用户名: 密码: 验证码:
弧扇泡沫射流高效除尘技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有泡沫除尘技术的泡沫喷射工艺较为粗放,喷射装备较为粗糙,造成泡沫浪费严重,这不仅从一定程度上推高了应用成本,影响除尘效果,还对作业环境产生一定影响。本文在现有泡沫除尘技术基础上,结合泡沫除尘机理及我国采掘机械客观实际,提出了弧扇泡沫射流构想,并采用理论分析、数值模拟、实验室实验,现场工业性试验等方法,分析了弧扇泡沫射流形成机理及发展过程,研制了包含弧扇泡沫喷嘴和可调式喷嘴安装支架的弧扇泡沫高效喷射装置,探讨了风流场对弧扇泡沫射流的影响及其弱化方法,最终形成了以弧扇泡沫高效喷射装置为核心,以附壁风筒为重要组成的弧扇泡沫高效除尘技术。
     基于高速摄像技术研究了粉尘与泡沫的耦合作用过程,根据表面物理化学等有关理论,系统分析了泡沫除尘机理。研究表明,泡沫薄膜是拦截粉尘的物理屏障,泡沫薄膜的变形、破裂、振动是其缓解粉尘撞击的主要方式。泡沫除尘包括尘泡接触(碰撞——破裂——碰撞)、尘泡黏附、尘泡黏附体沉降三个过程,泡沫与粉尘的接触效率、黏附效率和沉降效率是决定泡沫除尘效果的关键,而接触效率是最为重要的。研究认为当前泡沫除尘技术的关键之一是改善泡沫喷射状态,提高尘泡接触效率,以实现泡沫高效利用,提升泡沫除尘效果。
     对煤矿采掘设备进行了调研,对采掘机械产尘特征进行了分析,提出了适于高效泡沫除尘的最优喷射流型优选标准。以纵轴式采掘机械为应用背景,对实心锥、平扇、弧扇三种喷射流型进行理论对比,结果表明弧扇泡沫射流可在同样包裹尘源的状态下明显降低泡沫用量。基于非牛顿流体力学等相关理论和喷嘴制造实践,提出了弧扇射流的形成方案,对弧扇喷嘴关键尺寸进行了初步设计。分析了弧扇泡沫射流的形成及发展过程,建立了弧扇泡沫射流轴心速度与压力的无量纲公式,阐述了弧扇泡沫射流特征。
     设计并构建了高效泡沫除尘技术开发实验平台,并基于该平台,实验分析了喷嘴结构参数对弧扇泡沫射流包裹性能的影响。根据实验结果,分析了喷嘴结构尺寸的确认方法;对喷嘴结构进行了优化,设计了整流翼结构以消除翼流现象,设计了可调式喷嘴安装支架,以改变喷射角度不可调节的现状,实现了泡沫射流对目标靶点的精确打击。此外,实验分析了工况与产泡性能之间的关系,得出了喷嘴的最优工况范围。
     通过数值模拟研究了风流场对弧扇泡沫射流的影响,证明了风流场可明显改变泡沫射流运移轨迹,并通过实验验证了模拟结果。提出了通过“风量不变、改变风速分布”的方法来缓解风流场的影响,并设计了一种附壁风筒。数值模拟和实验研究均表明,附壁风筒可在一定程度上缓解风流场对弧扇泡沫射流的影响。
     在付村矿3下412掘进工作面进行了现场试验,结果表明:弧扇泡沫高效除尘技术对全尘和呼尘的除尘效率分别达到92.6%和92.5%,有效地降低了井下采掘工作面的粉尘浓度,取得显著的防尘效果。其全尘除尘效率在平扇喷嘴和实心锥喷嘴基础上分别提高了5.6%和10.4%,呼尘除尘效率在平扇喷嘴和实心锥喷嘴基础上分别提高了5.6%和11.7%。使用附壁风筒后,无论采用弧扇、平扇还是实心锥喷嘴,泡沫除尘效率普遍小幅提高,平均增幅2.7%。试验结果证明了弧扇泡沫射流高效除尘技术可实现泡沫的高效利用,在消耗相同泡沫的情况下有效提高了泡沫除尘效率。
The existing foam spray equipment is rather rough and spray process is moreextensive, resulted in a serious waste of foam, which not only increases the cost anddecrease efficiency of dust removal, but also influences the operating environment.Based on the existing foam dust control technologies and the mechanism of dustcontrol with foam, the paper proposes the idea of arc foam jet with considering thereality of mining machinery in our country. In this paper, through theoretic analysis,numerical simulation, laboratory experiments and field tests, it analyzes the formingand developing mechanism of arc foam jet. It also develops efficient foam sprayequipment consisting of arc foam nozzle and adjustable installation device, discusshow wind field affects the foam spray and weaken its efficiency. As a result, we get anefficient foam dust control technology with efficient foam spray as the core deviceand ventilation duct with Coanda effect (VDCE) as the important part.
     The interaction process of dust particle with foam was captured based onhigh-speed photography technology in this research. Depending on superficialphysical chemistry and mechanics and so on, it analyzes the mechanism of dustcontrol with foam. The results revealed that the foam film is the physical barrierblocking dust. The deformation, rupture and vibration of foam films are the majormodes to alleviate the impact of dust particles. Three distinct regimes of the dustremoval with foam were identified, namely, the impact between particle and foam(collision-rupture-collision), the attachment of the particle and foam, and thesedimentation of particle-foam agglomerates. Contact efficiency, adhesion efficiencyand deposition efficiency are three keys to foam dust control, and the contactefficiency is the most important thing. The current study suggests that one of the keyfoam dust control technologies is improving the state of foam spray, which canachieve efficient foam spray and increase the contact efficiency. Finally improve theeffect of foam.
     Through the researching on mining machinery and analyzing on thecharacteristics of dust arising from mining equipment, the paper proposes the standardfor optimum spray pattern to get fine foam spray. Take vertical-axis roadheader asapplication background, it analyses three kinds of foam jet shapes: the full cone jet,flat jet and arc jet. Theoretical comparison is made on the minimum volume of foamwhen using the full cone jet, flat jet and arc jet. The results show that the arc jet is the better choice for achieving the efficient foam dedusting. In the same condition ofenwrapped dust source, the arc jet requires the least amount of foam. Based onnon-newtonian fluid mechanics and other related theories and the manufacturingtechnology of nozzle, it proposes the formation scheme of arc spray pattern andpreliminary design for the critical size of jet nozzle. Combined with jet mechanics andother relevant theories, high-speed photography technology and numerical simulationmethod, this dissertation studies the formation and the development process of thefoam arc spray, establishes center velocity and pressure dimensionless equations ofarc jet spray and elaborates the characteristics of arc jet spray.
     Experiment platform for design of efficient dust control technology with foam isdevised and constructed. Base on this platform, it analyzes the fabric parameters ofnozzle which can affect the enwrapping performance of the foam spray. Based onexperimental results, it comes to a design method which can confirm the fabricparameter of nozzle and optimize the structure of nozzle; it also designs the rectifierwing to eliminate wing current phenomenon. The adjustable installation support ofnozzle is designed to make sure the foam jet wrap the dust source efficiently. Inaddition, the experiment analyzes the relationship between the operation conditionand performance of arc foam nozzle, and gets the optimal working condition range ofthe nozzle.
     In order to reveal the influence of airflow on the dispersion of foam ejected fromroadheader-mounted external nozzle, the paper studies the arc foam jet distributionunder the condition of gentle breeze and normal forced ventilation in heading face.The results show that airflow can significantly affect the trajectory of foam jet. Inorder to mitigate the effect of airflow on foam jet, it brings forward a method as“change the wind speed distribution with the same amount of wind”, which canalleviate the impact of airflow, and design a VDCE. Numerical simulation andexperimental results show that the application of VDCE can effectively mitigate theinfluence of airflow on the foam jet.
     The field experiment carried out in3下412heading face of Fucun coal mine. Theresult shows that the efficient dust control technology with arc foam jet can reducetotal dust and respiratory dust to92.6%and92.5%respectively, which consists with aarc foam nozzle as the core device and VDCE as the important part. Its total dustsuppression efficiency is5.6%and10.4%higher than the flat nozzle and full conenozzle. Its respirable dust suppression efficiency is5.6%and11.7%higher than the flat nozzle and full cone nozzle. The dust suppression efficiency when using VDCEaveragely increase2.7%, whatever the nozzle is arc, flat or full cone. It proves that theefficient foam dust control technology with arc foam jet can weaken the influence ofairflow on foam dispersion. The results prove that efficient foam dust controltechnology with arc foam jet makes the foam highly used, and improve the efficiencyof the foam dust control. On the one hand, the technology puts forward a brand newconcept for foam dust control, on the other hand, it gives a reference to design dustremoval device of mining equipment.
引文
[1] Kurnia JC, Sasmito AP, Mujumdar AS. Dust dispersion and management in undergroundmining faces[J]. International Journal of Mining Science and Technology,2014,24(1):39-44.
    [2] Zheng YP, Feng CG, Jing GX, et al. A statistical analysis of coal mine accidents caused by coaldust explosions in China[J]. Journal of Loss prevention in the Process Industries,2009,22(4):528-532.
    [3] Abbasi T, Abbasi SA, Dust explosions-Cases, causes, consequences, and control[J]. Journal ofHazardous Materials,2007,140(1-2):7-44.
    [4] Erol I, Aydin H, Didari V, et al. Pneumoconiosis and quartz content of respirable dusts in thecoal mines in Zonguldak, Turkey [J] International Journal of Coal Geology,2013,116-117(1):26-35.
    [5] Cashdollar KL. Coal dust explosibility[J] Journal of Loss Prevention in the Process Industries,1996,9(1):65-76.
    [6] Petsonk EL, Rose C, Cohen R. Coal mine dust lung disease. New lessons from an oldexposure[J]. American Journal of Respiratory and Critical Care Medicine,2013,187(11):1178-1185.
    [7] Mo JF, Wang L, Au W, et al. Prevalence of coal workers' pneumoconiosis in China: Asystematic analysis of2001-2011studies[J]. International Journal of Hygiene and EnvironmentalHealth,2014,217(1):46-51.
    [8] Pinho RA, Bonatto F, Andrades M, et al. Lung oxidative response after acute coal dustexposure[J]. Environmental Research.2004,96(3):290-297.
    [9]欧文.卫生部通报2010年职业病防治工作情况和2011年重点工作[J].安全与健康,2011,13:31.
    [10]赵铁锤.我国煤炭行业尘肺病病例约占全国尘肺病患者总数的50%[EB/OL].[2010-10-03] http://news.xinhuanet.com/fortune/2010-10/03/c_12628329.htm.
    [11]王显政.在中国煤矿尘肺病防治基金会理事会会议上的讲话[EB/OL].[2013-01-15]http://www.coalchina.org.cn/detail/13/01/15/00000032/content.html.
    [12] Kissell FN. Handbook for Dust Control in Mining[R]. US Department of Human HealthServices, Pittsburgh, PA,2003, PP.7-12.
    [13] Wojtowicz A., Mueller JC, Hedley WH, et al. Foam Suppression of Respirable Coal dust[R].Pittsburgh, USA: USBM&MSAR,1975:95-102.
    [14] Laurito, AW, Singh, MM. Evaluation of air sprays and unique foam application methods forlongwall dust control[R]. Pittsburgh, PA: Engineers International, Inc. U.S. Bureau of Mines,1987:1-15.
    [15] Seibel RJ. Dust Control at a Transfer Point Using Foam and Water Sprays[R]. US Departmentof the Interior, Bureau of Mines, Pittsburgh, PA,1976. pp.1-12.
    [16] Parrett FW. Foam suppressants-An alternative for dust control [J]. Industrial Minerals,1986,220:52-53.
    [17] Mukherjee SK, Singh MM [J]. New techniques for spraying dust, Coal Age,1984,6:54-57.
    [18]宋建国.机载压缩空气泡沫降尘技术研究与实践[J].煤炭工程,2010,(9):82-85.
    [19] Ren WX, Wang DM, Guo Q, et al. Application of foam technology for dust control inunderground coal mine[J]. International Journal of Mining Science and Technology,2014,24(1):13-16.
    [20] Ren WX, Wang DM, Kang ZH, et al. A new method for reducing the prevalence ofpneumoconiosis among coal miners: foam technology for dust control[J]. Journal of Occupationaland Environmental Hygiene,2012,9(4):D77-83.
    [21] Wang HT, Wang DM, Ren WX, et al. Application of foam to suppress rock dust in a largecross-section rock roadway driven with roadheader[J]. Advanced Powder Technology,2013,24(1):257-262.
    [22] Xi ZL, Jiang MM, Yang JJ, et al. Experimental study on advantages of foam–sol in coal dustcontrol[J]. Process Safety and Environmental Protection,2013,http://dx.doi.org/10.1016/j.psep.2013.11.004.
    [23].MOPEB AM.曾昭慧译.苏联马可尼在煤矿防尘方面的科研工作[J].国外防尘技术.1982,127~134.
    [24]蒋仲安,李怀宇,杜翠凤.泡沫除尘机理与泡沫药剂配方的要求[J].中国矿业,1995,4(6):61-63.
    [25]陈东生.全岩掘进机的泡沫灭尘[J].煤矿机电,1986,6:7-8,12.
    [26]奚志林,王德明,陆伟,等.泡沫除尘机理研究[J].煤矿安全,2006,376(03):1-4.
    [27]黄本斌,王德明,时国庆,等.泡沫除尘机理的理论研究[J].工业安全与环保,2008,34(05):13-15.
    [28] Tien JC, Kim J. Respirable coal dust control using surfactants[J]. Applied Occupational andEnvironmental Hygiene,1997,12(12):957-963.
    [29] Kim J. Effect of coal type on wetting by solution of non-ionic surfactant [J]. InternationalMining&Minerals,1999,2(14):38-41.
    [30] Nguyen AV, Evans GM. Attachment interaction between air bubbles and particles in frothflotation[J]. Experimental Thermal and Fluid Science,2004,28(5):381-385.
    [31] Verrelli DI, Koh PTL, Nguyen AV. Particle-bubble interaction and attachment in flotation [J].Chemical Engineering Science,2011,66(23):5910-5921.
    [32] Phan CM, Nguyen AV, Miller JD, et al. Investigations of bubble-particle interactions [J].International Journal of Mineral Processing,2003,72(1-4):239-254.
    [33] Caenn R, Darley HCH, Gray GR. Composition and Properties of Drilling and CompletionFluids[M].6th ed. Gulf Professional Publishing,2011-8-29:320-322.
    [34] Jafri IH, Vradis GC.The evolution of laminar jets of Herschel-Bulkley fluids[J]. InternationalJournal of Heat and Mass Transfer,1998,41(22):3575-3588.
    [35] Schlichting H, Gersten K. Boundary Layer Theory[M].8th ed. Springer,2000.
    [36] Lemieux PF, Unny TE.The laminar two-dimensional free jet of an incompressiblepseudoplastid fluid[J]. Journal of Applied Mechanics,1968,35(4):810.
    [37] Atkinson C. On the laminar two-dimensional free jet of an incompressible, pseudoplasicfluid[J]. Journal of Applied Mechanics,1972,39(4):1162-1164.
    [38] Rotem Z. The axisymmetric free laminar jet of an incompressible pseudoplastic fluid[J].Applied Scientific Reasearch,1963,13(1):353-370.
    [39] Gurfinger C, Shinnar R. Velocity distributions in two-dimensional laminar liquid-into-liquidjets in power-law fluids [J]. AIChE Journal,1964,10(5):631-639.
    [40] Serth RW. The axisymmetric free laminar jet of a power-law fluid[J]. Journal of AppliedMathematics and Physics,1972,23(1):131-138.
    [41] Mitwally EM. Solutions of laminar jet flow problems for non-Newtonian power-law fluids[J].Journal of fluids Engineering,1978,100:363-366.
    [42] Liu ZB, Brenn G, Durst F. Linear analysis of the instability of two-dimensionalnon-Newtonian liquid sheets[J]. Journal of Non-Newtonian Fluid Mechanics,1998,78(2-3):133-166.
    [43] Brenn G, Liu ZB, Durst F. Linear analysis of the temporal instability of axisymmetricalnon-Newtonian liquid jets[J]. International Journal of Multiphase Flow,2000,26(10):1621-1644.
    [44]张润泽.幂律流体射流破碎机理的实验研究[D].天津:天津大学,2011.
    [45] Thompson JC, Rothstein JP. The atomization of viscoelastic fluids in flat-fan andhollow-cone spray nozzles[J]. Journal of Non-Newtonian Fluid Mechanics,2007,147(1-2):11–22.
    [46] Dechelette A, Campanella O, Corvalanc C, et al. An experimental investigation on thebreakup of surfactant-laden non-Newtonian jets. Chemical Engineering Science,2011,66(24):6367–6374.
    [47] Buwa VV, Ranade VV. Dynamics of gas–liquid flow in a rectangular bubble column:experiments and single/multi-group CFD simulations[J]. Chemical Engineering Science,2002,57(22-23):4715–4736.
    [48] Chen P, Sanyal J, Dudukovic MP. Numerical simulation of bubble columns flows: effect ofdifferent breakup and coalescence closures [J]. Chemical Engineering Science,2005,60(4):1085–1101.
    [49] Diaz ME, Iranzo A, Cuadra D, et al. Numerical simulation of the gas–liquid flow in alaboratory scale bubble column Influence of bubble size distribution and non-drag forces[J].Chemical Engineering Science,2008,139(2):363–379.
    [50]李兆敏,李松岩,尚朝辉等.泡沫流体层流射流的数值模拟[J].钻井液与完井液,2007,24(1):58-60.
    [51]张志强.幂律流体液膜射流破碎的数值模拟[D].天津:天津大学,2011.
    [52]贺丽萍.基于OpenFOAM的非牛顿液体圆射流破碎的数值研究[D].天津:天津大学,2011.
    [53]苗惠东,张仁贵,彭担任.综掘面泡沫抑尘技术与装置研究[J].矿山机械,2008,36(23):39-41.
    [54]任万兴,煤矿井下泡沫除尘理论与技术研究[D].徐州:中国矿业大学,2009:78-88.
    [55]煤炭科学研究院重庆研究所.矿井粉尘译文集[M].北京:煤炭工业出版社,1981,1:191-201.
    [56] Watson WR, Anderson DR. Foam producing nozzle: US,3388868[P].1968-6-18.
    [57] Grindley JR. Foam producing nozzle: US,5054688[P].1991-10-8.
    [58] Conrad SE, Bintner DW. Foam generating nozzle: US,3836076[P].1974-9-17.
    [59] Piggott RG. Foam producing nozzle: US,3784111[P].1974-1-8.
    [60] Bureaux JG, Cowan G. Air aspirating foam nozzle: US,6173908B [P].2001-1-16.
    [61] Roe DC, Bhaskar R, Utzka BJ. Apparatus and method for generating high quality foam usingan air educator: US,6010083A [P].2000-01-04.
    [62] Peck WE, Locke LG. Foam nozzle: US,5678766A [P].1997-10-21.
    [63] Mullen TL, Schaefer TJ, McCutcheon TD. Planar foam nozzle: US,5348230[P].1994-9-20.
    [64]王宽,周福宝,张仁贵.矿用泡沫抑尘技术在薛湖矿的应用[J].煤炭工程,2011,(8):52-54.
    [65] Singh MM, Laurito AW, Field tests of a foam dust suppressant system with longwallshearers[R]. Engineers International Inc.2004.
    [66]王兵兵.防治矿尘用扇形泡沫喷头的试验研究[D].徐州:中国矿业大学,2010.
    [67]王德明,任万兴,巫斌伟,等.一种用于煤矿井下除尘的泡沫喷头:中国,2008200407499[P].2008-07-05.
    [68]聂文,程卫民,周刚,等.掘进面喷雾雾化粒度受风流扰动影响实验研究[J].中国矿业大学学报,2012,41(3):378-383.
    [69]曾爱军.减少农药雾滴漂移的技术研究[D].北京:中国农业大学,2005.
    [70]秦维彩,薛新宇,吴萍,等.水田超低空低量喷雾飘移与雾滴沉积量的试验研究[C];公共植保与绿色防控,2010.
    [71]蒋耀培,蒋建忠,汪祖国,等.常用喷雾机(器)雾滴漂移距离的初步研究[J]上海农业学报,2009,25(2):127-130.
    [72]吕晓兰,傅锡敏,宋坚利,等.喷雾技术参数对雾滴飘移特性的影响[J].农业机械学报,2011,42(1):59-63.
    [73] Franz E, Bouse LF, Carlton JB, et al. Aerial spray deposit relations with plant canopy andweather parameters[J]. Transactions of the ASAE,1998,41(4):959-966.
    [74]王宽,周福宝,刘应科,等.柔性附壁风筒辅助降尘技术在葛泉煤矿的应用[J].煤矿安全,42(11):72-74.
    [75] Gehrke S, Wirth KE. Interaction phenomena between liquid droplets and hot particles——Captured via high-speed camera[J]. Particuology,2009,7(4):260-263.
    [76] Kim HH, Kim JH, Ogata A. Time-resolved high-speed camera observation ofelectrospray[J].Journal of Aerosol Science,2011,42(4):249-263.
    [77] Thomson, J. On Certain Curious Motions Observable at the Surfaces of wine and OtherAlcoholic Liquors[J]. Philosophical Magazine,1855,10(67):330-333.
    [78] Hu H, Larson RG. Marangoni Effect Reverses Coffee-Ring Depositions[J] Journal ofPhysical Chemistry B,2006,110(14), pp7090–7094.
    [79] Hu H, Larson RG. Analysis of the effects of Marangoni stresses on the microflow in anevaporating sessile droplet[J]. Langmuir,2005,21(9):3972–3980.
    [80] Bird JC, Ruiter RD, Courbin L, et al. Daughter bubble cascades produced by folding ofruptured thin films[J]. Nature,2010,465:759-762.
    [81] Weaire D, Hutzler S, Cox S, et al. The fluid dynamics of foams[J]. Journal of Physics:Condensed Matter,2003,15(1):S65-S73.
    [82]金龙哲,李晋平,孙玉福等.矿井粉尘防治[M].北京:科学出版社,2010.
    [83]周刚.综放工作面喷雾降尘理论及工艺技术研究[D]青岛:山东科技大学,2006.
    [84] Mohan BR, Jain RK, Meikap BC. Comprehensive analysis for prediction of dust removalefficiency using twin-fluid atomization in a spray scrubber[J] Separation and PurificationTechnology,2008,63(2):269-277.
    [85] Colinet JF, Rider JP, Jeffrey ML, etc. Best Practices for Dust Control in CoalMining[R].NIOSH, Pittsburgh,2010
    [86]王德明,韩方伟,汤笑飞等.用于降尘的弧扇喷嘴:中国,CN201210389706.2[P].2012-10-16.
    [87]柳平增,丁为民,薛新宇,等.喷头综合性能精密测试试验台的研制[J].江苏大学学报(自然科学版),2006,27(5):388-391.
    [88]柳平增.喷头综合性能精密测试试验台的研制及扇形雾喷头性能研究[D].南京:南京农业大学,2007.
    [89]杨文瑶,郭旭,蔡钟.喷嘴性能测试用实验台装置:中国,CN201120528754.6[P].2011-12-15.
    [90]陈大勇.钻孔水力开采喷嘴性能测试实验台研制与圆柱形喷嘴参数优化研究[D].长春:吉林大学,2012.
    [91]仇雅鸣,翟小冀,唐子谋,等.穿水冷却喷嘴测试系统的设计[J]中国测试,2009,35(3):125-128.
    [92]丁加军,甄久军.高压喷嘴性能测试系统研制[J].科学技术与工程,2013,13(4):1020-1023.
    [93]卢云丹,陈兵.高压除磷喷嘴性能测试系统设计[J].液压与气动,2010,3:9-10.
    [94]申娟.高压水除磷喷嘴性能测试系统研究[D].武汉:武汉科技大学,2008.
    [95]北京亚控科技发展有限公司.组态王KINGVIEW6.51使用手册[Z].北京亚控科技发展有限公司,2005.
    [96] Hirt CW, Nichols BD. Volume of fluid (VOF) method for dynamics of free boundaries [J].Journal of Computational Physics,1981,39:201-225.
    [97] Fluent Inc. Fluent6.3User’s guide[R].Lebanon, NH,2006.
    [98]陈萍萍.VOF运动界面重构的流体体积分数保持法[D].河海大学,2007.
    [99]许兆峰,陈铁军,樊毅,等.运用VOF模型模拟开敞式水泵吸水池内后台阶流动[J].工程热物理学报,2007,28(增1):157-160.
    [100]刘德有,周领,索丽生,等.水流冲击管道内滞留气团现象的VOF模型仿真分析[J].计算力学学报,2009,26(3):390-394.
    [101]符建文.机掘工作面旋流通风数值模拟及实验研究[D].湖南科技大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700