斯爆炸机理及预防措施[J].采矿与安全工程学报,2006,23(1):19-23.
    [153]李润求,施式亮,罗文柯.煤矿瓦斯爆炸事故特征与耦合规律研究[J].中国安全科学学报,2010,20(2):69-74.
    [154] Champassith A, Pourcel P. Explosion modeling with a CFD software: AutoReaGas[J].Journal De Physique,2002,12(7):239-246.
    [155] Inaba Y, Nishihara T, Groethe M A, et al. Study on explosion characteristics of natural gasand methane in semi-open space for the HTTR hydrogen production system[J]. NuclearEngineering and Design,2004,232(1):111-119.
    [156] Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in Stramberkexperimental mine and AutoReaGas simulation[J]. Journal of Loss Prevention in the ProcessIndustries,2006,19(2/3):280-287.
    [157] Maremonti M, Russo G, Salzano E, et al. Numerical simulation of gas explosions in linkedvessels[J]. Journal of Loss Prevention in the Process Industries,1999,12(3):189-194.
    [158] Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/airexplosion shock wave[J]. Safety Science,2012,50(1):83-89.
    [159] Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames intubes[J]. Journal of Hazardous Materials,2002,95(3):233-247.
    [160] Tufano V, Maremonti M, Salzano E, et al. Simulation of VCEs by CFD modelling: ananalysis of sensitivity[J]. Journal of Loss Prevention in the Process Industries,1998,11(3):169-175.
    [161]朱传杰.爆炸冲击波前流场扬尘特征及其多相破坏效应[D].徐州:中国矿业大学,2011.
    [162] Popat N R, Catlin C A, Arntzen B J, et al. Investigations to improve and assess the accuracyof computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials,1996,45(1):1-25.
    [163] Jiang B Y, Lin B Q, Shi S L, et al. Numerical simulation on the influences of initialtemperature and initial pressure on attenuation characteristics and safety distance of gasexplosion[J]. Combustion Science Technology,2012,184(2):135-150.
    [164] Launder B E, Spalding D B. Mathematical models of turbulence[M]. London: AcademicPress,1972.
    [165] Favre A. Problems of hydrodynamics and continuum mechanics[M]. Philadelphia: Societyfor Industry and Applied Mathematics,1969.
    [166] Bray K N C. Studies of the turbulent burning velocity[C]. Proceedings of the Royal Societyof London. Series A, Mathematical, Physical and Engineering Sciences,1990:315-335.
    [167] Zipf R K, Sapko M J, Brune J F. Explosion pressure design criteria for new seals in U.S.coal mines[R]. Pittsburgh, U.S.: National Institute for Occupational Safety and Health,Pittsburgh Research Laboratory,2007.
    [168] Lea C J, Ledin H S. A review of the state of the art in gas explosion modeling[R]. Buxton,U.K.: Health&Safety Laboratory,2002.
    [169]杨源林.瓦斯煤尘爆炸的超压计算与预防[J].煤炭工程师,1996,(2):32-37.
    [170]林柏泉,叶青,翟成,等.瓦斯爆炸在分岔管道中的传播规律及分析[J].煤炭学报,2008,33(2):136-139.
    [171] Ibrahima S S, Masri A R. The effects of obstructions on overpressure resulting frompremixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries,2001,14(3):213-221.
    [172] Li X D, Bai C H, Liu Q M. Effects of obstacles on flame propagation behavior andexplosion overpressure development during gas explosions in a large closed tube[J]. Journalof Beijing Institute of Technology,2007,16(4):399-403.
    [173]林柏泉,菅从光,周世宁,等.受限空间瓦斯爆炸反射波及对火焰传播的影响[J].中国矿业大学学报,2005,34(1):1-5.
    [174]王省身,谢之康.矿井沼气爆炸安全距离的探讨[J].中国矿业大学学报,1989,18(4):1-8.
    [175] Jiang B Y, Lin B Q, Shi S L, et al. Numerical analysis on propagation characteristics andsafety distance of gas explosion[J]. Procedia Engineering,2011,26:271-280.
    [176] Jiang B Y, Lin B Q, Shi S L, et al. A numerical simulation of the influence initialtemperature has on the propagation characteristics of, and safe distance from, a gasexplosion[J]. International Journal of Mining Science and Technology,2012,22(3):307-310.
    [177]周心权,吴兵,徐景德.煤矿井下瓦斯爆炸的基本特性[J].中国煤炭,2002,28(9):8-11.
    [178]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700