用户名: 密码: 验证码:
动静载荷与渗透水压作用下裂隙岩体断裂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:为研究地下工程岩体受到爆破等动力扰动后突水的力学行为,开展了动静载荷和渗透水压作用的裂隙岩体破坏的理论研究、试验研究、声发射监测、数值模拟和工程实测。
     通过理论探讨与试验研究,分析了动静载荷与渗透水压共同作用下压剪岩石裂纹起裂规律——裂纹尖端应力强度因子的演化规律,得出裂纹尖端应力强度因子的主要影响因素有渗透水压、动载荷、静应力及裂纹倾角等。渗透压的存在加剧了分支裂纹的扩展,随着渗透水压的增大,分支裂纹扩展由稳定扩展变成不稳定扩展;与最大主应力方向一致的动载荷增加了Ⅰ型裂纹尖端强度因子,对Ⅱ型裂纹尖端强度因子的影响视裂纹倾角及材料属性而定;裂纹起裂角因动载荷的变化而改变。针对Ⅰ型裂纹动态断裂,推导出裂纹初始起裂角为70.5。。压剪岩石裂纹初始起裂强度与渗透水压、围压、动载荷相关。试验结果验证裂纹初始起裂强度随围压增大而增大,随渗透水压增大而减小。
     研制了渗透水压加载装置,对含裂纹类岩石材料的混凝土试样加载预应力后,进行有渗透水压作用和无渗透水压作用下单轴循环加卸载压缩破坏对比试验。试验结果表明,在试样弹性阶段加载有限次循环载荷有助于类岩石材料的强化;在有渗透水压作用下,单轴循环加卸载后岩石的强度降低,降低的程度与循环载荷加载时预应力的大小有关,在弹性阶段加载循环载荷的岩石强度高于在损伤阶段加载循环载荷的岩石强度,而且在渗透水压作用下岩石的应变大于无渗透水压作用下岩石的应变。具有岩爆倾向性岩石可以通过加载、卸载产生损伤以降低其岩爆倾向性,同时低渗透水压的作用可使岩爆降低程度更剧。
     为研究地应力与渗透水压耦合作用下的深部裂隙岩体受到爆破等动力扰动过程中声发射特征,对含裂纹类岩石材料的混凝土试样加载预应力后进行有渗透水压作用和无渗透水压作用下单轴循环加卸载压缩破坏对比试验,并采用声发射测试分析系统对其整个过程进行监测。分析数据发现,有渗透水压作用和无渗透水压作用下试样产生的声发射有很大的区别:在其弹性阶段加载循环载荷过程中,有渗透水压作用的岩石声发射能量较大,而无水压作用的岩石几乎没有声发射能量产生;在其损伤阶段加载循环载荷过程中,有渗透水压作用的岩石声发射能量较无水压作用的岩石大得多。同时发现,循环载荷作用时有渗透水压参与下,含裂纹类岩石材料的混凝土试样在较低应力水平和较高应力水平都有声发射事件产生,通过理论分析认为两者产生的机理不同:较低应力水平下,岩石内部出现拉应力,导致其损伤产生声发射;而在较高应力水平下,岩石内部压应力很大,使其损伤而产生声发射。
     为了更好地观察裂纹启裂、扩展、破坏等过程,以阐述含裂纹岩石压缩破坏机理,采用RFPA2D计算软件模拟再现试验过程。通过计算模拟单轴压缩载荷作用下含一条裂纹岩石破坏过程,发现含一条裂纹的试件的抗压强度与裂纹倾角、有无渗透水压作用有很大关系。随着裂纹倾角从0°增大到90°,试件抗压强度先减小再增大。当裂纹倾角为45°时,试件的抗压强度最小;裂纹的启裂强度也是如此。有渗透水压作用的试件抗压强度要低于无渗透水压作用的试件。通过计算模拟单轴压缩下两条平行裂纹的破坏过程,发现在纯应力场中两条平行裂纹启裂先后顺序存在随机性;而对于渗流场中两条平行裂纹,有渗透水压作用的裂纹先启裂。通过计算模拟单轴压缩下两条不平行裂纹的破坏过程,发现在纯应力场中两条不平行裂纹启裂先后顺序和裂纹倾角有关系;同时发现渗透水进入裂纹的先后顺序影响岩体的强度。
     为了验证实验室加载试验和数值模拟结论的真实性,对大冶铁矿尖林山采区进行生产爆破震动下渗水巷道围岩松动圈测试。测试过程发现,爆破震动致使围岩内部裂隙启裂、发展,裂隙密度增大,降低了岩体声波波速,导致围岩松动圈扩大。同时现场观察到爆破震动致使裂隙发展、连通,形成水体通路,导致地表水灌入地下。利用RFPA2D计算软件模拟爆破震动下渗水巷道的力学反应,发现在渗透水压、地应力及循环载荷作用下,巷道围岩内部裂纹逐渐启裂、扩展、贯通,且裂隙范围扩大,围岩松动圈不断扩展,与工程实测结论一致;同时发现在渗透水压作用下,部分裂纹周边出现张拉应力,从而导致该部分裂纹更易产生拉剪破裂,与室内实验结论一致。
Abstract:To reveal the water inrush mechanics behavior of underground rock mass subjected to dynamic disturbance such as blasting, the crack propagation mechanism of fractured rock under static-dynamic loading and seepage water pressure is analyzed through theoretical research, experimental study, acoustic emission monitoring, numerical simulation and engineering test.
     The compression-shear rock crack initiation rule and the evolution of crack tip stress intensity are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is drawn that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The seepage water pressure's existence aggravates branch cracks' propagation. With the seepage pressure increasing, the branch crack becomes unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is relative with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type-Ⅰ dynamic crack fracture is70.5. The compression-shear crack initial strength relates to seepage pressure, confining pressure, dynamic load. Experimental results verify the initial crack strength increases with the confining pressure's increase, and decreases with the seepage pressure's increase.
     The seepage pressure loading device was developed. The uniaxial cyclic loading experiments were done by loading prestress on crack rocklike materials i.e. concrete samples to contrast the compression failure characteristics with or without the action of seepage water pressure. The experimental results showed that finite cyclic loading in the elastic stage helps to strengthen rocklike materials. The strength of rock after uniaxial cyclic loading is reduced with the action of seepage water pressure, and the depressed degree is related to the prestress when loading cyclic pressure. When cyclic loading compressed in the elastic stage, the rock strength is higher than the one in the damage stage. The rock strain under the action of seepage water pressure is greater than the one without seepage water pressure. As for rock bursting tendency rock, loading and unloading can reduce its rock-burst proneness because of formatting damage, and lower seepage water pressure can greatly decrease the rock burst orientation.
     To reveal the mechanical response of deep rock under the coupled action of ground stress and seepage water pressure when facing dynamic disturbance such as blasting, the containing crack rocklike specimen were compressed on the seepage pressure loading device. The pressed crack rocklike specimen's uniaxial cyclic compression failure process was monitored by acoustic emission test and analysis system, when it respectively subjected to seepage water or without seepage water pressure. It was found that acoustic emission has big difference such as acoustic emission interval and energy when with or without seepage water pressure. The acoustic emission's energy from pressed crack rocklike specimen under seepage water pressure is higher than the acoustic emission's energy from pressed crack rocklike specimen without seepage water pressure during loading the cyclic loads when the pressed crack rocklike specimen is its elastic stage. The acoustic emission's energy from pressed crack rocklike specimen under seepage water pressure is much higher than the acoustic emission's energy from pressed crack rocklike specimen without seepage water pressure during loading the cyclic loads when the pressed crack rocklike specimen is its damaged stage. AE events generated in the lower or higher stress levels when crack contained rocklike concrete specimen subjected to cyclic loads in the seepage water pressure, but their mechanism is different. The difference is that low tensile stress appeared in the pressed crack rocklike specimen resulting specimen's damaging and acoustic emission under the low stress and high compressive stress appeared in the pressed crack rocklike specimen resulting specimen's damaging and acoustic emission under the high stress.
     In order to better observe the crack initiation, propagation and failure process, and explain its failure mechanism, the RFPA2D software is used to simulate the crack rock compression process. Through the computer simulation the failure process of the one crack rock under uniaxial compressive loading, it is found that the compressive strength has the very big relations with the crack angle, with or without the action of seepage water pressure. With the increase of crack angle from0degree to90degree, the compressive strength of specimen decreases firstly and then increases.When the crack angle is45°, the compressive strength is the minimum, the same to the crack initiation strength. With the action of seepage water pressure, the specimens compressive strength is lower than the one without water pressure effect. Through the computer simulation the failure process of two parallel crack specimen under uniaxial compression, it is found that two parallel crack initiation sequence is random in pure stress field. While for two parallel cracks in the seepage water field, the one with the seepage water pressure effect first initiates. By simulating two non-parallel crack specimen failure process under uniaxial compression, it is found that in pure stress field two non-parallel crack initiation sequence is related to the crack angle. The order of infiltration of water into the crack affects the strength of the rock mass.
     To testify the authenticity of laboratory experiment and numerical simulation results, the broken rock zone in seepage tunnel of Jian-Lin-Shan mining area Daye iron mine is tested under production blasting vibration. During testing process, it is found that blasting vibration causes internal cracks of surrounding rock initiate and develop, the fracture density increases, the acoustic wave velocity of rock mass decreases, the broken rock zone expands. At the same time, through on-site observation, it is found that blasting vibration results in crack development, connected and formation water pathway, leads to surface water into the ground. The FPA2D calculation software is used to simulate the mechanical response of seepage tunnel under blasting vibration. It is Found that in the seepage water pressure, stress and cyclic loading, internal cracks of roadway surrounding rock initiate, propagate and through out gradually, and the fracture range is expanding, the broken rock zone also expands. It is consistent with the engineering test conclusion. Also found that under the effect of seepage water pressure, the tensile stress appear around some cracks, leading to part of the cracks more likely to generate shear failure, consistent with the indoor experiment conclusion.
引文
[1]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[C].中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集,2009:2803-2813.
    [2]何满潮.深部开采工程岩石力学现状及其展望[C].第八次全国岩石力学与工程学术大会论文集,2004:88-94.
    [3]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].沈阳:东北大学,2001:1-15.
    [4]汪亦显.含水及初始损伤岩体损伤断裂机理与实验研究[D].长沙:中南大学,2012:45-59.
    [5]庄宁.裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[D].上海:同济大学,2006:1-13.
    [6]Lajtal E. Z. Brittle Fracture in compression [J]. Int. Frac.1977,10 (4):12-15.
    [7]Poston T. Stewart I. Catastrophe Theory and Its Applications[J]. London, SanFrancissco, Melbo,1978.
    [8]R. H. C. Wonga, K. T. Chaua, C. A. Tang, et al. Analysis of crack coalescence in rock-like materials containing three flaws-Part I experimental approach [J]. International Journal of Rock Mechanics & Mining Sciences,2001,38 (7) 909-924.
    [9]R. H. C. Wong, C. A. Tang, K. T. Chau, et al. Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression Engineering[J]. Fracture Mechanics 2002,69:1853-1871.
    [10]赵延林.裂隙岩体渗流—损伤—断裂耦合理论及应用研究[D].长沙:中南大学,2009:1-18.
    [11]刘东燕,严春风,陈彦峰.压剪应力条件下岩体裂纹扩展概率模型研究[J].岩土工程学报,1999,21(1):56-59.
    [12]黄凯珠,林鹏,唐春安等.双轴加载下断续预置裂纹贯通机制的研究[J].岩石力学与工程学报,2002,21(6):808-816.
    [13]周小平,王建华等.压剪应力作用下断续节理岩体的破坏分析[J].岩石力学与工程学报,2003,22(9):1437-1440.
    [14]邵鹏,张勇,贺永年等.应力波反复作用下断续节理岩体疲劳破坏试验研究[J].岩石力学与工程学报,2005,24(22):4180-4184.
    [15]黎立云,许凤光,高峰.岩桥贯通机理的断裂力学分析[J].岩石力学与工程学报,2005,24(23):4328-4334.
    [16]D. Krajcinovic, G. U. Fonseka. The continuous damage theory of brittle materials Trans [J]. ASME. J. Appl. Mechanics.1981,48:809-824.
    [17]J. L. Chaboche. Continum damage mechanics-A tool to describe phenomena before crack ignition. Nuclear Engineering and Design.1981,76:233-247.
    [18]J. Lemaitre. How to use damage mechanics [J]. Nuclear Engineering and Design.1984,80:233-245.
    [19]J. W. Dougill, J. C. lau, N. J. Burt. Toward a theoretical model for progressive failure and softening in rock, concrete and similar materials[J]. Mech In Engng. ASCE-END,1976,335-335.
    [20]Dragou Z. A. Mroz. Continua model for plastic-brittle behavior and concrete [J]. Int. Engng. Sci,1979,17:121-137.
    [21]Ingraffea A R, Heuze F E. Finite element models for rock fracture mechanics [J]. Int J Numer Anal Meth Geomech,1980,4(4):25-43.
    [22]Nemat-Nasser S, Horii H. Compression-induced non-planar crack extension with application to splitting, exfoliation and rock burst [J]. J. Geophys Res,1982,87(B8): 6805-6821.
    [23]T. Kawamoto et al. Damage and fracturing of discontinuous rock mass and jointed rock mass [J]. Proc. Int. Symp on Engng. In Complex Rock Formations, Beijing.1985:506-513.
    [24]Huang J F, Chen G L, Zhao Y H, et al. An experimental study of the strain field development prior to failure of a marble plate under compression [J]. Tectonoohvsics.1990,175:269-284.
    [25]G. Swoboda, Q. Yang. Damage propagation model and its application to rock engineering problem[J]. Int. Cong. Rock Mechanics Proceeding, Tokyo,1995: 159-163.
    [26]Shen B, Stephansson O, Einstein H H, et al. Coalescence of fractures under shear stresses in experiments [J]. J Geophys Res,1995,100(84):5975-5990.
    [27]M. Cai, P. K. Kaisera, Y. Tasaka, etal. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics & Mining Sciences,2004,41: 833-847.
    [28]徐靖南,朱维申,白世伟.压剪应力作用下多裂隙岩体的力学特性-断裂损伤演化方程及试验验证[J].岩土力学,1994,15(2):1-11.
    [29]李广平,陶振宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):21-25.
    [30]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程学报,1995,14(1995):236-245.
    [31]朱珍德,孙钧.裂隙岩体渗流场与损伤场耦合模型研究[J].长江科学院院报,1999,16(5):22-27.
    [32]郑少河.裂隙岩体渗流场—损伤场耦合理论研究及应用[D].武汉:中国科学院武汉岩土力学研究所,2000:1-101.
    [33]张平.裂隙介质静动应力条件下的破坏模式与局部化渐进破损模型研究[D].西安:西安理工大学,2004:1-120.
    [34]周小平,卸荷岩体本构理论及其应用[M].北京:科学出版社,2007:1-35.
    [35]NOORISHAD J, AYATOJJAHI M S, WITHERSPOON P A. A finite element method for stress and fluid flow analysis in fracture drock masses [J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.,1982,19(1):185-193.
    [36]C. H. zIepabmues.盛志浩等译.水在裂隙网络中的运动[M].北京:地质出版社,1987.
    [37]Snow D T. Rock Fracture Spacing, Openings and Porosities [J]. J. Soil Mech Found. Div., Proc. ASCE,1968,94 (SM1):73-91.
    [38]Louis C. Rock Hydraulics in rock mechanics[M]. New York:Verlay Wien,1974.
    [39]Jones F O. A Laboratory Study of the Effects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rock[J]. Journal of Petrol Technology, 1975,21(3):21-27.
    [40]Tsang Y W, Witherspoon P A. Hydro mechanical Behavior of a Deformable Rock Fracture Subject to NormalStress[J]. J. Geophys Resear,1981,86(b10):9187-9198.
    [41]高朋杰.节理岩石透水机理的试验研究[D].西安:西安科技大学,2008:1-10.
    [42]Gale J E. The Effects of Fracture Type (Induced Versus Natural) on the Stress Fracture Closure Permeability Relationships [J]. U.S. Symp. Rock Mechanics, 1982, (23):290-298.
    [43]Barton N, et al. Strength Deformationed Conductivity Coupling of Rock Joints[J]. Int. J. Rock Mech. Min. Sci. & Geomech., Abstr.,1985,22(3): 121-140.
    [44]Vandamme M, Roegiers J.C. Poroelasticity in hydraulic fracturing simulators [J]. JPT,1990,1199-1203.
    [45]Douranary E, Mclennan et al. Poroelastic concepts explain some of the hydraulic fracturing mechanism [J]. SPE 1990,152-162.
    [46]Esaki J. Shear-Flow Coupling Test on Rock Joints[C]. Proceedings of the 7th International Congress on Rock Mechanics. Rotterdam:A. A. Balkema,1991: 389-392.
    [47]JING L, TSANG C F, STEPHANSSON O. DCOVALEX-an international cooperative research project on mathematical models of coupled THM progresses for safety analysis of radioactive waste repositories [J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.,1995,32(5):389-398.
    [48]Keivan N. Discrete versus smeared versus element-embedded crack models on ring problem [J]. Journal of Engineering Mechanics,2000(4):307-314.
    [49]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987(4):22-28.
    [50]周创兵,熊文林.岩体节理的渗流广义立方定律[J].岩土力学,1996,17(4):1-7.
    [51]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1990:7-44.
    [52]陈祖安,伍向阳等.岩渗透率随静水压力变化的关系研究[J].岩石力学与工程学报,1995,6:155-159.
    [53]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995,12(2):30-35.
    [54]耿克勤.岩体裂隙渗流水力特性的实验研究[J].清华大学学报,1996,36(1):102-106.
    [55]李涛.裂隙岩体渗流与应力耦合数值分析及工程应用[D].郑州:华北水利水电学院,2005:1-13.
    [56]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报.2000(3):177-181.
    [57]常宗旭,赵阳升,胡耀青,等.三维应力作用下单一裂缝渗流规律的理论与试验研究[J].岩石力学与工程学报,2004,23(4):620-624.
    [58]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [59]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000(9):573-576.
    [60]柴军瑞.大坝及其周围地质体中渗流与应力场耦合分析[D].西安:西安理工大学,2000.
    [61]张立翔,王成武.岩体渗流场与应力场耦合分析[C].第十四届全国水动力学研讨会文集,北京:海洋出版社,2000.
    [62]许光祥.裂隙岩体渗流与卸荷力学相互作用及裂隙排水研究[D].重庆:重庆大学,2001.
    [63]汤连生,张鹏程,王洋.水作用下岩体断裂强度探讨[J].岩石力学与工程学报,2004,23(19):3337-3334.
    [64]易顺民,朱海珍.裂隙岩体损伤力学导论[M].北京:科学出版社,2005.9.
    [65]张敦福,朱维申,李术才,等.围压和裂隙水压力对岩石中椭圆裂纹初始开裂的影响[J].岩石力学与工程学报,2004,23(增2):4:721-4725.
    [66]韦立德,杨春和,徐卫亚.拉应力条件下岩石细观力学本构模型和渗透系数张量研究(Ⅰ):各向异性损伤本构模型[J].岩土力学,2005,26(5):779—783.
    [67]夏才初,王伟,王筱柔.岩石节理剪切—渗流耦合试验系统的研制[J].岩石力学与工程学报,2008,27(6):1285-1291.
    [68]孙粤琳,沈振中,吴越健.考虑渗流-应力耦合作用的裂缝扩展追踪分析模型[J].岩土工程学报,2008,30(2):199-204.
    [69]赵延林,曹平,汪亦显,等.裂隙岩体渗流—损伤—断裂耦合模型及应用[J].岩石力学与工程学报,2008,27(8):477-486.
    [70]赵延林,曹平,文有道,等.渗透压作用下压剪岩石裂纹损伤断裂机制[J].中南大学学报(自然科学版),2008,39(4):838-844.
    [71]杨慧.水—岩作用下多裂隙岩体断裂机制研究[D].长沙:中南大学,2010:16-31.
    [72]王卫军,赵延林,李青锋等.矿井岩溶突水灾变机理[J].煤炭学报,2010,35(3):443-448.
    [73]曹平,杨慧,江学良等.水岩作用下岩石亚临界裂纹的扩展规律[J].中南大学学报(自然科学版),2010,41(2):649-654.
    [74]柴红保.基于岩体断裂损伤模型的边坡稳定性研究[D].长沙:中南大学,2010:17-34.
    [75]申林方,冯夏庭,潘鹏志等.单裂隙花岗岩在应力-渗流-化学耦合作用下的试验研究[J].岩石力学与工程学报,2010,29(7):1379-1388.
    [76]邓华锋,李建林,刘杰等.考虑裂隙水压力的岩体压剪裂纹扩展规律研究[J].岩土力学,2011,32(S1):297-302.
    [77]韩松峰.裂隙岩体在水—岩作用下的损伤机理分析及其加固机理研究[D].济南:山东科技大学,2009:11-56.
    [78]李夕兵,贺显群,陈红江. 渗透水压作用下类岩石材料张开型裂纹启裂特性研究[J].岩石力学与工程学报,2012,31(7):1317-1324.
    [79]Eberhardt E. Brittle rock fracture and progressive damage in uniaxial compression [D]. Saskatoon:University of Saskatchewan,1998.
    [80]Eberhardt E, Stead D, Stimpson B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(3):361-380.
    [81]赵苏启,武强,尹尚先.广东大兴煤矿特大突水事故机理分析[J].煤炭学报,2006,31(5):618-622.
    [82]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报,2002,21(6):822-827.
    [83]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [84]黄明利.岩石多裂纹相互作用破坏机制的研究[D].沈阳:东北大学,1999.
    [85]Wong R H C, Chau K T. The coalescence of frictional cracks and the shear zone formation in brittle solids under compressive stresses [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3/4):335-366.
    [86]赵延林,曹平,林杭等.渗透压作用下压剪岩石裂纹流变断裂贯通机制及破坏准则探讨[J].岩土工程学报,2008,30(4):511-517.
    [87]肖定军,张继春,刘恺德.爆破作用下层间充填物运动规律的试验研究[J].金属矿山,2008,388(10):32-34.
    [88]王明洋,钱七虎.爆炸应力波通过节理裂隙带的衰减规律[J].岩土工程学报,1995,17(2):42-46.
    [89]肖定军,张继春,刘恺德.爆破作用下层间充填物运动规律的试验研究[J].金属矿山,2008,388(10):32-34.
    [90]李夕兵,古德生,赖海辉等.岩石与炸药波阻抗匹配的能量研究[J],中南矿冶学院学报,1992,23(1):18-23.
    [91]于江,夏致晰,蔡守军.爆炸应力波在软弱夹层中的传播[C].第七届全国工程结构安全防护学术会议论文集,2009:114-118.
    [92]李清,杨仁树.节理介质中爆炸裂纹扩展的细观行为研究[J]中国矿业大学学报,2002,31(3):271-274.
    [93]曹吉成.浸水炮孔爆破水介质作用机理分析及应用[J].中国矿业,2009,18(12):87-90.
    [94]陈士海, 试论风化含水岩石的爆破破碎机理[J].煤矿爆破,1997, (2)25-26.
    [95]杜俊林,罗云滚.水不耦合炮孔装药爆破冲击波的形成和传播[J],岩土力学,2003,24s:616-618.
    [96]林英松,朱天玉,蒋金宝.水中爆炸激波对水泥试样作用的数值模拟分析[J],爆炸与冲击,2006,26(5):462-467.
    [97]李夕兵,赖海辉,古德生.爆炸应力波斜入射岩体软弱结构面的透反射关系和滑移准则[J]中国有色金属学报,1992,2(1):9-14
    [98]田振农,张乐文.岩体中软弱夹层影响爆炸波传播规律的数值分析[J].沈阳工业大学学报,2010,32(3):349-354.
    [99]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116.
    [100]高庆.工程断裂力学[M].重庆:重庆大学出版社,1985:30-45.
    [101]邵鹏.断续节理岩体中弹性波动力效应研究[M].徐州:中国矿业大学出版社,2005.
    [102]张敦福,朱维申,李术才,等.围压和裂隙水压力对岩石中椭圆裂纹初始开裂的影响[J].岩石力学与工程学报,2004,23(增2):4721-4725.
    [103]陈卫忠,李术才,朱维申等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2002,22(1):18-23.
    [104]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性(第一部分):试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [105]Deng H, Nemat-Nasser S. Dynamic damage evolution in brittle solids [J]. Mech. Mater.1992,14:83-103.
    [106]Meyers M A. Dynamic behavior of materials [M]. New York:Wiley&Sons,1994.
    [107]Lajtal E. Z. Brittle. Fracture in compression [J]. Int. Frac.1977.10(4):12-15.
    [108]邓华锋,李建林,刘杰等.考虑裂隙水压力的岩体压剪裂纹扩展规律研究[J].岩土力学,2011,32(S1):297-302.
    [109]Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering,1963,85(4):519-527.
    [110]刘鸿文.材料力学(上册)[M].北京:高等教育出版社,1999.
    [111]余熙莹.对于第四强度理论的修正[J]. 广西大学学报(自然科学版),2002,27(增):63-69.
    [112]孙宗硕,饶秋华,工桂尧.剪切断裂韧度(KⅡ)确定的研究[J].岩石力学与工程学报,2002,21(2):199-203.
    [113]周群力.岩石压剪判据及其应用[J],岩土工程学报,1987,9(6):67-73.
    [114]蒋玉川.弹塑性断裂力学之积分与复合型裂纹扩展断裂准则的研究[D].重庆:四川大学,2004:1-86.
    [115]M.F. Ashby, S. D. Hallam. The failure of brittle solids containing small cracks under compressive stress states [J]. Acta Metall,1986,34(4):497-510.
    [116]H.Horii, S. Nemat-nasser. Compression-Induced Microcrack Growth in Brittle Solids:Axial Splitting and Shear Failure [J], Journal of Geophysical Research,1985, 90(B4):3105-3125.
    [117]H.Horii, S. Nemat-nasser. Brittle failure in compression:splitting, faulting and brittle-ductile transition[J]. Phil. Trans. R. Soc. Lond,1986,139(A):337-374.
    [118]王元汉,徐钺,谭国焕,等.改进的翼形裂纹分析计算模型[J].岩土工程学报,2000,22(5):612-615.
    [119]P. S. Steif. Crack extension under compressive loading[J]. Engng. Fract. Mech., 1984,20:463-473.
    [120]F. Lehner, M. Kachanov. On modeling of "winged" cracks forming under compression[J]. Int. J. Fract.,1996,77:65-75.
    [121]P. Baud, T. Reuschle, P. Charlez. An improved wing crack model for the deformation and failure of rock in compression[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(5):539-542.
    [122]J.M.Kemeny. A model for nonlinear rock deformation under compression due to subcritical crack growth[J]. Int. J.RockMech. Min. Sci.,1991,28:459-467.
    [123]J.M.Kemeny, N.G.W.Cook. Crack models for the failure of rocks in compression, Constitutive laws for engineering materials:Theory and Applications [J]. Elsevier, New York,1987(Ⅱ):879-887.
    [124]刘涛影,曹平,章立峰等.高渗压条件下压剪岩石裂纹断裂损伤演化机制研究[J].岩土力学,2012,33(6):1801-1808.
    [125]赵延林,王卫军,赵伏军等.渗透压-应力作用下岩体翼形裂纹模型与数值验证[J].采矿与安全工程学报,2010,27(3):371-377.
    [126]Arcady V.Dyskin, Leonid N.Germanovish, Konstantin B.Ustinov. A 3-D model of wing crack growth and interaction [J]. Engineering Fracture Mechanics: 1999,63:81-110.
    [127]L.N. GERMANOVICH, R.L. SALGANIK, A.V. DYSKIN,etc. Mechanisms of brittle fracture of rock with pre-existing cracks in compression [J]. PAGEOPH, 1994.143:117-149
    [128]E.Hoek, Z.T.Bieniawski, Brittle Rock Fracture Propagation in Rock Under Compression [J]. International Journal of Fracture Mechanics,1965,(3):137-155.
    [129]A. DOBROSKOK, A. GHASSEMI, A. LINKOV. Extended structural criterion for numerical simulation of crack propagation and coalescence under compressive loads [J], International Journal of Fracture,2005,133:223-246.
    [130]张平,李宁,贺若兰等.动载下两条断续预制裂隙贯通机制研究[J].岩石力学与工程学报,2006,25(6):1210-1217.
    [131]LEMAITRE J, CHABOCHE J L. Mechanics of solid materials[M]. Cambridge: Cambridge University Press,1990.
    [132]Eberhardt E. Brittle rock fracture and progressive damage in uniaxial compression [D]. Saskatoon:University of Saskatchewan,1998.
    [133]李宁,张平,陈蕴生.裂隙岩体试验研究的进展与思考[C]岩石力学新进展与西部开发中的岩土工程问题——中国岩石力学与工程学会第七次学术大会论文集.北京:中国科学技术出版社,2002:63-70.
    [134]李清,张茜,李晟源等.爆炸应力波作用下分支裂纹动态力学特性试验[J].岩土力学,2011,32(10):3026-3032.
    [135]李清,杨仁树,李均雷等.爆炸荷载作用下动态裂纹扩展试验研究[J].岩石力学与工程学报,2005,24(16):2912-2916.
    [136]徐速超,冯夏庭,陈炳瑞.矽卡岩单轴循环加卸载试验及声发射特性研究[J].岩石力学与工程学报,2009,30(10):2929-2934.
    [137]尤明庆,苏承东.大理岩试样循环加载强化作用的试验研究[J].固体力学学报,2008,29(1):66-72.
    [138]苏承东,杨圣奇.循环加卸载下岩样变形与强度特征试验[J].河海大学学报:自然科学版,2006,34(6):667-671.
    [139]席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].物探化探计算技术,2004,26(3):193-198.
    [140]许江,鲜学福,王鸿,等.循环加卸载条件下岩石类材料变形特性的试验研究[J].岩石力学与工程学报,2006,25(增1):3040-3045.
    [141]徐建光,张平,李宁.循环载荷作用下断续裂隙岩体的变形特性[J].岩土工程学报,2008,30(6):802-806.
    [142]郭少华,孙宗颀,谢晓晴.压缩条件下岩石断裂模式与断裂判据的研究[J].岩土工程学报,2002,24(3):304-308.
    [143]陈卫忠,李术才,朱维申等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2002,22(1):18-23.
    [144]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性(第一部分):试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [145]许梦国,杜子建,姚高辉等.程潮铁矿深部开采岩爆预测[J].岩石力学与工程学报,2008,27(s1):2921-2928.
    [146]赵延林,万文,王卫军,等.类岩石裂纹压剪流变断裂与亚临界扩展实验及破坏机制[J].岩土工程学报,2012,34(6):1050-1059.
    [147]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性[J].岩石力学与工程学报,2004,11(23):1810—1814.
    [148]张晖辉,颜玉定,余怀忠.循环载荷下大试件岩石破坏声发射试验——岩石破坏前兆的研究[J].岩石力学与工程学报,2004,21(23):60—67.
    [149]许江,唐晓军,李树春等.周期性循环载荷作用下岩石声发射规律试验研究[J].岩土力学,2009,30(5):1241—1246.
    [150]许江,唐晓军,李树春等.循环载荷作用下岩石声发射时空演化规律[J].重庆大学学报.2008,31(6):672—676.
    [151]包春燕,姜谙男,唐春安,等.单轴加卸载扰动下石灰岩声发射特性研究[J].岩石力学与工程学报,2011,30(s2):3871—3877.
    [152]陈宇龙,魏作安,张千贵.等幅循环加载与分级循环加载下砂岩声发射Felicity效应试验研究[J].煤炭学报,2012,37(2):226-230.
    [153]李楠,王恩元,赵恩来,等.岩石循环加载和分级加载损伤破坏声发射实验研究[J].煤炭学报,2010,35(7):1099—1103.
    [154]任松,白月明,姜德义等.周期荷载作用下盐岩声发射特征试验研究[J].岩土力学.2012,33(6):1613—1619.
    [155]李银平,曾静,陈龙珠,等.含预制裂隙大理岩破坏过程声发射特征研究[J].地下空间,2004,24(3):290—294.
    [156]程龙,杨圣奇,刘相如.含缺陷砂岩裂纹扩展特征试验与模拟研究[J].采矿与安全工程学报,2012,29(5):719—724.
    [157]李俊平,余志雄,周创兵等.水力耦合下岩石的声发射特征试验研究[J].岩石 力学与工程学报,2006,25(3):492—498.
    [158]武晋文.固—热耦合作用下岩体破裂及声发射特征试验研究[D].太原:太原理工大学,2011:55-98
    [159]许江,唐晓军,姜永东等.循环载荷作用时不同实验条件下砂岩的声发射特征实验研究[J].中国科技论文在线,2008,3(7):511-516.
    [160]赵兴东,刘建坡,李元辉,等.岩石声发射定位技术及其试验验证[J].岩土工程学报,2008,30(10):1472-1476.
    [161]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503.
    [162]赵兴东,陈长华,刘建坡.不同岩石声发射活动特性的实验研究[J],东北大学学报(自然科学版),2008,29(11):1633-1636.
    [163]许江,李树春,唐晓军,等.单轴压缩下岩石声发射定位实验的影响因素分析[J].岩石力学与工程学报,2008,27(4):765-772.
    [164]付小敏.典型岩石单轴压缩变形及声发射特性试验研究[J].成都理工大学学报:自然科学版,2005,32(1):17-21.
    [165]余贤斌,谢强.直接拉伸劈裂及单轴压缩试验条件下岩石的声发射特性[J].岩石力学与工程学报,2007,26(1):137-142
    [166]秦四清.岩石声发射技术概论[M].成都:西南交通大学出版社,1993,10-45.
    [167]沈功田,耿荣生,刘时风.声发射信号的参数分析方法[J].无损检测,2002,24(2):27-32.
    [168]杨永杰,陈绍杰,韩国栋.煤样压缩破坏过程的声发射试验[J].煤炭学报,2006,31(5):562-565.
    [169]宁超,余锋,景丽岗.单轴压缩条件下冲击煤岩声发射特性实验研究[J].煤矿开采,2011,16(1):97-100.
    [170]刘保县,黄敬林,王泽云等.单轴压缩煤岩损伤演化及声发射特性研究[J],岩石力学与工程学报,2009,28(s1):3234-3238.
    [171]吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82-85.
    [172]赵兴东,田军,李元辉,等.花岗岩破裂过程中的声发射活动性研究[J].中国矿业,2006,15(7):74-76.
    [173]赵兴东,唐春安,李元辉,等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报,2006,25(增2):3673-3678
    [174]苏承东,翟新献,李宝富,等.砂岩单三轴压缩过程中声发射特征的试验研究 [J],采矿与安全工程学报,2011,28(2):225-230
    [175]李庶林,尹贤刚,王泳嘉等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2499-2503
    [176]张茹,谢和平,刘建锋,等.单轴多级加载岩石破坏声发射特性试验研究[J].岩石力学与工程学报,2006,25(12):2584-2588.
    [177]刘建坡,李元辉,杨宇江.基于声发射监测循环载荷下岩石损伤过程[J].东北大学学报:自然科学版,2011,32(10):1476-1479.
    [178]毛汉领,周洁,黄振峰.复杂结构中裂纹声发射定位方法的适应性分析[J].水力发电,2007,33(2):42-45.
    [179]宿辉,李长洪.不同围压条件下花岗岩压缩破坏声发射特征细观数值模拟[J].北京科技大学学报,2011,33(11):1312-1318.
    [180]杜云,张春明.混凝土疲劳特性的AE特性研究[J].辽宁工程技术大学学报,2001,20(1):46—49.
    [181]Goodman R E. Subaudible noise during compression of rocks[J]. Geol. Soc. Amer. Bull,1963,74(3):487-490.
    [182]Scholz C H. Experimental study of the fracturing process in brittle rock [J]. J. Geophys.Res.,1968,73(4):1447-1454.
    [183]Xu Z Y, Mei S R, Zhuang C T, et al. Preliminary location of microcracks in several rock specimens under true triaxial compression [J]. Acta Seismologica Sinica,1994, 7(S):702-709.
    [184]左建平,裴建良,刘建锋等.煤岩体破裂过程中声发射行为及时空演化机制[J].岩石力学与工程学报.2011,30(8):1564—1570.
    [185]赵兴东,刘建坡,李元辉,等.岩石声发射定位技术及其实验验证[J].岩土工程学报,2008,30(10):1472-1476.
    [186]Jansen D P, Carlson S R, Young R P,et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet Granite[J]. J Geophys Res:B,1993,98(12):22231-22243.
    [187]梁天成,葛洪魁,郭志伟,等.利用声发射和波速变化判定岩石损伤状态[J],中国地震,2012,28(2):154-166.
    [188]巴晶,刘力强,马胜利.岩石力学试验中的声发射源定位技术[J].无损检测,2004,26(7):342-349.
    [189]Byerlee JD, Lockner DA. Acoustic Emission during fluid injection into rock [C]. First Conference on Acoustic Emission (Microseismic Activity in Geological Structures and Materials), Trans Tech Pub:1977,87-98.
    [190]康玉梅,刘建坡,李海滨等.基于最小二乘法的声发射源定位试验研究[J],东北大学学报(自然科学版),2010.31(11):1648-1652.
    [191]胡新亮,马胜利,高景春,等.相对定位方法在非完整岩体声发射定位中的应用[J].岩石力学与工程学报,2004,23(2):277-283.
    [192]Nelder J A, Mead R. A simplex method for function minimization[J]. The Computer Journal,1965,7(4):308-312.
    [193]刘建坡,王洪勇,杨宇江等.不同岩石声发射定位算法及其实验研究[J],东北大学学报(自然科学版),2009,30(8):1193-1196.
    [194]陈祥,孙进忠,谭朝爽等.岩块波速-应力关系及其卸荷效应[J].岩土工程学报,2010,32(5):757-761.
    [195]王东,张海澜,王秀明,部分饱和孔隙岩石中声波传播数值研究[J],地球物理学报,2006,49(2):524-532.
    [196]巩思园,窦林名,徐晓菊,等.冲击倾向煤岩纵波波速与应力关系试验研究[J],采矿与安全工程学报,2012,29(1):67-71.
    [197]巩思园,窦林名,何江,等.深部冲击倾向煤岩循环加卸载的纵波波速与应力关系试验研究[J],岩土力学,3023,33(1):41-47.
    [198]辛维,王宝善,郭志伟,等.单轴加载条件下瑞利波偏振和不同震相波速对应力敏感性的实验研究[J],中国地震,2011,27(1):39-48.
    [199]尹尚先,王尚旭.弹性模量、波速与应力的关系及其应用[J],岩土力学,2003,24(增刊):597-601.
    [200]郑贵平,赵兴东,刘建坡,等.岩石加载过程声波波速变化规律实验研究[J].东北大学学报(自然科学版),2009,30(8):1197—1200.
    [201]赵晋明,胡毅力,王彬,等.在真三轴压缩条件下片麻岩破裂孕育过程中弹性波的特征变化.地震地质,1996,18(3):277-281.
    [202]宋丽莉,葛洪魁,王宝善.疏松砂岩弹性波速的实验研究[J].测井技术,2004,28(6):487—490.
    [203]宋丽莉,葛洪魁,郭志伟等.利用多次散射波监测介质性质变化的实验研究[J].岩石力学与工程学报,2012,31(4),713-722
    [204]宋丽莉,葛洪魁,梁天成等.小应力扰动下岩石弹性波速变化的波形检测[J].中国石油大学学报(自然科学版),2012,36(4):60-65.
    [205]施行觉,孙道远.循环应力作用下松散介质的波速和衰减特性[J].岩土工程学报,2001,22(1):114-116.
    [206]施行觉,赵闯,杨映希等.岩石临破裂前波速变化特征的实验研究[J].地球物理学报,2012,55(10):3386-3392.
    [207]郭志伟,葛洪魁,谢凡等.岩石超声谐波特征及其随应力的变化[J].中国石油大学学报(自然科学版),2013,37(3):50-56.
    [208]张志镇,高峰,林斌等.岩石冲击倾向与其波速变化的相关性研究[J].岩石力学与工程学报,2012,31(s2),3527-3532.
    [209]李元辉,赵兴东,赵有国,等.不同条件下花岗岩中声波传播速度的规律[J],东北大学学报(自然科学版),2006,27(9):1030-1033.
    [210]赵明阶,徐蓉.岩石损伤特性与强度的超声波速研究[J].岩土工程学报,2000,22(6):720-722.
    [211]赵奎,金解放,王晓军,等.岩石声速与其损伤及声发射关系研究[J].岩土力学,2007,28(10):2105-2110.
    [212]刘国清.基于小波变换的岩体声发射源定位研究[J],矿业研究与开发,2011,31(4):75-77.
    [213]赵兴东,李元辉,袁瑞甫,等.基于声发射定位的岩石裂纹动态演化过程研究[J],岩石力学与工程学报,2007,26(5):944-950.
    [214]刘冬梅,蔡美峰,周玉斌,等.岩石裂纹扩展过程的动态监测研究[J].岩石力学与工程学报,2006,25(3):467-472.
    [215]赵兴东,李元辉,刘建坡,等.基于声发射及其定位技术的岩石破裂过程研究[J].岩石力学与工程学报,2008,27(5):990-995.
    [216]裴建良,刘建锋,左建平,等.基于声发射定位的自然裂隙动态演化过程研究[J],岩石力学与工程学报,2013,32(4):696-704.
    [217]王述红,张亚兵,张楠,等.各向异性岩体破坏过程声发射测量及其定位实验研究[J].东北大学学报(自然科学版),2007,28(7):1033-1036.
    [218]周辉,杨艳霜,肖海斌等.硬脆性大理岩单轴抗拉强度特性的加载速率效应研究——试验特征与机制[J].岩石力学与工程学报,2013,32(9):1868-1875.
    [219]刘京红,姜耀东,赵毅鑫.声发射及CT在煤岩体裂纹扩展实验中的应用进展[J].金属矿山,2008,388(10):13-15.
    [220]魏凌霄,闫志峰,王文先等.基于红外热成像的镁合金疲劳裂纹扩展的研究[J].机械工程学报,2012,48(6):64—69.
    [221]陈卫忠,李术才,朱维申等.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报,2003,22(1):18-23.
    [222]周小平,杨海清,董捷.压应力状态下多裂纹扩展过程数值模拟[J].岩土工程 学报,2010,32(2):192—197.
    [223]Lin P, Logan J. Interaction of two closely spaced cracks:A rock model study[J]. J Geophys Res,1991,96:21667-21675.
    [224]石路杨,余天堂.多裂纹扩展的扩展有限元法分析[J],岩土力学,2014,35(1):263-272.
    [225]黄醒春,周斌,顾隽超.任意多裂纹应力强度因子的位移不连续数值算法[J].岩土工程学报,2001,23(3):370—373.
    [226]唐春安,朱万成.混凝土损伤与断裂—数值模拟[M].北京:科学出版社,2003.
    [227]唐春安,黄明利,张国民等.岩石介质中多裂纹扩展相互作用及其贯通机制的数值模拟[J].地震,2001,21(2):54-59.
    [228]Tang C A. Numerical simulation of rock failure and associated seismicity Int[J]. J Rock Mech Min. Sci,1997,34:249-262.
    [229]黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J].岩石力学与工程学报,2000,19(4):468-471.
    [230]刘伟韬.煤层底板断裂滞后突水机理及数值仿真研究[D].北京:中国矿业大学,2005.
    [231]李昂.带压开采下底板渗流与应力耦合破坏突水机理及其工程应用[D].西安:西安科技大学,2012:80-92.
    [232]唐春安.岩石破裂过程数值试验[M].北京:科学出版社,2003.
    [233]杨天鸿,唐春安,徐涛等.岩石破裂过程的渗流特性理论、模型与应用[M].北京:科学出版社,2004.
    [234]徐学燕.高等土力学[M].哈尔滨:哈尔滨工业大学出版社,2008.
    [235]Jean Lemaitre. A Course on damage mechanics[M]. Berlin:Springer-Verlag,1992: 12-14.
    [236]徐涛,唐春安,张哲等.单轴压缩条件下脆性岩石变形破坏的理论、试验与数值模拟[J].东北大学学报,2003,24(1):88-91
    [237]赵宝云,刘保县,徐柯等.单轴压缩作用下岩石混凝土一体两介质体破裂过程数值模拟[J].西华大学学报,2007,26(6):319-325.
    [238]李俊淞,李力.混凝土损伤断裂过程中的细观数值模拟研究[J].四川建筑,2007,27(4):98-102.
    [239]夏晓舟,章青,汤书军.混凝土细观损伤破坏过程的数值模拟[J].河海大学学报,2007,35(3):319-325.
    [240]钱七虎.深部岩石工程中的岩体力学问题——深部岩体力学的若干关键问题 [J].钱七虎院士论文选集,530-541.
    [241]马建军.软岩巷道在周边爆破作用下的稳定性研究[D].北京:北京理工大学,2004:1-133
    [242]叶洲元.软岩巷道爆破动载松动圈扩展的数值模拟[D].武汉科技大学,2003:14-66.
    [243]周志华,叶洲元,段瑜.软岩巷道围岩松动圈的数值模拟[J].中国矿业,2009,18(10):97-99.
    [244]张世雄.尖林山无底柱分段崩落法采场稳定性研究(鉴定资料)[A].武汉工业大学,1995,12:5-17.
    [245]董方庭等.巷道围岩松动圈支护理论[J].煤炭学报,1994,(1):23-24
    [246]靖洪文,付国彬,郭志宏.深井巷道围岩松动圈影响因素实测分析及控制技术研究[J].岩石力学与工程学报,1999,18(1):70-74.
    [247]郭亮,李俊才,张志铖等.地质雷达探测偏压隧道围岩松动圈的研究与应用[J].岩石力学与工程学报,2011(S1):3009-3015.
    [248]孟庆彬,乔卫国,,林登阁等.地质雷达测试巷道围岩松动圈的原理及应用[J].矿业安全与环保,2011,37-40.
    [249]杜子建,许梦国,姚高辉.程潮铁矿深部开采岩爆综合预测研究[J].金属矿山,2007,203-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700