用户名: 密码: 验证码:
石门揭构造软煤诱发煤与瓦斯突出模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大多数煤与瓦斯突出的发生和复杂的地质构造有关,这些区域的煤层被构造运动破坏成了碎裂煤、碎粒煤或糜棱煤,构造软煤发育。而石门揭煤突出又是煤与瓦斯突出事故中强度最高和危险性最大的一种矿井瓦斯动力现象。因此,研究地质构造影响下石门揭构造软煤的突出特性,采取相应的防治措施对煤矿安全高效生产具有十分重要的现实意义和实用价值。本文首先对构造软煤的物理力学特性进行研究,然后建立石门揭构造软煤的物理模型,并在实验室搭建石门揭构造软煤的试验平台进行相似模拟试验,结合数值模拟取得了以下主要研究成果:
     综合分析了构造软煤的物理力学特性及其对煤与瓦斯突出的影响。微孔隙发育、比表面积大、吸附能力强和渗透性低使构造软煤能够保存较多的瓦斯;力学强度低使构造软煤抵御外力作用的能力降低。构造软煤的物理力学特性是导致构造软煤带容易发生煤与瓦斯突出的重要原因。
     在地质构造和煤与瓦斯突出关系的研究成果基础上,构建了压性断层带石门揭构造软煤突出的试验模型。模型中有一落差大于煤层厚度的逆断层,在断层上盘发育有褶曲,使煤层厚度发生了变化,总结了该试验模型的基本特征并进行了力学分析。
     基于相似模拟试验思想和地质力学模型试验思路,针对淮南矿区11-2突出煤层的顶底板岩性及力学参数,在实验室进行了压性断层带石门揭构造软煤的相似模拟试验。试验研究了石门揭构造软煤过程中煤岩的应力和位移的变化规律,突出过程中煤层内瓦斯压力变化规律,充气和突出过程中温度和声发射的变化规律。
     利用数值模拟软件COMSOL Multiphysics建立了压性断层带石门揭构造软煤的数值模型并进行了求解,研究了石门揭构造软煤过程中的应力演化、裂隙发展和瓦斯运移规律。发现断层附近存在异常的构造应力场,并与由开挖导致的集中应力相互叠加;瓦斯在突出的启动和发展过程中发挥了重要作用。
     最后,通过对相似模拟试验和数值模拟的结果分析得出:压性断层带石门揭构造软煤突出是一个由开挖导致的集中应力和异常的构造应力首先使构造软煤内的弹性潜能增加,为瓦斯撕裂煤体发生突出创造条件;然后,瓦斯使破碎的煤体失稳,在较高的瓦斯压力梯度下携带碎煤抛出的一个过程。
Coal and gas outburst always occurs in the strongly varied geological structure region, such as fault, fold and coal seam thickness and so on, forming the development of tectonic soft coal. Moreover, tectonic soft coal uncovering by cross-cut outburst is the most strong and dangerous coal and gas outburst. Therefore, the study of tectonic soft coal uncovering by cross-cut induced outburst mechanism and corresponding prevention measures have a practical significance and practical value for the safety production in coal mines. This paper studied the physical mechanic properties of tectonic soft coal, and then established the physical model of tectonic soft coal during the uncovering tectonic soft coal by cross-cut, and built up a test platform to test the outburst properties during the uncovering tectonic soft coal in the laboratory. The main research results are as follows:
     Regards of different coal and rock ingredients, we chose a typical sample from native structure of coal and tectonic soft coal, and made research on the physical and mechanical characteristics of the two kinds of coal, with microscope, pressure mercury, IS-100type isothermal adsorption and desorption meter, MYS-I type of test equipment on coal and rock sample seepage rate, gas coal and rock mass gas-solid coupled parameter tester. Based on the experiment, we analyzed the effect of physical and mechanical characteristics of tectonic soft coal on coal and gas outburst. The physical and mechanical characteristic of tectonic soft coal increases the danger of coal and gas outburst.
     Based on the research results of relationship between geological structure and coal and gas outburst, the physical model for the tectonic soft coal outburst was established. There is a reverse fault that the throw is greater than the thickness of the coal seam in the model; fole developing in the hanging wall of the fault makes the coal seam thickness changes. The basic characteristics of the physical model were summarized and mechanics analysis of the physical model was done. The outburst occurs in tectonic soft coal seam was influenced by coupling effect of physical mechanical properties, gas pressure and tectonic stress.
     Based on ideas of the similar material simulation test and geomechanical model test and according to the lithological and mechanical parameters of11-2outburst coal seam in Huainan mining area, similar simulation test of tectonic soft coal uncovering by cross-cut was done in the laboratory. The change laws of coal and rock stress and displacement in the process of tectonic soft coal uncovering by cross-cut were studied. The gas pressure, temperature and acoustic emissionwere in the process of gas injection and outburst were studied too.
     The tectonic soft coal uncovering by cross-cut of numerical model was established by simulation software of COMSOL Multiphysics to study on the evolution of stress, crack development and the law of gas migration. The results showed that there was obvious tectonic stress concentration area in the geological structures vicinity; Tectonic stress and excavation stress concentration due to the tectonic soft coal further broken and deep extended large outburst; Gas pressure played an important role in the process of coal and gas outburst start and sustained development.
     Finally, based on the similar simulation test results and the numerical simulation analysis of tectonic soft coal uncovering by cross-cut, it obtained the reason for the outburst during the uncovering tectonic soft coal. First, ground stress makes the coal body crusher and the elastic potential of coal body increase to create the conditions for gas to tear coal body induced gas outburst; then, the destructioned coal instability and powdered coal are carried by gas pressure.
引文
[1]郭勇义,何学秋,林柏泉.煤矿重大灾害防治战略研究与进展[M].徐州:中国矿业大学出版社,2003.
    [2]矿井瓦斯等级鉴定材料汇编[G].北京:国家煤矿安全监察局,2008.
    [3]李希建,徐明智.近年我国煤与瓦斯突出事故统计分析及其防治措施[J].矿山机械,2010,38(10):13-16.
    [4]张春华.石门揭突出煤层围岩力学特性模拟试验研究[D].淮南:安徽理工大学,2010.
    [5]孟中泽,刘明举,孟磊,等.淮南矿区C13-1煤层构造软煤分布特征及其主控因素分析[J].中国煤炭,2010,36(2):72-76.
    [6]Skochinski A A. Communication of the initiation of a sudden outburst of gas and coal in the model in outburst laboratory of the Institute of Mining of AN SSSR[J]. Ugol,1953(10):39.
    [7]Yartsev V A. Crushing of coal in sudden drop of gas pressure[J].Ugol, 1958(5):35-36.
    [8]Ujihira, M., Isobe, T., Higuchi, K. On the flaking-destructive phenomena of porous material induced by involved high pressure gas. Study on coal and gas outbursts. (1st Report) [J] Journal of Mining&Metallurgical Inst. of Japan,1984, 100(3):225-32 (in Japanese).
    [9]Ujihira, M., Isobe, T., Higuchi, I. On the process of destruction of porous material in which high pressure gas is involved. Study on coal and gas outbursts. (2nd Report) [J]. Journal of Mining & Metallurgical Inst. of Japan,1984,100(5):397-403 (in Japanese).
    [10]Ujihira, M., Isobe, T., Higuchi, I. The relation between gas pressure and stress distribution in the vicinity of the exposed surface of porous materials. Study on coal and gas outbursts. (3rd Report) [J].Journal of Mining & Metallurgical Inst. of Japan,1985,101(5):283-88 (in Japanese)
    [11]Ujihira, M., Higuchi, K., Nabeya, H. Scale model studies and theoretical considerations on the mechanism of coal and gas outbursts, Proc.21st Int. Conf. of Safety in Mines Res. Inst, Sydney, NSW,1985,121-27.
    [12]Bodziony, J., Nelicki, A., Pindel, Z., Topolnicki, J. Laboratory trial of inducing a quasi-outburst, Int. Colloquium "Tendencies in Gas and Rock Outburst Hazard Prevention in Underground Mines", Nowa-Ruda-Radkbw, Poland,1988,19-23 Sept., pp.7-22 (in Polish).
    [13]Bodziony, J., Nelicki, A., Topolnicki, J. Results of laboratory investigations of gas and coal outbursts[J]Archives of Mining Sciences,1989,94(3):581-91 (in Polish).
    [14]Bodziony, J., Nelicki, A., Topolnicki, J. Investigations of experimental generation of gas and coal outbursts, In:Strata as Multiphase Medium. Rock and Gas Outbursts, Ed. J. Litwiniszyn,1990, Vol. Ⅱ, pp.489-508, Krakow (in Polish).
    [15]Bodziony, J., Kraj, W., Rataczak, T. Application of stereology in the investigation of the structure of coal from Lower Silesia, In:Strata as Multiphase Medium. Rock and Gas Outbursts, Ed.J.Litwiniszyn,1990, Vol. Ⅰ, pp.173-94, Krakow (in Polish).
    [16]邓全封,栾永祥,王佑安.煤与瓦斯突出模拟试验[J].煤矿安全,1989,11:6-11.
    [17]Gawor, M., Kowalewski, T., Rysz, J., Smolarski, A. Experimental research on briquette destruction caused by rarefaction waves[J].Archives of Mining Sciences, 1994,39(3):313-30.
    [18]Gawor, M., Rysz, J., Smolarski, A. Z. Experimental investigations of the disintegration of a coal briquette caused by a rarefaction wate, in:'Strata as Multiphase Medium; Rock and Gas Outbursts', Ed. J. Litwiniszyn,1991, Vol.Ⅲ, Krakow, pp.919-32.
    [19]Gawor, M., Meier, G. E. A., Rysz, J.1993, Experimental research on the rarefaction waves within the mixture of crushed coal and gas, in:'20 years cooperation in physics of fluids', Gottingen, Krakow,1993, pp.81-103.
    [20]Nelicki, A., Topolnicki, J. Experimental stand for the investigation of outbursts of porous materials saturated with gas[J].Archives of Mining Sciences,1994, 39(3):301-311.
    [21]Paterson, L., Wold, M. B. Implications from cavity completion research on the prediction and prevention of outbursts, Int. Symp.-cum-Workshop on Management & Control of High Gas Emissions & Outbursts in Underground Coal Mines (Ed. Lama), Wollongong, NSW,1995,20-24 March, pp.251-256.
    [22]Topolnicki, J. Energy" balance in an outburst, Int. Symp.-cum-Workshop on Management& Control of High Gas Emissions & Outbursts in Underground Coal Mines (Ed. Lama), Wollongong, NSW,1995,20-24 March, pp.67-74.
    [23]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):17.
    [24]He Xueqiu, Zhou Shining. Rheological hypothesis of coal and gas outburst mechanism[J]. Journal of China University of Mining & Technology,1994, 4(1):15-23.
    [25]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995,2:17-25.
    [26]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [27]孟祥跃,丁雁生,陈力,等.煤与瓦斯突出的二维模拟试验研究[J].煤炭学报,1996,21(1):57-61.
    [28]郭立稳,俞启香,蒋承林,等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366-368.
    [29]牛国庆,颜爱华,刘明举.煤与瓦斯突出过程中温度变化的实验研究[J].湘潭矿业学院学报,2002,17(4):20-23.
    [30]蔡成功.煤与瓦斯突出三维模拟实验研究[J].煤炭学报,2004,29(1):66-69.
    [31]许江,陶云奇,尹光志,等.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [32]许江,陶云奇,尹光志.煤与瓦斯突出模拟试验台的改进及应用[J].岩石力学与工程学报,2009,28(9):1804-1809.
    [33]尹光志,赵洪宝,许江,等.煤与瓦斯突出模拟试验研究[J].岩石力学与工程学报,2009,28(8):1674-1680.
    [34]许江,刘东,彭守建,等.煤样粒径对煤与瓦斯突出影响的试验研究[J].岩石力学与工程学报,2010,29(6):1231-1237.
    [35]尹光志,李晓泉,蒋长宝,等.石门揭煤过程中煤与瓦斯延期突出模拟实验[J].北京科技大学学报,2010,32(7):827-832.
    [36]李晓泉,尹光志,蔡波,等.煤与瓦斯延期突出模拟试验及机理[J].重庆大学学报,2011,34(4):13-19.
    [37]陆漆.不同荷载水平下煤与瓦斯突出模拟实验研究[D].重庆:重庆大学,2011.
    [38]吴鑫.不同煤粉粒径条件下煤与瓦斯突出模拟实验研究[D].重庆:重庆大学, 2010.
    [39]王维忠,陶云奇,许江,等.不同瓦斯压力条件下的煤与瓦斯突出模拟实验[J].重庆大学学报,2010,33(3):82-86.
    [40]许江,刘东,尹光志,等.非均布荷载条件下煤与瓦斯突出模拟实验[J].煤炭学报,2012,37(5):836-842.
    [41]赵志刚,胡千庭,耿延辉,等.煤与瓦斯突出模拟试验系统的设计[J].矿业安全与环保,2009,36(5):9-11.
    [42]王刚,程卫民,张清涛,等.石门揭煤突出模拟实验台的设计与应用[J].岩土力学,2012,34(4):1202-1210.
    [43]张春华,刘泽功,刘健,等.封闭型地质构造诱发煤与瓦斯突出的力学特性模拟试验[J].中国矿业大学学报,2013,42(4):554-559.
    [44]宋士钊.石门揭煤开突出危险煤层的几个问题[C]//全国煤矿安全科学学术会议论文,1979,5.
    [45]宋士钊.我国煤和瓦斯突出研究工作的主要成果及近期的主要任务[C]//煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文选集,1983,5.
    [46]谭学术,鲜学福.石门巷道中动力现象的变弹模光弹性实验研究及预防[M].重庆:重庆出版社,1986,12.
    [47]唐春安,刘红元.石门揭煤突出过程的数值模拟研究[J].岩石力学与工程学报,2002,21(10):1467-1472.
    [48]蒋承林.石门揭煤条件下动力现象的三分类预测研究[J].煤炭学报,1997,22(4):406-409.
    [49]李宗福,周声才,龙建明,等.石门揭穿严重突出危险煤层防突技术研究[J].煤炭科学技术,2011,39(9):37-39.
    [50]高魁,刘泽功,刘健,等.石门揭构造软煤消突与快速成巷技术研究[J].煤炭科学技术,2012,40(11):66-68.
    [51]Smyth M. Statistics of coal microlithotypes and their correlation to permeability of coal seams [J].International Journal of Coal Geology,1993,22(2):167-187.
    [52]Bustin R M. Importance of fabric and composition on the stress sensitivity of permeability in some coal, Northern Sydney Basin, Australia:Relevance to coalbed methane exploration [J].AAPG Bulletin,1997,81(11)1894-1908.
    [53]Gulbin Gurdal, M Nam k Yal n. Pore volume and surface area of the carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition [J].International Journal of Coal Geology, 2001,48(1-2):133-144.
    [54]张红日,张文泉.构造煤特征及其与瓦斯突出的关系[J].山东矿业学院学报,1995,14(4):343-348.
    [55]郭德勇,韩德馨,冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究[J].煤田地质与勘探,1998,26(4):31-34.
    [56]郝吉生,袁崇孚,张子戌.构造煤及其对煤与瓦斯突出的控制作用[J].焦作工学院学报(自然科学版),2000,19(6):403-406.
    [57]张玉贵,张子敏,曹运兴.构造煤结构与瓦斯突出[J].煤炭学报,2007,32(3):281-284.
    [58]汪吉林,姜波,陈飞.构造煤与应力场耦合作用对煤与瓦斯突出的控制[J].煤矿安全,2009:94-97.
    [59]陈富勇,琚宜文,李小诗等.构造煤中煤层气扩散-渗流特征及其机理[J].地学前缘,2010,17(1):195-201.
    [60]邵强,王恩营,王红卫等.构造煤分布规律对煤与瓦斯突出的控制[J].煤炭学报,2010,35(2):250-254.
    [61]屈争辉.构造煤结构及其对瓦斯特性的控制机理研究[D].徐州:中国矿业大学,2010.
    [62]张子敏,张玉贵.大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J].煤炭学报,2005,30(2):137-140.
    [63]王志荣,郎东升,刘士军,等.豫西芦店滑动构造区瓦斯地质灾害的构造控制作用[J].煤炭学报,2006,31(5):553-557.
    [64]邵强,王恩营,王红卫等.构造煤分布规律对煤与瓦斯突出的控制[J].煤炭学报,2010,35(2):250-254.
    [65]汪吉林,姜波,陈飞.构造煤与应力场耦合作用对煤与瓦斯突出的控制[J].煤矿安全,2009:94-97.
    [66]汪吉林,李仁东,姜波.构造应力场对煤与瓦斯突出的控制作用[J].煤炭科学技术,2008,36(4):47-50.
    [67]谢劲松.豫西“三软”煤层煤与瓦斯突出原因分析[J].煤矿安全,2011,42(6):128-131.
    [68]李中州.煤厚变化对煤与瓦斯突出危险性的影响[J].煤炭科学技术,2010, 38(9):65-67.
    [69]刘彦伟,陈攀,魏建平.煤层地质构造对煤与瓦斯突出的控制作用[J].煤炭科学技术,2010,38(1):24-27.
    [70]罗康成.地应力场对煤与瓦斯突出的控制作用[J].煤炭工程,2009(8):95-97.
    [71]朱国维,宋韦剑,王富强.淮南矿区潘三矿地质构造及煤与瓦斯突出特征[J].煤炭科技,2008,34(7):78-81.
    [72]孟中泽,刘明举.鹤壁矿区构造软煤分布规律及其控制因素[J].煤炭科技,2009,35(11):74-77.
    [73]郭德勇,韩德馨.地质构造控制煤和瓦斯突出作用类型研究[J].煤炭学报,1998,23(4):3-7.
    [74]郭德勇,韩德馨,杨陆武.构造几何特征及煤与瓦斯突出危险性研究[J].煤矿安全,1996,(5):6-9.
    [75]郭德勇,韩德馨,王新义.煤与瓦斯突出的构造物理环境及其应用[J].北京科技大学学报,2002,24(6):581-584.
    [76]王道成.煤与瓦斯突出的地质构造影响因素研究[J].煤炭工程,2007,(10):78-79.
    [77]吴自立.煤与瓦斯突出地质因素影响分析[J].矿业安全与环保,2009,36(增):208-212.
    [78]梁金火.矿区地质构造对煤与瓦斯突出地段的控制[J].中国煤田地质,1991,3(2):29-33.
    [79]高魁,刘泽功,刘健,等.地质构造物理环境对煤与瓦斯突出的影响综合分析[J].煤矿安全,2012,43(8):174-176.
    [80]李云波,谭志宏.构造煤层位对煤与瓦斯突出的影响数值分析[J].煤矿安全,2011,42(4):5-8.
    [81]舒龙勇,程远平,王亮,等.地质因素对煤层瓦斯赋存影响的研究[J].中国安全科学学报,2011,21(2):121-125.
    [82]安鸿涛,孙四清,陈志胜,等.大兴矿地质条件对煤与瓦斯突出的影响[J].煤炭科学技术,2008,36(9):47-49.
    [83]韩军,张宏伟,宋卫华,等.构造凹地煤与瓦斯突出发生机制及其危险性评估[J].煤炭学报,2011,36(1):108-113.
    [84]张国成,熊明富,郭卫星,等.淮南矿区井田小构造对煤与瓦斯突出的控制作用[J].焦作工学院学报:自然科学版,2003,22(5):329-333.
    [85]李希建,林柏泉.煤与瓦斯突出机理研究现状及分析[J].煤田地质与勘探,2010,38(1):7-13.
    [86]张春华,刘泽功.实验室煤与瓦斯突出模拟试验回顾及展望[J].中国安全科学学报,2011,21(3):48-53.
    [87]李晓泉,尹光志.不同性质煤的微观特性及渗透特性对比试验研究[J].岩石力学与工程学报,2011,30(3):500-508.
    [88]降文萍,宋孝忠,钟玲文.基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J].煤炭学报,2011,36(4):609-614.
    [89]高魁,刘泽功,刘健.两种含瓦斯煤样的渗透性对比试验研究[J].煤炭科学技术,2011,39(8):57-59.
    [90]高魁,刘健,刘泽功.含瓦斯原煤样的渗透性试验研究[J].煤炭工程,2012,(3):99-101.
    [91]高魁,刘泽功,刘健,等.构造软煤的物理力学特性及其对煤与瓦斯突出的影响[J].中国安全科学学报,2013,23(2):129-133.
    [92]尹光志,蒋长宝,王维忠,等.不同卸围压速度对含瓦斯煤岩力学和瓦斯渗流特性影响试验研究[J].岩石力学与工程学报,2011,30(1):68-77.
    [93]尹光志,李广治,赵洪宝,等.煤岩全应力-应变过程中瓦斯流动特性试验研究[J].岩石力学与工程学报,2010,29(1):170-175.
    [94]尹光志,黄启翔,张东明,等.地应力场中含瓦斯煤岩变形破坏过程中瓦斯渗透特性的试验研究[J].岩石力学与工程学报,2010,29(2):336-343.
    [95]李宏艳,齐庆新,梁冰,等.煤岩渗透率演化规律及多尺度效应分析[J].岩石力学与工程学报,2010,29(6):1192-1197.
    [96]赵阳升,胡耀青,杨栋,等.三维应力下吸附作用对煤岩体气体渗流规律影响的试验研究[J].岩石力学与工程学报,1999,18(6):651-653.
    [97]孙培德,凌志仪.三轴应力作用下煤渗透率变化规律试验[J].重庆大学学报(自然科学版),2000,23(增):28-31.
    [98]曹树刚,李勇,郭平,等.型煤与原煤全应力-应变过程渗流特性对比研究[J].岩石力学与工程学报,2010,29(5):899-906.
    [99]胡国忠,王宏图,范晓刚,等.低渗透突出煤的瓦斯渗流规律研究[J].岩石力学与工程学报,2009,28(12):2527-2534.
    [100]刘见中,张东明,袁地镜.含瓦斯煤在不同围压下的渗流特性试验[J].煤炭科学技术,2009,37(7):70-89.
    [101]李小双,尹光志,赵洪宝,等.含瓦斯突出煤三轴压缩下力学性质试验研究[J].岩石力学与工程学报,2010,29(1):3350-3358.
    [102]梁冰,章梦涛,潘一山,等.煤和瓦斯突出的固流藕合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [103]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的试验研究[J].岩土工程学报,1995,17(5):12-18.
    [104]尹光志,王登科,张东明,等.两种含瓦斯煤样变形特性与抗压强度的试验分析[J].岩石力学与工程学报,2009,28(2):410-417.
    [105]刘延保.基于细观力学试验的含瓦斯煤体变形破坏规律研究[D].重庆:重庆大学,2009.
    [106]李晓泉.含瓦斯煤力学特性及煤与瓦斯延期突出机理研究[D].重庆:重庆大学,2010.
    [107]仲跻云.测量岩体动应变的应变砖[J].岩土力学,1983,4(1):87-91.
    [108]饶俊.矿山地压相似材料模型应力测量的应变砖法[J].南方冶金学院学报,1998,19(2):91-95.
    [109]鲜学福,辜敏,李晓红,等.煤与瓦斯突出的激发和发生条件[J].岩土力学,2009,30(3):577-581.
    [110]王刚,程卫民,谢军,等.煤与瓦斯突出过程中煤体瓦斯的作用研究[J].中国安全科学学报,2010,20(9):116-120.
    [111]王维忠,陶云奇,许江,等.不同瓦斯压力条件下的煤与瓦斯突出模拟实验[J].重庆大学学报,2010,33(3):82-86.
    [112]王刚,程卫民,张清涛,等.石门揭煤突出模拟实验台的设计与应用[J].岩土力学,2013,34(4):1202-1210.
    [113]郭立稳.含瓦斯煤破裂过程的热效应研究[D].北京:中国矿业大学,1999.
    [114]郭立稳,蒋承林.煤与瓦斯突出过程中影响温度变化的因素分析[J].煤炭学报,2000,25(4):401-403.
    [115]牛国庆,颜爱华,刘明举.煤与瓦斯突出过程中温度变化的实验研究[J].西安科技学院学报,2003,23(3):245-248.
    [116]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J].煤炭学报,1996,21(2):173-178.
    [117]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].徐州:中国矿业大学,1997.
    [118]氏平增之.煤和瓦斯突出的模型研究及其机理探讨[A].第21届国际采矿安全会议论文集[C].1985:80-85.
    [119]Majewska Z, Majewski S, Zitek J. Research into the origin ofacoustic emission induced in hard coal by gas and water flow[A]. Gibowicz S J, Lasocki S. Rockburst and Seismicity in Mines [C]. Rotterdam-Brookfield:A A. Balkema, 1997.
    [120]Pone J D N, Halleck P M, Mathews J P.3D characterization of coal strains induced by compression, carbon dioxide sorption and desorption at in situ stress conditions [J]. International Journal of Coal Geology,2010,82:262-268.
    [121]丁晓良,丁雁生,俞善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990,22(2):154-162.
    [122]丁晓良,俞善炳,丁雁生,等.煤在瓦斯渗流作用下持续破坏的机制[J].中国科学A辑.1989,6(6):600-607.
    [123]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [124]马衍坤,王恩元,李忠辉,等.煤体瓦斯吸附渗流过程及声发射特性实验研究[J].煤炭学报,2012,37(4):641,646.
    [125]王恩元,何学秋,李忠辉,等.煤岩电磁辐射技术及其应用[M].北京:科学出版社,2009.
    [126]李忠辉,王恩元,谢绍东,等.煤体瓦斯运移诱发电位信号的实验研究[J].煤炭学报,2010,35(9):1481-1485.
    [127]欧建春.煤与瓦斯突出演化过程模拟实验研究[D].徐州:中国矿业大学,2012.
    [128]杨天鸿,陈仕阔,朱万成等.煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J].岩土力学,2010,31(7):2247-2252.
    [129]刘洪永.远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究[D].徐州:中国矿业大学,2010.
    [130]Comsol AB.Comsol Multiphysics Quick Start and Reference [M].2007.
    [131]Xu T, TangCA, YangTH, etal. Numerical investigation of coal and gas outbursts in underground collieries [J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6):905-919.
    [132]孙培德,杨东全,陈奕柏.多物理场耦合模型及数值模拟导论[M].北京:中 国科学技术出版社,2007.
    [133]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J].岩石力学与工程学报,1996,15(2):135-142.
    [134]徐涛,唐春安,宋力等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [135]周世宁,林柏泉.煤与瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [136]胡千庭,邹银辉,文光才,等.瓦斯含量法预测突出危险新技术[J].煤炭学报,2007,32(3):276-280.
    [137]Xue Sheng, Xie Jun, Li Xingsheng, et al. Study on outbursts of coal and gas in Guqiao Mine of Huainan Coal Mining Group[R]. Australia Brisbane:CSIRO Exploration and Mining Report,2009.
    [138]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M1.徐州:中国矿业大学出版社,1998.
    [139]Xue Sheng. Development of gas content based outburst control technology in Huainan[A].Proceedings of China International Conference on Coal Mine Gas Control and Utilization[C]. Huainan,2008:252-260.
    [140]Piard J P, Brasseur A, Coeme A, etal. Result of the tracer teg; during the EI tremedal underground coal gasification at great depth[J]. Fuel,2000,79:471-478.
    [141]胡千庭,邵军,文光才,等.工作面预测敏感临界值指标确定方法的研究[R].重庆:煤炭科学总院重庆分院,1995:4-9.
    [142]王刚,程卫民,谢军,等.瓦斯含量在突出过程中的作用分析[J].煤炭学报,2011,36(3):429-434.
    [143]XUE S, XIE J, LIX, etal. Study on outbursts of coal and gas in Guqiao Mine of Huainan Coal Mining Group[R]. Australia Brisbane:CSIRO Exploration and Mining,2009.
    [144]J. P. Piard, A. Brasseur. Result of the tracer test during tremedal underground coal gas ification at great depth [J]. Fue,12000,79(5):471-478.
    [145]蒋承林,陈松立,陈燕云.煤样中初始释放瓦斯膨胀能的测定[J].岩石力学与工程学报,1996,15(4):395-400.
    [146]程伟.煤与瓦斯突出危险性预测及防治技术[M].徐州:中国矿业大学出版 社,2003:43-44.
    [147]韩军,张宏伟,宋卫华,等.煤与瓦斯突出矿区地应力场研究[J].岩石力学与工程学报,2008,27(增2):3852-3858.
    [148]梁冰,章梦涛.拉性载荷作用下煤与瓦斯突出的失稳机理和数值模拟[J].湘潭矿业学院学报,1995,10(2):1-5.
    [149]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].岩石力学与工程学报,1991,10(3):271-280.
    [150]中国航空研究院.应力强度因子手册[M].北京:科学出版社,1981.
    [151]胡千庭.煤与瓦斯突出的力学作用机理及应用研究[D].北京:中国矿业大学(北京),2007.
    [152]虎维岳,李静,王寿全.瓦斯在煤基多孔介质中运移及煤与瓦斯突出机理[J].煤田地质与勘探,2009,37(4):6-8.
    [153]SHAO Longyi, ZHANG Pengfei, GAYER R A, et al. Coal in a carbonate sequence stratigraphic framework:the Late Permian Heshan Formation in central Guangxi, southern China[J]. Journal of Geological Society London,2003,160: 285-298.
    [154]虎维岳,李静,王寿全.瓦斯在煤基多孔介质中运移及煤与瓦斯突出机理[J].煤田地质与勘探,2009,37(4):6-14.
    [155]文光才,徐三民,胡千庭,等.瓦斯突出强度与瓦斯能量关系的研究[R].重庆:煤炭科学总院重庆分院,1997:4-9.
    [156]杨陆武,彭立世.以煤体结构为基础的煤与瓦斯突出简化力学模型[J].焦作工学院学报,1997,16(2):57-67.
    [157]欧建春,王恩元,马国强,等.煤与瓦斯突出过程煤体破裂演化规律[J].煤炭学报,2012,37(6):978-983.
    [158]鲜学福.煤与瓦斯突出的形成、发展、发生条件与自组织临界特性[R].重庆:重庆大学,2006.
    [159]肖福坤,秦宪礼,张娟霞,等.煤与瓦斯突出过程的突变分析[J].辽宁工程技术大学学报,2004,23(4):442-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700