用户名: 密码: 验证码:
铝土矿围岩性质时空效应与巷道稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着国民经济发展,国内铝土矿的需求也越来越大。铝土矿多以露天开采为主,随着地表易采铝土矿资源的日益枯竭,复杂地质条件下的铝土矿地下开采也逐渐成为铝土资源开发的重要组成部分。本文以三门峡铝土矿地下开采为例,开展复杂地质条件下的巷道掘进、支护稳定性研究。三门峡铝土矿矿体隐伏于河床之下,虽然对河流进行了改道,但是矿区地质条件特别复杂,包括软弱页岩、断层、灰岩破碎带等严重影响了巷道施工速度。因此,为了解决困扰三门峡铝土矿巷道掘进、支护遇到的难题,提高巷道施工速度,本文结合已有相关研究资料,采用地质调查与探测、室内岩石力学实验、理论分析、数值模拟、现场试验等方法,综合分析了影响矿区巷道稳定性的主要因素。最后针对矿区巷道掘进、支护面临的主要问题,提出了相应的研究方案,本文主要研究内容和成果如下:
     1、通过现场调查与探测,获取了掌子面前方不良地质体的分布特征,对矿区主要围岩进行了回弹强度测试,评价了矿区围岩Q值范围,采用瞬变电磁仪、TRT6000对矿区不良地质体进行了超前探测和分析;提出了TRT6000结合少量超前钻的联合超前预报方案,为不良地质条件下巷道施工提供保障。调查发现影响雷沟矿区2号回风井、3号罐笼井的主要问题是灰岩破碎区、页岩软弱区及断层破碎带,7号井主要问题是页岩软弱区、溶洞及地下水。
     2、通过现场取样,在室内加工岩样后,采用分级增量循环加卸载的方式研究矿区主要围岩蠕变性质,理论分析了围岩蠕变损伤机理及微裂纹扩展规律,结合实验数据推出了围岩蠕变经验模型。将围岩蠕变总量细分为瞬时弹性应变εme瞬时塑性应变εmp、黏弹性应变εce和黏塑性应变εcp,根据各蠕变分量特征,提出了改进的伯格斯(Burgers)流变模型。采用最小二乘法分别辨识了经验模型和改进的伯格斯(Burgers)模型蠕变参数,实验数据拟合验证了模型的正确性,为巷道变形数值模拟研究提供了帮助。
     3、理论分析了巷道开挖应力和位移演化规律,结合流变力学基本原理,同时也分析了巷道粘弹塑性力学特征。针对矿区巷道掘进、支护中存在的主要问题,选取巷道掘进时遇到的典型地质条件为研究对象,通过MIDAS-GTS建立模型,再导入FLAC3D进行巷道开挖稳定性计算。计算结果表明,巷道穿越的不良地质体中部区域围岩变形最大,应力也最为集中,可见该位置属于巷道稳定性最差的薄弱区域;对于稳定性差的薄弱区域,可以考虑适当增加支护体强度,并及时支护。施工时首先采用TRT6000结合部分超前钻,探明不良地质体沿巷道走向的长度,确定巷道最薄弱区域位置,用于指导巷道掘进和支护施工。
     4、结合数值模拟分析和当前已有支护方式,在确保巷道稳定的前提下,为了加快巷道掘进、支护速度,提出了以钢纤维喷射混凝土为主的联合支护方式,替代施工速度较慢的砌碹支护以及锚喷网支护中的钢网,薄弱区域可以适当考虑安装锚杆。现场工业试验表明,采用钢纤维喷射混凝土支护不仅能够确保围岩稳定,而且也提高了施工速度,具有应用的可行性,可以根据围岩实际情况选择合理的喷射厚度。最后,针对泥化页岩区域的巷道掘进、支护难题,在结合当前施工方案的基础上,提出了新的钢钎棚支护方式,该支护方式不仅具有超前支护效果,而且能够和二次支护一起形成整体式支护结构。
Abstract:With the development of national economy, domestic demands of bauxite become more and more large. Bauxite is generally exploited by open-pit mining, with surface and easy mining resources are depleted, underground mining under complicated geological conditions has gradually become an important part of bauxite resource development. In this paper, San Men xia bauxite underground mine is taken for example, roadway excavation and support stability studies are carried out under complicated geological conditions. The ore body is buried under the riverbed, although the river course is changed, but the mine geological conditions is complicated, weak shale, fault, limestone fracture zone etc, have a serious impact on the speed of roadway construction. Therefore, in this paper, in order to solve roadway excavation and support problems, improve roadway construction speed, after consulting relevant research data, the main factors which affect the stability of roadway are comprehensively analyzed by geological survey and exploration, indoor rock mechanics experiments, theoretical analysis, numerical simulation and field tests. Corresponding research program which is aimed to solve the problems of roadway excavation and support has been proposed, the main research contents and results are shown as follows:
     (1) Distributions of adverse geological body which is ahead of working face are obtained by on-site investigation and detection, surrounding rock rebound strength tests are conducted, rock Q values are evaluated, advanced detection and analysis are carried out by TRT6000and TEM instrument. A new advanced prediction program which is consist of TRT6000and less advance drill is proposed, the new program will provide effective protection for roadway construction under adverse geological conditions. Survey results show that major problems which effect2th and3th shaft are limestone crushing area, shale weak areas and fault fracture zone, and the problems which is7th shaft faced with are shale weak areas, caves and groundwater.
     (2) After field sampling and samples processing, creep properties of main surrounding rock are studied by graded incremental cycle way, rock creep damage mechanisms and micro-crack propagation law are theoretically analyzed, rock creep empirical model is derivated by the experimental data. Rock total creep strain can be subdivided into instantaneous elastic strain εme, instantaneous plastic strain emp, viscoelastic strain εce and viscoplastic strain εcp, according to each creep component characteristic, an improved Burgers (Burgers) rheological model is proposed. Parameters of empirical model and improved Burgers model are identified by the method of least squares, the correctness of the model is verified by experimental data fitting, and it will help for roadway deformation numerical simulation.
     (3) Roadway excavation stress and displacement evolutions are analyzed theoretically, then according to the basic principles of rheology, mechanical analysis of viscoelastroplasticity is carried out for roadway stability. Faced with the main problems of roadway excavation and support, typical geological conditions are taken as research object, The model is established by MIDAS-GTS and imported to FLAC3D for calculation. The results show that maximum deformation and stress most concentrated area is located in the middle of adverse geological body which roadway pass through, and the location is also the worst stability area. For these areas, the support body strength increase and timely support measures should be appropriately considered. At first adverse geological body length which is along roadway direction will be detectd by TRT6000and some advanced drilling, so that the weakest area location of roadway will be identified for roadway excavation and support construction.
     (4) According to numerical simulation analysis and current support method, under the condition of ensuring roadway stability, in order to speed up roadway excavation and support, combination support method which is mainly with steel fiber shotcrete is proposed, the new method is used to replace cast-in-situ concrete support and the steel mesh, bolts will be properly considered in weak areas. Field industrial tests show that the stability of surrounding rock is ensured, construction speed is improved, it can clearly be seen that the new method have important application feasibility, reasonable spraying thickness will be choosen according to the actual situation of surrounding rock. Finally, for clay shale region, based on the current construction program, a new drill rod shed support method is proposed, the support method not only has advance support effect, but can also form a whole supporting structure together with secondary support.
引文
[1]简曲.大洋采矿集矿机的研究[J].中国有色金属学报,1998,8(2):783-786.
    [2]陈勇,桂卫华,阳春华,王随平.深海采矿移动机器人的定位方法研究[J].系统仿真学报,2008,20(23):6486-6489.
    [3]赵国彦,岳严良.海基硬岩矿床的安全开采技术研究[J].中国安全科学学报,2009,19(5):159-164.
    [4]刘爱华,董蕾.海水下基岩矿床安全开采顶板厚度计算方法[J].采矿与安全工程学报,2010,27(3):335-340.
    [5]李夕兵,刘志祥,彭康,赵国彦,彭述权.金属矿滨海基岩开采岩石力学理论与实践[J].岩石力学与工程学报,2010,29(10):1945-1953.
    [6]朱学愚,徐绍辉,吴春寅,朱国荣,孙克让.城门山铜矿地下水数学模型和疏干预测[J].南京大学学报,1995,31(1):109-120.
    [7]栾元重,李静涛,刘娜,刘阳,栾亨宣,马德鹏.重复开采上覆岩体与地移动规律研究[J].采矿与安全工程学报,2012,29(1):90-94.
    [8]刘钦,李术才,李利平,孙克国,赵岩.软弱破碎围岩隧道大变形施工力学行为及支护对策研究[J].山东大学学报,2011,41(3):118-125.
    [9]王宏伟,姜耀东,赵毅鑫,祝捷,单如月.软弱破碎围岩高强高预紧力支护技术与应用[J].采矿与安全工程学报,2012,29(4):474-480.
    [10]崔岚,郑俊杰,章荣军,余舜.软弱破碎带隧道围岩变形及初期支护受力分析[J].华中科技大学学报,2012,40(11):53-57.
    [11]王金华,魏景云,宁宇,姚社军,杜木民,邢俊海.巷道围岩化学加固理论及其实践[J].煤炭学报,1996,21(5):481-486.
    [12]周科平,陈庆发,胡建华.地下铝土矿采矿环境再造连续采矿理念[J].广西大学学报,2008,33(2):168-172.
    [13]Wait J R.Transient EM propagation in a conducting medium[J].Geophysics, 1951, Vol.16:213-221.
    [14]Morrison H F, Phillips R J, O'bien D P.Quantitative interpretation of transient electromagnetic fields over a layered half-space[J].Geophysical Prospecting, 1969,Vol.17:82-101.
    [15]Oristagtio M L and Hohmann G W.Diffusion of electromagnetic fields in a two-dimensional earth:A finite-difference approach[J].Geophysics,1984, Vol.49:870-894.
    [16]Leppin M. Electromagnetic modeling of 3-D sources over 2-D inhomo- genetices in the time domain[J]. Geophysics,1992, Vol.57:994-1003.
    [17]Newman G A and Hohmann G W.Time-domain EM response of a three-dimensional body in a layered earth[C].54th Annual International SEG Meeting,1986,67-69.
    [18]姜志海.巷道掘进工作面瞬变电磁超前探测机理与技术研究[D].徐州:中国矿业大学博士学位论文,2008.
    [19]孙怀凤,李术才,苏茂鑫,薛翊国,张永伟,张文俊.基于场路耦合的隧道瞬变电磁超前探测正演与工程应用[J].岩石力学与工程学报,2011,30(1):3362-3369.
    [20]张平松,李永盛,胡雄武.坑道掘进瞬变电磁超前探水技术应用分析[J].岩土力学,2012,33(9):2749-2753.
    [21]唐新功,胡文宝,严良俊.瞬变电磁法找水研究[J].工程地球物理学报,2005,2(3):181-184.
    [22]张军,赵莹,李萍.矿井瞬变电磁法在超前探测中的应用研究[J].工程地球物理学报,2012,9(1):49-53.
    [23]姜志海,岳建华,刘志新.矿井瞬变电磁法在老窑水超前探测中的应用[J].工程地球物理学报,2007,4(4):291-294.
    [24]孙亮.瞬变电磁对含水层的超前探测效果分析[J].山东大学学报,2009,39(4):50-52.
    [25]王扬州,于景邮,刘建,曾晓波,汤金云.瞬变电磁法矿井超前探测[J].工程地球物理学报,2009,6(1):28-32.
    [26]吴超凡,胡雄武,刘盛东,王勃,邱占林.巷道掘进工作面瞬变电磁超前探测模拟及应用[J].中国安全科学学报,2012,22(9):121-126.
    [27]孙玉国,谭代明.全空间效应下瞬变电磁法三维数值模拟[J].铁道工程学报,2010,138(3):76-80.
    [28]JIANG Zhi-hai,YUE Jian-hua,LIU Shu-cai.Prediction Technology of Buried Water-Bearing Structures in Coal Mines Using Transient Electromagnetic Method[J].China Univ Mining & Technol 2007,17(2):0164-0167.
    [29]JIANG Zhihai,YUE Jianhua,YU Jingcun.Experiment in metal disturbance during advanced detection using a transient electromagnetic method in coal mines[J].Mining Science and Technology 20 (2010) 0861-0863.
    [30]YU Jing-cun,WANG Yang-zhou,LIU Jian,ZENG Xiao-bo.Time-depth conversion of transient electromagnetic method used in coal mines [J].China Univ Mining & Technol 18 (2008) 0546-0550.
    [31]Wang Bo,Liu Shengdong,Yang Zhen,Wang Zhijun,Huang Lanying.Fine analysis on advanced detection of transient electromagnetic method[J].International Journal of Mining Science and Technology 22 (2012) 669-673.
    [32]Flemming Jorgensen,Peter B.E.Sandersen,Esben.Auken.Imaging buried Quaternary valleys using the transient electromagnetic method[J] Journal of Applied Geophysics 53 (2003) 199-213.
    [33]Lars Nielsen,Niels O.Jorgensen,Peter Gelting. Mapping of the freshwater lens in a coastal aquifer on the Keta Barrier (Ghana) by transient electromagnetic soundings[J] Journal of Applied Geophysics 62 (2007) 1-15.
    [34]肖书安,吴世林.复杂地质条件下的隧道地质超前探测技术[J].工程地球物理学报,2004,1(2):159-165.
    [35]薛翊国,李术才,赵岩,苏茂鑫等.青岛胶州湾海底隧道F4-4含水断层注浆前后TSP探测分析[J].山东大学学报,2009,39(2):108-112.
    [36]张志龙,王兰生,王跃飞,马亢.雪峰山高速公路隧道F2断层带的综合超前地质预报[J].岩石力学与工程学报,2007,26(1):3311-3315.
    [37]马亢,徐进,张志龙等.雪峰山公路隧道的超前预测预报研究[J].岩土力学,2009,30(5):1381-1386.
    [38]李术才,李树忱,张庆松等.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-225.
    [39]Andisheh Alimoradi, Ali Moradzadeh, Reza Naderi, et al. Prediction of geologial hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks [J]. Tunnelling and Underground Space Technology 23 (2008) 711-717.
    [40]杨天春,周勇,李好.超前探测中探地雷达应用与结果的处理分析[J].工程地质学报,2010,18(6):971-975.
    [41]李围.公路隧道岩溶超前探测技术及突水防治原则研究[J].贵州大学学报,2010,27(4):110-113.
    [42]陆礼训,邓世坤,冉弥.探地雷达在隧道施工超前探测中的应用[J].工程地球物理学报,2010,7(2):201-206.
    [43]Timo Saarenketo, Tom Scullion.Road evaluation with ground penetrating radar[J]. Journal of Applied Geophysics 43 (2000).119-138.
    [44]J.A.Doolittle,B.Jenkinson,et al.Hydropedological investigations with ground-penetrating radar(GPR):Estimating water-table depths and local ground-water flow pattern in areas of coarse-textured soils[J].Geoderma 131 (2006)317-329.
    [45]Y.G.N.S.Wijewardana,L.W.Galagedara.Estimation of spatio-temporal variability of soil water content in agricultural fields with ground penetrating radar[J]. Journal of Hydrology 391 (2010) 24-33.
    [46]Chiara Tinelli,Adriano Ribolini,Giovanni Bianucci,et al.Ground penetrating radar and palaeontology:The detection of sirenian fossil bones under a sunflower field in Tuscany (Italy)[J].C.R.Palevol 11 (2012) 445-454.
    [47]S.E. Kruse,J.C.Schneider,D.J.Campagna,et al.Ground penetrating radar imaging of cap rock, caliche and carbonate strata[J] Journal of Applied Geophysics 43(2000).239-249.
    [48]J.A. Doolittle, F.E. Minzenmayer,et al.Ground-penetrating radar soil suitability map of the conterminous United States[J].Geoderma 141 (2007) 416-421.
    [49]胡雄武.坑道立体电阻率法超前探测技术研究[D].淮南:安徽理工大学硕士学位论文,2010.
    [50]刘斌.基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时研究[D].济南:山东大学博士学位论文,2010.
    [51]黄俊革,王家林,阮百尧.坑道直流电阻率法超前探测研究[J].地球物理学报,2006,49(5):1529-1538.
    [52]柳建新,邓小康,郭荣文.坑道直流聚焦超前探测电阻率法有限元数值模拟[J].中国有色金属学报,2012,22(3):970-975.
    [53]刘斌,李术才,李树忱.隧道含水构造电阻率法超前探测正演模拟与应用[J].吉林大学学报,2012,42(1):246-253.
    [54]刘斌,李术才,聂利超.隧道含水构造直流电阻率法超前探测三维反演成像[J].岩土工程学报,2012,34(10):1866-1876.
    [55]潘克家,汤井田,胡宏伶.直流电阻率法2.5维正演的外推瀑布式多重网格法[J].地球物理学报,2012,55(8):2769-2778.
    [56]汤井田,王冉.边界元法在2.5D直流电阻率模拟中的应用[J].工程地球物理学报,2011,8(4):389-394.
    [57]黄俊革,鲍光淑,阮百尧.坑道直流电阻率测深异常研究[J].地球物理学报,2005,48(1):222-228.
    [58]Jonathan E.Chambers,Paul B.Wilkinson,et al.Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography:A case history from the East Pennine Coalfield,UK[J].Journal of Applied Geophysics 62(2007) 324-337.
    [59]B.Liu,S.C.Li,L.C.Nie,et al.3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction[J]. Journal of Applied Geophysics 87(2012)1-8.
    [60]D.Galanopoulosl,G.Kolettis,et al.Investigating the formation of a superficial fracture on Nisyros Island,Greece with the DC resistivity method[J].Developments in Volcanology, Volume 7,2005, Pages 227-240.
    [61]Songkhun Boonchaisuk,Chatchai Vachiratienchai,et al.Two-dimensional direct current(DC)resistivity inversion:Data space Occam's approach[J].Physics of the Earth and Planetary Interiors 168(2008)204-211.
    [62]李长伟.井中激发极化法正反演及快速迭代求解技术研究[D].长沙:中南大学博士学位论文,2011.
    [63]莫撼.水文地质工程地质地球物理勘查[M].北京:原子能出版社,1997.
    [64]李术才,刘斌,李树忱等.基于激发极化法的隧道含水地质构造超前探测研究[J].岩石力学与工程学报,2011,30(7):1297-1309.
    [65]聂利超,李术才,刘斌.隧道激发极化法超前探测快速反演研究[J].岩土工程学报,2012,34(2):222-229.
    [66]陈长敬,张胜业,曾歌明等.激发极化法在西藏某地铜矿区的应用效果[J].工程地球物理学报,2007,4(4):327-331.
    [67]陈绍裘,陈灿华.激发极化法探测断裂蚀变带型金矿[J].中南工业大学学报,2003,34(6):674-677.
    [68]孙亮亮,杨志光,韦咏梅.激发极化法在寻找内蒙某隐伏金属矿的应用研究[J].工程地球物理学报,2011,8(3):323-328.
    [69]张彬,陈小玮,张海荣.激发极化法在矿井地下水勘探中的应用研究[J].广西大学学报,2012,37(5):1004-1007.
    [70]F.Correa Alegria,E-Martinho,F.Almeida.Measuring soil contamination with the time domain induced polarization method using LabVIEW[J].Measurement 42 (2009)1082-1091.
    [71]A.Weller,W.Frangos,M.Seichter.Three-dimensional inversion of induced polarization data from simulated waste[J].Journal of Applied Geophysics 41(1999).31-47.
    [72]A.Ghorbani,Ph.Cosenza,A.Revil,et al.Non-invasive monitoring of water content and textural changes in clay-rocks using spectral induced polarization:A laboratory investigation[J].Applied Clay Science 43(2009)493-502.
    [73]S.H.Ward.Induced polarisation methods in mineral exploration[J]. Geoexploration Volume 9,Issues 2-3,June 1971,Pages 79.
    [74]相兴华,邓小鹏,王鹏.TRT在隧道地质超前预报中的应用[J].广西大学学报,2012,37(5):1004-1007.
    [75]朱超,许兆义,王晓.三维地震波层析成像技术在隧道超前地质预报中的应用[J].北京交通大学学报,2010,34(4):31-35.
    [76]文蛟.隧道地质超前预报方法及应用技术研究[D].成都:西南交通大学硕士学位论文,2011.
    [77]王明华,王国斌,利奕年.TRT在岩溶隧道地质超前预报中的应用研究[J].水资源与水工程学报,2010,21(5):40-46.
    [78]朱超.大瑞铁路罗家村隧道地质环境与工程稳定性研究[D].北京:北京交通大学博士学位论文,2011.
    [79]Junlong Shang,Xianwei Luo,Feng Gao,et al.Advanced Predication of Geological anomalous Body Ahead of Laneway Using Seismic Tomography Technique[J]. Procedia Engineering 43(2012)324-330.
    [80]Yongfeng Liu,Yun-hai Wang,Hai-tao Ma.Research on Tomography by Using Seismic Reflection Wave in Laneway[J].Procedia Engineering 26(2011)2360-2368.
    [81]李铀,朱维申,白世伟等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报,2003,22(10):1673-1677.
    [82]肖洪天,强天弛,周维垣等.三峡船闸高边坡损伤流变研究及实测分析[J].重庆大学学报,1999,18(5):497-502.
    [83]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学报,2000,1(3):1-5.
    [84]丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30-33.
    [85]育洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报,2000,33(6):94-98.
    [86]徐平,周火龙.高边坡岩体开挖卸荷效应流变数值分析[J].岩石力学与工程学报,2000,19(4):481-485.
    [87]徐平,杨挺青.岩石流变试验与本构模型辨识[J].岩石力学与工程学报,2001,20(增):1739-1744.
    [88]邓荣贵,周德培,张悼元.一种新的岩石流变模型[J].岩石力学与工程学报,2001,20(6):780-784.
    [89]陈沅江,潘长良,曹平等.基于人工神经网络的岩土流变本构模型辨识[J].中国有色金属学报,2002,12(5):1027-1034.
    [90]王崇革,刘泉声,刘双跃等.单轴应力下岩石的热一粘弹塑性模型研究[J].岩石力学与工程学报,2002,21(2):2341-2344.
    [91]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [92]左红伟,冯紫良,田玉静等.岩石弹粘塑性时效模型的遗传算法多参数辨识[J].岩石力学与工程学报,2002,21(增2):2527-2531.
    [93]赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532.
    [94]徐平,杨挺青,徐春敏等.三峡船闸高边坡岩体时效特性及长期稳定性分析[J].岩石力学与工程学报,2002,21(2):163-168.
    [95]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583-586.
    [96]刘光廷,胡昱,陈凤岐,徐增辉.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报,2004,23(8):1237-1241.
    [97]杨松林,黄启平,张健民.层状裂隙岩体蠕变柔量估计的合理方法[J].岩石力学与工程学报,2004,23(18):3044-3048.
    [98]丁秀丽,付敬,刘建等.软硬互层边坡岩体的蠕变特性研究及稳定性分析[J].岩石力学与工程学报,2005,24(19):3410-3418.
    [99]陈炳瑞,冯夏庭,丁秀丽等.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,24(2):207-211.
    [100]徐卫亚,杨圣奇,杨松林等.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531-537.
    [101]徐卫亚,杨圣奇,谢守益等.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693-698.
    [102]王国峰.龙滩水电站边坡模型试验洞岩体流变参数反演分析[D].沈阳:东北大学硕士学位论文,2004.
    [103]徐卫亚,杨圣奇.节理岩石剪切流变特性试验与模型研究[J].岩石力学与工程学报,2005,24(增2):5536-5542.
    [104]万志军,周楚良,马文顶等.巷道/隧道围岩非线性流变数学力学模型及其初步应用[J].岩石力学与工程学报,2005,24(5):761-767.
    [105]张贵金,杨松林.深埋大直径无压引水隧洞基于流变的风险分析[J].水利水运工程学报,2005,1:15-22.
    [106]陈炳瑞,冯夏庭,丁秀丽等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报,2005,24(4):553-558.
    [107]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学博士学位论文,2006.
    [108]颜海春,王在晖,戚承志.深部隧道围岩的流变[J].解放军理工大学学报,2006,7(5):450-453.
    [109]陶波,伍法权,郭啟良等.高地应力环境下乌鞘岭深埋长隧道软弱围岩流变规律实测与数值分析研究[J].岩石力学与工程学报,2006,25(9):1828-1834.
    [110]庞正江,胡建敏.结构面剪切流变及其长期强度试验研究[J].岩土力学,2006,27(增):1179-1182.
    [111]王芝银,郭书太,李云鹏.等效连续岩体流固耦合流变分析模型[J].岩土力学,2006,27(12):2122-2126.
    [112]朱杰兵,汪斌,杨火平等.页岩卸荷流变力学特性的试验研究[J].岩石力学与工程学报,2007,26(增2):4552-4556.
    [113]齐明山,徐正良,崔勤,宁佐利.厦门海底隧道围岩流变特性及其特征曲线[J].岩土力学,2006,28(增):493-496.
    [114]贺如平,张强勇,王建洪等.大岗山水电站坝区辉绿岩脉压缩蠕变试验研究[J].岩石力学与工程学报,2007,26(12):2495-2503.
    [115]杨圣奇,徐卫亚,杨松林.龙滩水电站泥板岩剪切流变力学特性研究[J].岩土力学,2007,28(5):895-902.
    [116]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [117]陈国庆,冯夏庭,周辉等.锦屏二级水电站引水隧洞长期稳定性数值分析[J].岩土力学,2007,28(增):417-422.
    [118]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27(4):832-839.
    [119]闫子舰,夏才初,李宏哲.分级卸荷条件下锦屏大理岩流变规律研究[J].岩石力学与工程学报,2008,27(10):2153-2159.
    [120]朱明礼,朱珍德,李志敬等.深埋长大隧洞围岩非定常剪切流变模型初探[J].岩石力学与工程学报,2008,27(7):1436-1441.
    [121]朱杰兵,汪斌,邬爱清,胡建敏.锦屏水电站大理岩卸荷条件下的流变试验及本构模型研究[J].固体力学学报,2008,29(专刊):99-106.
    [122]刘学增,苏京伟,王晓形.NATM公路隧道围岩时间效应的统计分析[J].岩石力学与工程学报,2009,28(1):2662-2666.
    [123]夏才初,闫子舰,王晓东等.大理岩卸荷条件下弹黏塑性本构关系研究[J].岩石力学与工程学报,2009,28(3):459-466.
    [124]蒋昱州,徐卫亚,王瑞红等.拱坝坝肩岩石流变力学特性试验研究及其长期稳定性分析[J].岩石力学与工程学报,2010,29(2):3699-3709.
    [125]王如宾,徐卫亚,王伟等.坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律[J].岩石力学与工程学报,2010,29(5):960-969.
    [126]赵旭峰,孙钧.海底隧道风化花岗岩流变试验研究[J].岩土力学,2010,31(2):403-406.
    [127]张强勇,杨文东,陈芳等.硬脆性岩石的流变长期强度及细观破裂机制分析研究[J]岩土工程学报,2010,31(2):403-406.
    [128]王伟,吕军,王海成,孙少锐.砂岩流变损伤模型研究及其工程应用[J].岩石力学与工程学报,2012,31(增2):3650-3652.
    [129]胡斌,蒋海飞,胡新丽等.紫红色泥岩剪切流变力学特性分析[J].岩石力学与工程学报,2012,31(1):2796-2802.
    [130]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报,1999,22(5):99-103.
    [131]曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[J].岩石力学与工程学报,2001,20(6):817-821.
    [132]曹树刚,鲜学福.煤岩的广义弹粘塑性模型分析[J].煤炭学报,2001,20(6):817-821.
    [133]曹树刚,鲜学福.煤岩固-气耦合的流变力学分析[J].中国矿业大学学报,2001,30(4):362-365.
    [134]张向东,李永靖,张树光,霍宝荣.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [135]齐瑶.深部岩体非线性蠕变规律研究[D].阜新:辽宁工程技术大学硕士学位论文,2011.
    [136]万志军,周楚良,罗兵全.软岩巷道围岩非线性流变数学力学模型[J].中国矿业大学学报,2004,33(4):468-472.
    [137]鲜学福,李晓红,姜德义,姜永东.瓦斯煤层裸露面蠕变失稳的时间预测研究[J].岩土力学,2005,26(6):841-844.
    [138]王永岩,魏佳,齐珺等.深部岩体非线性蠕变变形预测的研究[J].煤炭学报,2005,30(4):409-413.
    [139]贺永年,韩立军,邵鹏,蒋斌松.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-295.
    [140]邵祥泽,潘志存,张培森.高地应力巷道围岩的蠕变数值模拟[J].采矿与安全工程学报,2006,23(2):245-248.
    [141]高延法,曲祖俊,牛学良.深井软岩巷道围岩流变与应力场演变规律[J].煤炭学报,2007,32(12):1244-1252.
    [142]王东,董正筑,张爱萍,柏建彪.软岩巷道围岩指数蠕变模型流变分析[J].合肥工业大学学报,2007,30(11):1485-1488.
    [143]夏才初,王晓东,许崇帮,张春生.用统一流变力学模型理论辨识流变模型的方法和实例[J].岩石力学与工程学报,2008,27(8):1594-1600.
    [144]夏才初,许崇帮,王晓东,张春生.统一流变力学模型参数的确定方法[J].岩石力学与工程学报,2009,28(2):425-432.
    [145]黄先伍.巷道围岩应力场及变形时效性研究[D].徐州:中国矿业大学博士学位论文,2008.
    [146]侯公羽.围岩-支护作用机制评述及其流变变形机制概念模型的建立与分析[J].岩石力学与工程学报,2008,27(增2):3618-3629.
    [147]王波.软岩巷道变形机理分析与钢管混凝土支架支护技术研究[D].北京:中国矿业大学博士学位论文,2009.
    [148]陈卫忠,谭贤君,吕森鹏等.深部软岩大型三轴压缩流变试验及本构模型研究[J].岩石力学与工程学报,2009,28(9):1735-1744.
    [149]张耀平,曹平,赵延林.软岩黏弹塑性流变特性及非线性蠕变模型[J].中国矿业大学学报,2009,38(1):34-40.
    [150]余伟健,高谦,张周平等.构造带围岩特性实验及流变规律分析[J].中南大学学报,2009,40(4):1086-1091.
    [151]朱庆华.深部骑跨采巷道围岩变形力学分析及稳定性控制研究[D].徐州:中国矿业大学博士学位论文,2010.
    [152]王维忠,尹光志,王登科,秦虎.三轴压缩下突出煤粘弹塑性蠕变模型[J].重庆大学学报,2010,33(1):99-103.
    [153]王金安,李大钟,马海涛.采空区矿柱-顶板体系流变力学模型研究[J].岩石力学与工程学报,2010,29(3):577-582.
    [154]王波,高延法,夏方迁.流变特性引起围岩应力场演变规律分析[J].采矿与安全工程学报,2011,28(3):441-445.
    [155]李娜,曹平,衣永亮,张向阳.分级加卸载下深部岩石流变实验及模型[J].中南大学学报,2011,42(11):3465-3471.
    [156]曹平,刘业科,蒲成志等.一种改进的岩石黏弹塑性加速蠕变力学模型[J].中南大学学报,2011,42(1):142-146.
    [157]曹平,郑欣平,李娜,张向阳.深部斜长角闪岩流变试验及模型研究[J].岩石力学与工程学报,2012,31(1):3015-3021.
    [158]李冲.软岩巷道让压壳网壳耦合支护机理与技术研究[D].徐州:中国矿业大学博士学位论文,2012.
    [159]孟庆彬,韩立军,乔卫国等.深部高应力软岩巷道围岩流变数值模拟研究[J].中国矿业大学学报,2012,29(6):762-769.
    [160]P.Weidinger, A.Hampel,et al. Creep behaviour of natural rock salt and its description with the composite model [J].Materials Science and Engineering A234-236,1997:646-648.
    [161]Stefan Heusermann,Olaf Rolfs,Uwe SchmidtNonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model[J]. Computers and Structures 81,2003:629-638.
    [162]Noel Challamel,Christophe Lanos,Charles Casandjian.Creep damage modelling for quasi-brittle materials[J].European Journal of Mechanics A/Solids 24,2005:593-613.
    [163]F.I.Shalabi.FE analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models[J].Tunnelling and Underground Space Technology 20,2005:271-279.
    [164]Y.Fujii,T.Kiyamab,Y.Ishijimaa,J.Kodama.Circumferential strain behavior during creep tests of brittle rocks[J].International Journal of Rock Mechanics and Mining Sciences 36 (1999) 323-337.
    [165]M.Gasc-Barbier,S.Chanchole,P.Be'rest.Creep behavior of Bure clayey rock[J] Applied Clay Science 26 (2004) 449-458.
    [166]K. Shin,S.Okubo,K.Fukui,K.Hashiba.Variation in strength andcreep life of six Japanese rocks[J].International Journal of Rock Mechanics & Mining Sciences 42(2005)251-260.
    [167]Ge'raldine Fabre,Fre'de'ric Pellet.Creep and time-dependent damage in argillaceous rocks[J].International Journal of Rock Mechanics & Mining Sciences 43 (2006) 950-960.
    [168]Prame N.Chopra.High-temperature transient creep in olivine rocks[J]. Tectonophysics 279 (1997) 93-111.
    [169]S.Okubo,K.Fukui,K.Hashiba.Development of a transparent triaxial cell and observation of rock deformation in compression and creep tests[J].International Journal of Rock Mechanics & Mining Sciences 45 (2008) 351-361.
    [170]S.Nazary Moghadam,H.Mirzabozorg,A.Noorzad.Modeling time-dependent behavior of gas caverns in rock salt considering creep,dilatancy and failure [J]. Tunnelling and Underground Space Technology 33 (2013) 171-185.
    [171]G.N.Boukharov,M.W.Chanda,N.G.Boukharov.The Three Processes of Brittle Crystalline Rock Creep[J].Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.Vol.32,No.4,pp.325-335,1995.
    [172]D.P.Singh.A study of creep of rocks[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 12,Issue 9, September 1975,Pages 271-276.
    [173]A,Dahou,J.F.Shao,M.Bederiat.Experimental and numerical investigations on transient creep of porous chalk[J].Mechanics of Materials 21 (1995) 147-158.
    [174]D.E.Munson.Constitutive model of creep in rock salt applied to underground room closure[J].International Journal of Rock Mechanics and Mining Sciences, Volume 34,Issue 2,February 1997,Pages 233-247.
    [175]A.Dragon,Z.Mroz.A model for plastic creep of rock-like materials accounting for the kinetics of fracture[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,Volume 16,Issue 4,August 1979,Pages 253-259.
    [176]G.Gioda.A finite element solution of non-linear creep problems in rocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Volume 18,Issue 1,February 1981,Pages 35-46.
    [177]H.Ito,S.Sasajima.A ten year creep experiment on small rock specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Volume 24, Issue 2, April 1987, Pages 113-121.
    [178]M.H.Leite,B.Ladanyi,D.E.Gill.Determination of creep parameters of rock salt by means of an In Situ sharp cone test[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Volume 30,Issue 3,June 1993, Pages 219-232.
    [179]N.Cristescu,D.Fota,E.Medves.Tunnel support analysis incorporating rock creep[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Volume 24,Issue 6,December 1987,Pages 321-330.
    [180]D.M.Cruden.Single-increment creep experiments on rock under uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Volume 8,Issue 2,March 1971,Pages 127-142.
    [181]E.H.Rutter.On the creep testing of rocks at constant stress and constant force [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts Volume 9,Issue 2,March 1972,Pages 191-195.
    [182]Sadao Sasajima,Hidebumi Ito.Long-term creep experiment of rock with small deviator of stress under high confining pressure and temperature[J]. Tectonophysics Volume 68, Issues 3-4,1 October 1980, Pages 183-198.
    [183]N.Cristescu.A tunnel support analysis incorporating rock creep and the compressibility of a broken rock stratum[J].Computers and Geotechnics Volume 7, Issue 3,1989,Pages 239-254.
    [184]Nicolae Cristescu.Viscoplastic creep of rocks around a lined tunnel[J]. International Journal of Plasticity Volume 4,Issue 4,1988,Pages 393-412.
    [185]J.G.Singh,P.C.Upadhyay.Creep bending of rock beams [J].Mining Science and Technology Volume 5,Issue 2,July 1987,Pages 163-169.
    [186]E.Maranini,M. Brignoli.Creep behaviour of a weak rock:experimental characterization[J].International Journal of Rock Mechanics and Mining Sciences 36 (1999) 127-138.
    [187]C.O.Aksoy,K.Ogul,et al.Numerical modeling of non-deformable support in swelling and squeezingrock[J].International Journal of Rock Mechanics & Mining Sciences 52 (2012) 61-70.
    [188]Dieter Freund,Zichao Wang,et al.High-temperature creep of synthetic calcite aggregates:influence of Mn-content[J].Earth and Planetary Science Letters 226 (2004) 433-448.
    [189]Dashnor Hoxha, Albert Giraud,Francoise Homand.Modelling long-term behaviour of a natural gypsum rock[J].Mechanics of Materials 37 (2005) 1223-1241.
    [190]O.V.Kovalev,Yu.N.Litov,Yu.I.Emanovski.Kinetics of damage accumulation of rock salt during creep[J].International Journal of Engineering Science/Volume 19,Issue 3,1981,Pages 451-454.
    [191]Robert L.Kranz.Crack growth and development during creep of Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 16, Issue 1, February 1979, Pages 23-35.
    [192]Alexander Zolochevsky,George Z. Voyiadjis.Theory of creep deformation with kinematic hardening for materials with different properties in tension and compression[J].International Journal of Plasticity 21 (2005) 435-462.
    [193]宋选民,顾铁凤,柳崇伟.受贯通裂隙控制岩体巷道稳定性试验研究[J].岩石力学与工程学报,2002,21(12):1781-1785.
    [194]单晓云,梅海斌,徐东强,赵毅鑫.在构造应力场中采动对底板运输巷道稳定性的影响[J].岩石力学与工程学报,2005,24(12):2101-2106.
    [195]左宇军,李术才,朱万成,张义平.深部断续节理岩体中渗流对巷道稳定性影响的数值分析[J].岩土力学,2011,32(增2):586-591.
    [196]王成,张农,李桂臣等.上行开采顶板不同区域巷道稳定性控制原理[J].中国矿业大学学报,2012,41(4):543-550.
    [197]张忠.金川二矿区1098m分段巷道稳定性研究[J].岩石力学与工程学报,2003,22(增2):2620-2624.
    [198]高延法,范庆忠,王汉鹏.岩石峰值后注浆加固实验与巷道稳定性控制[J].岩土力学,2004,25(增):21-24.
    [199]王芝银,李云鹏,张恩强.急斜煤层巷道稳定性数值模拟[J].岩石力学与工程学报,2000,19(6):718-721.
    [200]万世文.深部大跨度巷道失稳机理与围岩控制技术研究[D].徐州:中国矿业大学博士学位论文,2011.
    [201]孔恒,马念杰,王梦恕,张成平.基于顶板离层监测的锚固巷道稳定性控制[J].中国安全科学学报,2002,12(3):55-58.
    [202]伍佑伦.基于岩体断裂力学的巷道稳定性与锚喷支护机理研究[D].武汉:华中科技大学博士学位论文,2004.
    [203]尹光志,王登科,张东明.高应力软岩下矿井巷道支护[J].重庆大学学报,2007,30(10):87-91.
    [204]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,29(4):649-664.
    [205]马春德.深部复合型破坏高应力软岩巷道支护技术研究[D].长沙:中南大学博士学位论文,2010.
    [206]陈建宏,郑海力,刘振肖,杨瑞波.基于优势关系的粗糙集的巷道支护方案评价体系[J].中南大学学报,2011,42(6):1698-1703.
    [207]孟波,靖洪文,陈坤福等.软岩巷道围岩剪切滑移破坏机理及控制研究[J].岩土工程学报,2012,34(12):2255-2262.
    [208]李桂臣,张农,曹朋等.含软弱夹层顶板巷道安全状况可拓评价模型[J].中国矿业大学学报,2013,42(1):24-30.
    [209]韩斌,王贤来,文有道.不良岩体巷道的湿喷混凝土支护技术[J].中南大学学 报,2010,41(6):2381-2385.
    [210]John Coggan,Fuqiang Gao,et al.Numerical modelling of the effects of weak immediate roof lithology on coal mine roadway stability[J]. International Journal of Coal Geology 90-91 (2012) 100-109.
    [211]Tongqiang Xiao,Bai Jianbiao,et al. Characteristics of stress distribution in floor strata and control of roadway stability under coal pillars [J].Mining Science and Technology (China) 21 (2011) 243-247.
    [212]Yan Shuai,Bai Jianbiao,et al.Deformation mechanism and stability control of roadway along a fault subjected to mining[J].International Journal of Mining Science and Technology 22 (2012) 559-565.
    [213]ZHANG Hualei,WANG Lianguo,et al.Numerical simulation study on the influence of the ground stress field on the stability of roadways[J].Mining Science and Technology 20 (2010) 0707-0711.
    [214]Yu Yang, Bai Jianbiao,et al.Failure mechanism and stability control technology of rock surrounding a roadway in complex stress conditions [J].Mining Science and Technology (China), Volume 21, Issue 3, May 2011, Pages 301-306.
    [215]Zhang Tianjun, Ma Mina,et al.A nonlinear rheological model of backfill material for retaining roadways and the analysis of its stability[J].Mining Science and Technology (China) 21 (2011) 543-546.
    [216]C Wang,Y Wang,S Lu,et al.Deformational behaviour of roadways in soft rocks in underground coal mines and principles for stability control[J].International Journal of Rock Mechanics and Mining Sciences 37 (2000) 937-946.
    [217]P.R.Sheorey,Tara Nand Singh,B-Singh.Considerations for the Stability of Longwall Chain Pillars and Adjacent Roadway[J].Procedia Earth and Planetary Science 1 (2009) 438-443.
    [218]姜耀东,赵毅鑫,刘文岗,李琦.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,23(14):2396-2401.
    [219]柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2006,35(2):145-148.
    [220]杨双锁.煤矿回采巷道围岩控制理论探讨[J].煤炭学报,2010,35(11):1842-1855.
    [221]孙晓明,杨军,曹伍富.深部回采巷道锚网索耦合支护时空作用规律研究[J].岩石力学与工程学报,2007,26(5):895-900.
    [222]荆升国.高应力破碎软岩巷道棚-索协同支护围岩控制机理研究[D].徐州:中国矿业大学博士学位论文,2009.
    [223]姜耀东,刘文岗,赵毅鑫.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1866.
    [224]王连国,李明远,王学知.深部高应力极软岩巷道锚注支护技术研究[J].岩石力学与工程学报,2005,24(16):2889-2893.
    [225]姜守俊.采矿巷道围岩变形机理与支护效果数值模拟研究[D].武汉:中国地质大学硕士学位论文,2006.
    [226]谢和平.岩石混凝土损伤力学[M].江苏:中国矿业大学出版社,1990.
    [227]Saanouni K.Chaboche J.L.and Bathias C.,On the Creep Crack Growth Prediction by a Local Approach,J.of Engineering Fracture Mechanics,25(516),1986,677-691.
    [228]范广勤.岩土工程流变力学[M].煤炭工业出版社,1993.
    [229]王文星.岩体力学[M].中南大学出版社,2004.
    [230]王芝银,李云鹏.岩体流变理论及其数值模拟[M].科学出版社,2008.
    [231]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报,2005,24(15):2659-2664.
    [232]于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定性分析[M].煤炭工业出版社,1983.
    [233]孟庆彬,韩立军,乔卫国等.深部高应力软岩巷道断面形状优化设计数值模拟研究[J].采矿与安全工程学报,2012,29(5):650-656.
    [234]Itasca Consulting Group.FLAC3D(Version 2.1) Users Mannul[M].[S.1.]:Itasca Consulting Groups,2002.
    [235]韩斌,王贤来,文有道.不良岩体巷道的湿喷混凝土支护技术[J].中南大学学报,2010,41(6):2381-2385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700