用户名: 密码: 验证码:
煤与瓦斯突出层裂发展机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是含瓦斯煤体在应力和瓦斯的综合作用下发生的失稳破坏。突出过程中,煤体裂隙扩展、被剥离破碎抛向采掘空间。因此需对突出发展的内在机制进行研究,为防治煤与瓦斯突出奠定理论基础。
     本文运用表面物理化学、岩石力学、渗流力学和相似理论等多学科理论,采用理论和实验相结合的方法,研究了含瓦斯煤体的吸附/解吸规律、应力场-瓦斯场-温度场耦合作用下的本构关系和渗透演化规律,开展了突出模拟试验,研究了突出的层裂发展机制,并取得了一定的创新成果。本文的主要研究结论如下:
     实验研究了卧龙湖煤矿10煤的不同温度条件下的吸附规律,得出其吸附常数a不随温度变化,吸附常数b随温度的变化而改变。开展了大量的等温条件下煤粒瓦斯解吸实验,解吸量与时间的平方根之间符合Langmuir形式的方程。
     将煤体全应力应变过程简化为线弹性、非线性弹塑性、脆性跌落和理想塑性4个阶段,渗透率演化对应简化为渗透率减小段、渗透率增加段、渗透率快速增加阶段和渗透率不变段。研究煤体裂隙的内部结构,得出煤基质的膨胀变形仅有部分作用于煤体裂隙,提出煤基质膨胀变形对裂隙变形的影响因子f m,其值介于0~1之间。构建了考虑吸附变形、热膨胀变形和有效应力作用的含瓦斯煤体本构方程。基于此建立了含瓦斯煤体线弹性阶段和塑性阶段的渗透率模型。
     基于相似准则,设计了真三轴煤与瓦斯突出模拟试验系统,其性能参数为:瓦斯压力≤10MPa,地应力≤27MPa,温度在室温至60℃范围内变化。开展了煤与瓦斯突出相似模拟试验。以模拟试验条件为基础,建立了考虑瓦斯拉裂破坏、吸附膨胀变形和吸附对煤体强度影响的突出层裂发展模型。解算突出层裂发展模型,研究了瓦斯压力、吸附能力、断裂韧度和渗透率对突出发展的影响规律。
     突出是一个快速的动力过程,模拟得出其发展时间一般在1.68s。其发展过程大致可分为突出发展的加速期、稳定期和衰减期。突出发动后,在高压瓦斯和瓦斯压力梯度作用,煤体被快速破坏。此时煤体的瓦斯压力梯度最大,煤体破坏产生的层裂的厚度较小。进入稳定期,突出面前方煤体的压力分布、破裂速度基本稳定。瓦斯压力梯度区的宽度平均为7.33cm;瓦斯压力梯度平均为8.215MPa/m。破裂速度从0.4s的1.32m/s上升至0.9s的1.54m/s。突出向内部发展的速度约为0.15193m/s。
     随着突出的发展,未被剥离煤体中的瓦斯压力和梯度逐渐减小,层裂的厚度逐渐增大,最终瓦斯耗尽,突出终止。
Coal and gas outburst is the unstable failure of coal containing gas under thecombined influence of stress and gas. The fracture expands and the coal is strippedand threw out into the mining space in the process of outburst. Therefore, it needs tostudy the mechanism of coal and gas outburst propagation in order to establishtheoretical basis for preventing and controlling the coal and gas outburst.
     The theories of Rock mechanics, Physical Chemistry, Fluid mechanics andSimilarity theory, combining the theoretical analysis and laboratory experiment wereemployed to research in this dissertation. The adsorption/desorption regularities,constitutive relations and permeability evolution of gas-saturated coal under couplingbetween stress-gas-temperature were studied. The similar experiments of coal and gasoutburst were conducted. And then the laminar spallation mechanism of outburstpropagation was studied based on the condition of experiment. There are someinnovations in the dissertation. The main conclusions are listed as below:
     The adsorption constant a doesn’t change with the temperature, but theadsorption constant b changes drawn from the adsorption experiment of coal samplesfrom No.10coal seam in Wolonghu coal mine. The relationship between the gasdesorption quantity from coal particle and the square root of time under the isothermalconditions complies with the form of Langmuir equation.
     The complete stress-strain progress and the evolution of permeability through theprogress can be simplified into four stages: Linear elastic stage (permeabilitydecrease); Nonlinear elastic-plastic stage (permeability increase); Drop brittle stage(permeability increase rapidly) and Ideal plastic stage (permeability stabilizes).Consider a cube build a physical model of the internal structure of coal fracture, onlya portion of the coal matrix swelling deformation has effects on coal fracture basingon the structural analysis of coal fracture. The impact factor of coal matrix swellingdeformationf m(0<f m<1) was brought forward to demonstrate the effects of coalmatrix swelling deformation on fracture. And the corresponding constitutive equationsand permeability evolution equation were established under the condition of couplingmulti-fields (stress field, gas field and temperature field).
     Based on the similarity criteria, a truly triaxial experiment system simulatingcoal and gas outburst was designed and manufactured. The main parameters of systemare: gas pressure≤10MPa; ground stress≤27MPa; temperature from room temperature to60℃. Similar experiments of coal and gas outburst were carried out. Based on theconditions of experiments, a laminar spallation model of outburst propagation wasestablished, in which effects of tensile fracture due to gas expanding, swelling andstrength reducing caused by sorption were solved. The influences of gas pressure,absorptivity, fracture toughness and permeability of coal on the outburst propagationwere investigated by solving the established outburst model in different conditions.
     The outburst is a fast dynamic process, of which the propagation time is1.68s onaverage obtained by model study. The process of outburst propagation could bedivided into three stages, which are acceleration period, stable period and decayperiod. After the trigger of outburst, the coal is rapidly destroyed by the effect of largegas pressure and its gradient. Because of the largest gas pressure gradient, thethickness of the spherical shell produced by coal breakage is small at this time. Thepressure distribution and burst velocity on the front of outburst face are basicallystable. The width of zone of gas pressure gradient is7.33cm on average and thegradient is8.215MPa/m on average. The split velocity increases from1.32m/s intime of0.4s to1.54m/s in0.9s. The propagation velocity of outburst is about0.15193m/s.
     The gas pressure and its gradient in the unbroken coal gradually decrease withthe outburst propagation leading the gradually increase of the coal laminationthickness. At last the outburst stops due to gas out of store.
引文
[1]程远平,王海锋,王亮,等.煤矿瓦斯防治理论与工程应用[M].徐州:中国矿业大学出版社,2010.
    [2]于不凡.国外煤和瓦斯突出研究综述[M]//国外煤和瓦斯突出资料汇编.重庆;科学技术文献出版社重庆分社,1978:1-7.
    [3]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [4]马玉林.煤与瓦斯突出逾渗机理与演化规律研究[D].阜新:辽宁工程技术大学,2012.
    [5]霍多特B B.煤与瓦斯突出[M].北京:中国工业出版社,1966.
    [6]于不凡.煤矿瓦斯灾害防治与利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [7]于不凡.谈谈煤和瓦斯突出的机理[J].煤炭科学技术,1979,(8):34-42.
    [8] Farmer I W, Pooley F D. A hypothesis to explain the occurrence of outbursts in coal, basedon a study of west wales outburst coal[J]. International Journal of Rock Mechanics andMining Sciences&Geomechanics Abstracts,1967,4(2):189-193.
    [9] Beamish B B, Crosdale P J. Instantaneous outbursts in underground coal mines: Anoverview and association with coal type[J]. International Journal of Coal Geology,1998,35(1–4):27-55.
    [10] Godden S J. Mechanism for Outbursts of Coal and Gas in the South Wales Coalfield[M]//I.W F. Developments in Geotechnical Engineering. Elsevier,1981:43-46.
    [11] Shepherd J, Rixon L K, Griffiths L. Outbursts and geological structures in coal mines: Areview[J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1981,18(4):267-283.
    [12] Barron K, Kullmann D. Modelling of outbursts at#26Colliery, Glace Bay, Nova Scotia.Part2: Proposed outburst mechanism and model[J]. Mining Science and Technology,1990,11(3):261-268.
    [13] Bodziony J, Krawczyk J, Topolnicki J. Determination of the porosity distribution in coalbriquettes by measurements of the gas filtration parameters in an outburst pipe[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1994,31(6):661-669.
    [14] Cao Y, He D, Glick D C. Coal and gas outbursts in footwalls of reverse faults[J].International Journal of Coal Geology,2001,48(1–2):47-63.
    [15] Xu T, Tang C A, Yang T H, et al. Numerical investigation of coal and gas outbursts inunderground collieries[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6):905-919.
    [16] Wold M B, Connell L D, Choi S K. The role of spatial variability in coal seam parameterson gas outburst behaviour during coal mining[J]. International Journal of Coal Geology,2008,75(1):1-14.
    [17] Wu S-y, Guo Y-y, Li Y-x, et al. Research on the mechanism of coal and gas outburst and thescreening of prediction indices[J]. Procedia Earth and Planetary Science,2009,1(1):173-179.
    [18] Huang W, Chen Z, Yue J, et al. Failure modes of coal containing gas and mechanism of gasoutbursts[J]. Mining Science and Technology (China),2010,20(4):504-509.
    [19]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [20]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):1-8.
    [21]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社.1995.
    [22]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,(2):17-25.
    [23]蒋承林.石门揭穿含瓦斯煤层时动力现象的球壳失稳机理研究[D].徐州:中国矿业大学,1995.
    [24]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[C]//煤与瓦斯突出机理和预测预报第二次科研工作机学术交流会议论文集,1983.
    [25]丁晓良,丁雁生,俞善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990,22(2):154-162.
    [26]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-105.
    [27]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报:自然科学版,1993,16(5):42-47.
    [28]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J].煤炭学报,1996,21(2):173-178.
    [29]文光才.煤与瓦斯突出能量的研究[J].矿业安全与环保,2003,30(6):1-3.
    [30]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报:自然科学版,1999,22(6):80-84.
    [31]唐春安,刘红元.石门揭煤突出过程的数值模拟研究[J].岩石力学与工程学报,2002,21(10):1467-1472.
    [32]徐涛,郝天轩,唐春安,等.含瓦斯煤岩突出过程数值模拟[J].中国安全科学学报,2005,15(1):107-110.
    [33]章梦涛,徐曾和,潘一山,等.冲击地压和突出的统一失稳理论[J].煤炭学报,1991,16(4):48-53.
    [34]梁冰,章梦涛.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [35]梁冰,章梦涛.从煤和瓦斯的耦合作用及煤的失稳破坏看突出的机理[J].中国安全科学学报,1997,7(1):6-9.
    [36]王凯,俞启香,彭永周.非线性理论在煤与瓦斯突出研究中的应用[J].辽宁工程技术大学学报(自然科学版),2000,19(4):348-352.
    [37]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [38]赵志刚.煤与瓦斯突出的耦合灾变机制及非线性分析[D].青岛:山东科技大学,2007.
    [39]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):598-602.
    [40]马中飞,俞启香.煤与瓦斯承压散体失控突出机理的初步研究[J].煤炭学报,2006,31(3):329-333.
    [41]颜爱华,徐涛.煤与瓦斯突出的物理模拟和数值模拟研究[J].中国安全科学学报,2008,18(9):37-42.
    [42]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报,2008,33(2):131-135.
    [43] Paterson L. A Model for Outburst in Coal[J]. International Journal of Rock Mechanics andMining Sciences&Geomechanics Abstracts,1986,23(4):327-332.
    [44] Khodot V, Kogan G. Modeling gas bursts[J]. Journal of Mining Science,1979,15(5):491-494.
    [45]陶云奇.含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D].重庆:重庆大学,2009.
    [46]氏平增之.煤与瓦斯突出机理的模型研究及其理论探讨[C]//第21届国际煤矿安全研究会议论文集,1985.
    [47]邓全封,栾永祥,王佑安.煤与瓦斯突出模拟试验研究[J].煤矿安全,1989,(11):5–10.
    [48]孟祥跃,丁雁生,陈力,等.煤与瓦斯突出的二维模拟实验研究[J].煤炭学报,1996,21(1):57–62.
    [49]蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66-69.
    [50]张建国,魏风清.含瓦斯煤的突出模拟试验[J].矿业安全与环保,2002,29(1):7-9.
    [51]郭立稳,俞启香,蒋承林,等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366-368.
    [52]牛国庆,颜爱华,刘明举.煤与瓦斯突出过程中温度变化的实验研究[J].西安科技学院学报,2003,23(3):245-248.
    [53]许江,陶云奇,尹光志,等.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [54]李晓泉,尹光志,蔡波,等.煤与瓦斯延期突出模拟试验及机理[J].重庆大学学报,2011,34(4):13-19.
    [55]欧建春,王恩元,马国强,等.煤与瓦斯突出过程煤体破裂演化规律[J].煤炭学报,2012,37(6):978-983.
    [56]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业大学学报,1988,(1):1-7.
    [57]姚宇平.吸附瓦斯对煤的变形及强度的影响[J].煤矿安全,1988,(12):37-41.
    [58]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-280.
    [59]寇绍全,丁雁生,陈力,等.周围应力与孔隙流体对突出煤力学性质的影响[J].中国科学(A辑),1993,23(3):263-270.
    [60]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [61]卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):686-693.
    [62]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):53-60.
    [63]尤明庆,苏承东,徐涛.岩石试样的加载卸载过程及杨氏模量[J].岩土工程学报,2001,23(5):588-592.
    [64]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报,2006,31(2):150-153.
    [65]苏承东,翟新献,李永明,等.煤样三轴压缩下变形和强度分析[J].岩石力学与工程学报,2006,25(S1):2963-2968.
    [66]苏承东,高保彬,南华,等.不同应力路径下煤样变形破坏过程声发射特征的试验研究[J].岩石力学与工程学报,2009,28(4):757-766.
    [67]李忠华,公衍梅,梁冰.深部含瓦斯煤内时本构方程体积响应[J].辽宁工程技术大学学报,2007,26(6):845-846.
    [68]尹光志,赵洪宝,张东明.突出煤三轴蠕变特性及本构方程[J].重庆大学学报(自然科学版,2008,31(8):946-950.
    [69]姜耀东,祝捷,赵毅鑫,等.基于混合物理论的含瓦斯煤本构方程[J].煤炭学报,2007,32(11):1132-1137.
    [70]王维忠,尹光志,王登科,等.三轴压缩下突出煤粘弹塑性蠕变模型[J].重庆大学学报(自然科学版),2010,33(1):99-103.
    [71]刘洪永,程远平,赵长春,等.采动煤岩体弹脆塑性损伤本构模型及应用[J].岩石力学与工程学报,2010,29(2):358-365.
    [72]黄伟,沈明荣,张清照.高围压下岩石卸荷的扩容性质及其本构模型研究[J].岩石力学与工程学报,2010,29(S2):3475-3481.
    [73]王吉渊.围压对煤体力学性质影响的实验研究[J].煤矿安全,2010,41(12):14-16.
    [74]李小双,尹光志,赵洪宝,等.含瓦斯突出煤三轴压缩下力学性质试验研究[J].岩石力学与工程学报,2010,29(S1):3350-3358.
    [75]陈占清,刘树才,赵玉成.含瓦斯煤的破坏和流动法则[J].应用力学学报,2010,27(2):269-273.
    [76]谢和平,周宏伟,刘建锋,等.不同开采条件下采动力学行为研究[J].煤炭学报,2011,36(7):1067-1074.
    [77]王家臣,邵太升,赵洪宝.瓦斯对突出煤力学特性影响试验研究[J].采矿与安全工程学报,2011,28(3):391-394.
    [78]赵洪宝,尹光志.含瓦斯煤声发射特性试验及损伤方程研究[J].岩土力学,2011,32(3):667-671.
    [79]许江,张丹丹,彭守建,等.温度对含瓦斯煤力学性质影响的试验研究[J]. ChineseJournal of Rock Mechanics and Engineering,2011,30(S1):2730-2735.
    [80]尹光志,蒋长宝,许江,等.含瓦斯煤热流固耦合渗流实验研究[J].煤炭学报,2011,36(9):1495-1500.
    [81]尹光志,蒋长宝,王维忠,等.不同卸围压速度对含瓦斯煤岩力学和瓦斯渗流特性影响试验研究[J].岩石力学与工程学报,2011,30(1):68-77.
    [82]孔海陵,王路珍,佘斌,等.含瓦斯煤体破裂过程围压效应研究[J].煤矿安全,2012,43(12):9-11.
    [83]曹树刚,郭平,刘延保,等.煤体破坏过程中裂纹演化规律试验[J].中国矿业大学学报,2013,42(5):725-730.
    [84] Evans I, Pomeroy C, Berenbaum R. The compressive strength of coal[J]. Colliery Engng,1961,38(123):172-178.
    [85] Hobbs D. The strength and the stress-strain characteristics of coal in triaxial compression[J].The Journal of Geology,1964,72:214-231.
    [86] White J. Mode of deformation of Rosebud coal, colstrip, Montana: Room temperature,102.0MPa[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1980,17(2):129-130.
    [87] Viete D, Ranjith P. The effect of CO2on the geomechanical and permeability behaviour ofbrown coal: Implications for coal seam CO2sequestration[J]. International Journal of CoalGeology,2006,66(3):204-216.
    [88] Viete D, Ranjith P. The mechanical behaviour of coal with respect to CO2sequestration indeep coal seams[J]. Fuel,2007,86(17):2667-2671.
    [89] Mishra B, Dlamini B. Investigation of Swelling and Elastic Property Changes Resultingfrom CO2Injection into Cuboid Coal Specimens[J]. Energy&Fuels,2012,26(6):3951-3957.
    [90] Wang S, Elsworth D, Liu J. Mechanical Behavior of Methane Infiltrated Coal: the Roles ofGas Desorption, Stress Level and Loading Rate[J]. Rock Mechanics and Rock Engineering,2013,46(5):945-958.
    [91] Krzesinska M. Effect of the solvents treatment on the elastic properties of the bituminouscoal[J]. Energy&fuels,2001,15(2):324-330.
    [92] Vinokurova E B, Ketslakh A I. Influence of gas composition on the modulus of elasticity ofgas-impregnated anthracites[J]. Soviet Mining Science,1985,21(5):458-460.
    [93] Ates Y, Barron K. The effect of gas sorption on the strength of coal[J]. Mining science andtechnology,1988,6(3):291-300.
    [94] Perera M S A, Ranjith P G, Viete D R. Effects of gaseous and super-critical carbon dioxidesaturation on the mechanical properties of bituminous coal from the Southern SydneyBasin[J]. Applied Energy,2013,110:73-81.
    [95] Connell L D, Lu M, Pan Z. An analytical coal permeability model for tri-axial strain andstress conditions[J]. International Journal of Coal Geology,2010,84(2):113-124.
    [96]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-37.
    [97]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [98]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3):87-93.
    [99]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [100]彭苏萍,屈洪亮,罗立平,等.沉积岩石全应力应变过程的渗透性试验研究[J].煤炭学报,2000,25(2):113-116.
    [101]李树刚,钱鸣高,石平五.煤样全应力应变过程中的渗透系数-应变方程[J].煤田地质与勘探,2001,29(1):22-24.
    [102]许江,彭守建,陶云奇,等.蠕变对含瓦斯煤渗透率影响的试验分析[J].岩石力学与工程学报,2009,28(11):2273-2279.
    [103]尹光志,李广治,赵洪宝,等.煤岩全应力-应变过程中瓦斯流动特性试验研究[J].岩石力学与工程学报,2010,29(1):170-175.
    [104]黄启翔.瓦斯压力对煤岩材料全应力-应变过程瓦斯渗透特性的影响[J].材料导报,2010,24(16):80-83.
    [105]王广荣,薛东杰,郜海莲,等.煤岩全应力-应变过程中渗透特性的研究[J].煤炭学报,2012,37(1):107-112.
    [106]王臣,鲜学福,周军平,等.含不同气体煤岩全应力-应变渗透特性试验研究[J].地下空间与工程学报,2013,9(3):492-496.
    [107]祝捷,姜耀东,赵毅鑫,等.加卸荷同时作用下煤样渗透性的试验研究[J].煤炭学报,2010,35(S1):76-80.
    [108]祝捷,姜耀东,孟磊,等.载荷作用下煤体变形与渗透性的相关性研究[J].煤炭学报,2012,37(6):984-988.
    [109]蒋长宝,尹光志,黄启翔,等.含瓦斯煤岩卸围压变形特征及瓦斯渗流试验[J].煤炭学报,2011,36(5):802-807.
    [110]于永江,张华,张春会,等.温度及应力对成型煤样渗透性的影响[J].煤炭学报,2013,38(6):936-941.
    [111]谢和平,高峰,周宏伟,等.煤与瓦斯共采中煤层增透率理论与模型研究[J].煤炭学报,2013,38(7):1101-1108.
    [112]程瑞端,陈海焱,鲜学福,等.温度对煤样渗透系数影响的实验研究[J].煤炭工程师,1998,(1):13-17.
    [113]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [114]隆清明,赵旭生,孙东玲,等.吸附作用对煤的渗透率影响规律实验研究[J].煤炭学报,2008,33(9):1030-1034.
    [115]张春会,于永江,岳宏亮,等.考虑Klinbenberg效应的煤中应力-渗流耦合数学模型[J].岩土力学,2010,31(10):3217-3222.
    [116]杨新乐,张永利.气固耦合作用下温度对煤瓦斯渗透率影响规律的实验研究[J].地质力学学报,2008,14(4):374-379.
    [117]李志强,鲜学福,隆晴明.不同温度应力条件下煤体渗透率实验研究[J].中国矿业大学学报,2009,38(4):523-527.
    [118] Gray I. Reservoir Engineering in Coal Seams: Part1-The Physical Process of Gas Storageand Movement in Coal Seams[J]. SPE Reservoir Engineering,1987,2(1):28-34.
    [119] Sawyer W K, Paul G W, Schraufnagel R A. Development And Application Of A3-DCoalbed Simulator[C]//Annual Technical Meeting, Calgary, Alberta, Society of PetroleumEngineers,1990.
    [120] Seidle J P, Huitt L G. Experimental Measurement of Coal Matrix Shrinkage Due to GasDesorption and Implications for Cleat Permeability Increases[C]//International Meeting onPetroleum Engineering, Beijing, China, Society of Petroleum Engineers,1995.
    [121] Palmer I, Mansoori J. How Permeability Depends on Stress and Pore Pressure in Coalbeds:A New Model[J]. SPE Reservoir Evaluation&Engineering,1998,1(6):539-544.
    [122] Shi J Q, Durucan S. Drawdown induced changes in permeability of coalbeds: a newinterpretation of the reservoir response to primary recovery[J]. Transport in Porous Media,2004,56(1):1-16.
    [123] Cui X, Bustin R M. Volumetric strain associated with methane desorption and its impact oncoalbed gas production from deep coal seams[J]. AAPG Bulletin,2005,89(9):1181-1202.
    [124] Robertson E P, Christiansen R L. A Permeability Model for Coal and Other Fractured,Sorptive-Elastic Media[C]//SPE Eastern Regional Meeting, Canton, Ohio, USA, Society ofPetroleum Engineers,2006.
    [125] Zhang H, Liu J, Elsworth D. How sorption-induced matrix deformation affects gas flow incoal seams: A new FE model[J]. International Journal of Rock Mechanics and MiningSciences,2008,45(8):1126-1136.
    [126] Liu H-H, Rutqvist J. A New Coal-Permeability Model: Internal Swelling Stress andFracture–Matrix Interaction[J]. Transport in Porous Media,2010,82(1):157-171.
    [127] Liu J, Chen Z, Elsworth D, et al. Linking gas-sorption induced changes in coal permeabilityto directional strains through a modulus reduction ratio[J]. International Journal of CoalGeology,2010,83(1):21-30.
    [128] Liu J, Chen Z, Elsworth D, et al. Evolution of coal permeability from stress-controlled todisplacement-controlled swelling conditions[J]. Fuel,2011,90(10):2987-2997.
    [129]姚素平,焦堃,张科,等.煤纳米孔隙结构的原子力显微镜研究[J].科学通报,2011,56(22):1820-1827.
    [130]蒋静宇.岩浆岩侵入对瓦斯赋存的控制作用及突出灾害防治技术[D].徐州:中国矿业大学,2012.
    [131]郝琦.煤的显微微观孔隙形态特征及其成因探讨[J].煤炭学报,1987,(4):51-57.
    [132] Gan H, Nandi S P, Walker Jr P L. Nature of the porosity in American coals[J]. Fuel,1972,51(4):272-277.
    [133]朱兴珊.煤层孔隙特征对抽放煤层气影响[J].中国煤层气,1996,(1):37-39.
    [134]宋岩,张新民,柳少波.中国煤层气地质与开发基础理论[M].北京:科学出版社,2012.
    [135]近藤精一,石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2005.
    [136] Dubinin M. The potential theory of adsorption of gases and vapors for adsorbents withenergetically nonuniform surfaces[J]. Chemical Reviews,1960,60(2):235-241.
    [137] Gregg S J, Sing K S W. Adsorption surface area and porosity(2nd edition)[M]. London:Academic Press,1982.
    [138] Do D D. Adsorption Analysis: Equilibria and Kinetics[M]. London: Imperial College Press,1998.
    [139] J.Crank. The Mathematics of Diffusion[M]. London: Oxford University Press,1975.
    [140] Wang G, Wang Z, Rudolph V, et al. An analytical model of the mechanical properties ofbulk coal under confined stress[J]. Fuel,2007,86(12):1873-1884.
    [141]王启智,贾学明.用平台巴西圆盘试样确定脆性岩石的弹性模量,拉伸强度和断裂韧度——第一部分:解析和数值结果[J].岩石力学与工程学报,2002,21(9):1285-1289.
    [142]王启智,吴礼舟.用平台巴西圆盘试样确定脆性岩石的弹性模量,拉伸强度和断裂韧度——第二部分:试验结果[J].岩石力学与工程学报,2004,23(2):199-204.
    [143]李晓泉.含瓦斯煤力学特性及煤与瓦斯延期突出机理研究[D].重庆:重庆大学,2010.
    [144]曹树刚,李勇,郭平,等.型煤与原煤全应力–应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(5):899-906.
    [145]尹光志,蒋长宝,李晓泉,等.突出煤和非突出煤全应力-应变瓦斯渗流试验研究[J].岩土力学,2011,32(6):1613-1619.
    [146]孟磊.含瓦斯煤体损伤破坏特征及瓦斯运移规律研究[D].北京:中国矿业大学(北京),2013.
    [147] Durucan S, Ahsanb M, Shia J-Q. Matrix shrinkage and swelling characteristics of Europeancoals[J]. Energy Procedia,2009,1(1):3055-3062.
    [148] Hol S, Spiers C J. Competition between adsorption-induced swelling and elasticcompression of coal at CO2pressures up to100MPa[J]. Journal of the Mechanics andPhysics of Solids,2012,60(11):1862-1882.
    [149] Liu S, Harpalani S. A New Theoretical Approach to Model Sorption Induced CoalShrinkage or Swelling[J]. AAPG Bulletin,2013,97(7):1033-1049.
    [150] Adamson A W, Gast A P. Physical chemistry of surfaces[M]. New York: Wiley New York,1990.
    [151] Bangham D H, Fakhoury N. The translation motion of molecules in the adsorbed phase onsolids[J]. Journal of the Chemical Society,1931:1324-1333.
    [152]何学秋,刘明举.含瓦斯煤岩灾害动力学--含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [153] Astakhov A V, Khazov S P, ékonomova L N. Effect of capillary condensate of methane onelectrophysical and strength properties of coal[J]. Journal of Mining Science,1992,28(3):231-234.
    [154]韩晋民,武瑛,赵东.煤体吸附瓦斯与煤体强度的关系研究[J].煤,2012,21(1):12-13.
    [155] Robinson L. The effect of pore and confining pressure on the failure process in sedimentaryrock[C]//The3rd US Symposium on Rock Mechanics (USRMS), Golden, Colorado,American Rock Mechanics Association,1959.
    [156]李世平,吴珍业,贺永年,等.岩石力学简明教程[M].北京:煤体工业出版社,1996.
    [157] Karacan C. Swelling-induced volumetric strains internal to a stressed coal associatedwith CO2sorption[J]. International Journal of Coal Geology,2007,72(3-4):209-220.
    [158] Dawson G K W, Golding S D, Esterle J S, et al. Occurrence of minerals within fracturesand matrix of selected Bowen and Ruhr Basin coals[J]. International Journal of CoalGeology,2012,94:150-166.
    [159] Karacan C. Heterogeneous Sorption and Swelling in a Confined and Stressed Coalduring CO2Injection[J]. Energy&Fuels,2003,17(6):1595-1608.
    [160] Liu J, Chen Z, Elsworth D, et al. Interactions of multiple processes during CBM extraction:A critical review[J]. International Journal of Coal Geology,2011,87(3-4):175-189.
    [161] Moore T A. Coalbed methane: A review[J]. International Journal of Coal Geology,2012,101:36-81.
    [162] Laubach S E, Marrett R A, Olson J E, et al. Characteristics and origins of coal cleat: Areview[J]. International Journal of Coal Geology,1998,35(1-4):175-207.
    [163] Pan Z, Connell L D. A theoretical model for gas adsorption-induced coal swelling[J].International Journal of Coal Geology,2007,69(4):243-252.
    [164]韩国锋,王恩志,刘晓丽.岩石损伤过程中的渗流特性[J].土木建筑与环境工程,2011,33(5):41-50.
    [165] Detournay E, Cheng A H-D. Fundamentals of poroelasticity[M]//FAIRHURST C.Comprehensive rock Engineering: Principles, Practice and Projects, Vol II, Analysis andDesign Method. Oxford; Pergamon.1993:113-171.
    [166] Pini R, Ottiger S, Burlini L, et al. Role of adsorption and swelling on the dynamics of gasinjection in coal[J]. Journal of Geophysical Research: Solid Earth,2009,114(B04203):1-14.
    [167]高峰,谢和平.岩石损伤和破碎相关性的分形分析[J].岩石力学与工程学报,1999,18(5):503-506.
    [168]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [169] Carman P. Fluid flow through granular beds[J]. Chemical Engineering Research and Design,1997,75: S32-S48.
    [170] Meng Z, Zhang J, Wang R. In-situ stress, pore pressure and stress-dependent permeabilityin the Southern Qinshui Basin[J]. International Journal of Rock Mechanics and MiningSciences,2011,48(1):122-131.
    [171] Wang L, Cheng Y, Wang L, et al. Safety line method for the prediction of deep coal-seamgas pressure and its application in coal mines[J]. Safety Science,2012,50(3):523-529.
    [172] Brown E, Hoek E. Trends in relationships between measured in-situ stresses and depth[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1978,15(4):211-215.
    [173] Kang H, Zhang X, Si L, et al. In-situ stress measurements and stress distributioncharacteristics in underground coal mines in China[J]. Engineering Geology,2010,116(3):333-345.
    [174]孙占学,张文,胡宝群,等.沁水盆地地温场特征及其与煤层气分布关系[J].科学通报,2005,50(S1):93-98.
    [175] Tao S, Wang Y, Tang D, et al. Dynamic variation effects of coal permeability during thecoalbed methane development process in the Qinshui Basin, China[J]. International Journalof Coal Geology,2012,93:16-22.
    [176]傅雪海,秦勇,姜波,等.山西沁水盆地中南部煤储层渗透率物理模拟与数值模拟[J].地质科学,2003,38(2):221-229.
    [177]王杏尊,刘文旗,孙延罡,等.煤层气井压裂技术的现场应用[J].石油钻采工艺,2001,23(2):58-61.
    [178]张松航,唐书恒,万毅,等.晋城无烟煤煤中CH4和CO2运移规律研究[J].中国矿业大学学报,2012,41(5):770-775.
    [179] Kelemen S, Kwiatek L. Physical properties of selected block Argonne Premium bituminouscoal related to CO2, CH4, and N2adsorption[J]. International Journal of Coal Geology,2009,77(1):2-9.
    [180] Bangham D H, Franklin R E. Thermal expansion of coals and carbonised coals[J].Transactions of the Faraday Society,1946,42: B289-B294.
    [181]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982.
    [182]郭楚文,李意民,陈更林.工程流体力学[M].徐州:中国矿业大学出版社,2010.
    [183]李伟.海石湾井田CO2成藏演化机制及防治技术研究[D].徐州:中国矿业大学,2011.
    [184]蔡成功,王佑安.煤与瓦斯突出一般规律定性定量分析研究[J].中国安全科学学报,2004,14(6):109-112.
    [185]李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    [186]李世愚,和泰名,尹祥础.岩石断裂力学导论[M].合肥:中国科技大学出版社,2010.
    [187]王明洋,范鹏贤,李文培.岩石的劈裂和卸载破坏机制[J].岩石力学与工程学报,2010,29(2):234-241.
    [188]李贺.岩石断裂力学[M].重庆:重庆大学出版社,1988.
    [189]谌伦建,柴一言,祝朝晖.型煤微观结构的研究[J].煤炭学报,1997,22(3):304-306.
    [190]赵玉兰,常鸿雁.粉煤成型机理研究进展[J].煤炭转化,2001,24(3):12-14.
    [191]常鸿雁.粉煤成型机理研究[D].太原:太原理工大学,2002.
    [192]中梁山煤矿.煤和瓦斯突出实测[J].煤矿安全,1979,(1):1-6.
    [193]谈庆明,俞善炳,朱怀球,等.含瓦斯煤在突然卸压下的开裂破坏[J].煤炭学报,1997,22(5):514-518.
    [194]张我华,金荑,陈云敏.煤/瓦斯突出过程中的能量释放机理[J].岩石力学与工程学报,2000,(S1):829-835.
    [195] Valliappan S, Wohua Z. Numerical modelling of methane gas migration in dry coalseams[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1996,20(8):571-593.
    [196] Gray I. The mechanism of energy release associated with outbursts[C]//The Occurrence andControl of Outbursts in Coal Mines Symposium, Queensland, Australia, Plenum PublishingCorporation,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700