用户名: 密码: 验证码:
Sn-Zn-Ga-Pr无铅焊点可靠性及锡须生长机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产业无铅化进程的推进和封装技术的发展,有关无铅钎料的研究已成为电子封装领域研究的热点课题。针对无铅钎料性能的不足,国内外学者大都采用合金化的方法来改善无铅钎料的性能。稀土元素被称为金属材料的“维生素”,诸多研究都推荐向无铅钎料中添加稀土元素并取得了一批实质性的进展;但是有关含稀土无铅钎料可靠性问题的研究则相对匮乏,本论文以添加稀土Pr的低熔点Sn-Zn-Ga(SZG)钎料为研究对象,系统研究了Pr含量(0~0.7wt.%)对钎料及其焊点组织、性能和可靠性的影响;发现了稀土相诱发锡须生长问题,并探讨了锡须生长行为与机制。
     采用润湿平衡法研究了稀土Pr添加对SZG钎料润湿性能的影响。发现适量Pr的引入可以明显改善钎料的润湿性能;其中SZG-0.08Pr钎料的润湿力相对于SZG原始钎料有大幅提升,润湿时间则明显变小,表现出了优异的润湿性能;其原因在于Pr的表面活性作用降低了钎料/助焊剂相界面之间的界面张力并阻止了Zn原子的氧化。组织研究发现Pr的添加可以减小钎料组织中富Zn相的尺寸,有效细化钎料微观组织;这主要是由于Pr的吸附特性降低了钎料晶界自由能和不同晶界间的自由能差,阻止了晶粒的生长,从而得到弥散而均匀的钎料组织。当Pr含量较高时,钎料组织中有块状稀土相PrSn3金属间化合物生成;基于纳米压痕技术连续刚度法测定PrSn3的弹性模量为58.92GPa、硬度值为1.33GPa,均远高于Sn基体;分析认为钎料中少量PrSn3的存在会起到弥散强化和细晶强化作用,有利于钎料力学性能的提高;较多时则会由于其本身的硬脆特性和易氧化而恶化钎料性能。
     基于微焊点强度测试技术评估了SZG-Pr无铅焊点在焊后和100℃高温存储条件下的连接强度,结果表明添加稀土Pr可以有效提高无铅焊点的剪切强度;经时效处理,虽然焊点强度都有恶化,但含Pr的无铅焊点强度仍要高于SZG原始焊点;当钎料中Pr含量为0.08wt.%时,在焊后和时效后所对应焊点的剪切强度均达最大值。界面组织研究表明0.08wt.%稀土Pr的添加可以抑制SZG-Pr/Cu焊点界面上Cu5Zn8金属间化合物(IMC)的生长,减小界面层(IML)的厚度,这正是焊点强度提高的主要原因。分析高温存储条件下SZG-xPr(x=0,0.08,0.7wt.%)焊点界面组织演化发现,虽然高温下Cu原子的扩散会加速SZG和SZG-Pr焊点金属间化合物层的长大,但SZG-0.08Pr焊点界面层厚度仍明显小于SZG焊点,且界面更为平整;适量Pr的引入还可以抑制长期时效时界面中Cu6Sn5新相的形成和剥离现象的发生。结合有限元数值模拟(FEA)和Weibull可靠性分析方法对比研究了SZG-Pr焊点、Sn-Ag、Sn-Zn无铅焊点和Sn-Pb焊点的热循环可靠性,结果显示SZG-0.08Pr焊点的可靠性最高,得到基于2参数Weibull模型的SZG-0.08Pr焊点失效概率密度分布函数(PDF)
     组织研究发现在Pr含量较高的SZG-0.7Pr钎料和焊点界面上均有锡须自发生长现象发生。研究总结了在含Pr的Sn-Zn基钎料表面锡须的生长形貌,发现锡须只在稀土相上萌生,但锡须形态复杂,有针状锡须、弯曲的锡须、缠绕的锡须、肿瘤状锡须、花瓣状锡须、搭接的锡须、扭折的锡须、片状锡须和小丘状锡须等多种形态生长。锡须形态机制研究认为这是由于锡须生长受驱动力方向、大小、锡原子供给、锡须萌生点、力矩等多重因素的影响,最终导致各种形态锡须的形成。针对锡须形态的三维特性和现有锡须长度测量方法误差较大的不足,发展了较为精确的锡须长度评估方法:基于扫描电镜两次不同拍摄角度得到的锡须二维形貌和它们之间的几何关系构建锡须的三维几何模型,然后通过空间几何计算得到锡须的三维长度;避免了二维图片由于拍摄角度问题而产生的误差。
     通过高、低温时效试验,氧化试验和温度循环试验研究钎料表面锡须生长行为和影响因素。发现0℃和100℃时效时锡须长度较短,25℃室温时锡须生长较快,而50℃时效时锡须长度和密度最大;氧化试验结果发现在氧化较快的湿热条件下锡须呈丘状生长,而在氧化缓慢的氮气氛围中仅在钎料表面有锡粒和少许短锡须生长;在温度循环载荷条件下,锡须主要以丘状形态生长。研究结果说明环境温度、氧化速率和热失配等环境因素都极大地影响锡须生长行为。
     基于锡须生长行为的研究结果,探讨了含稀土钎料表面的锡须生长机制。分析认为稀土相在时效过程中的氧化导致稀土相体积发生膨胀和活性锡原子的生成。由于受周围Sn基体的限制,稀土相膨胀受限,从而导致稀土相内部压应力的产生;应力集中导致稀土相中微裂纹的产生,为锡须生长提供萌生点。压应力的不断释放驱动锡原子通过微裂纹从稀土相内部向表面堆积。随着氧化的深入,Sn原子不断堆积,从而形成了锡须。而在循环温度载荷条件下,由于基体钎料与稀土相材料物理性能之间的差异而导致的热失配会造成稀土相中较高的内应力集中,导致裂纹的大量生长与扩展;较高的热应力和较多的裂纹为丘状锡须的生长提供了驱动力和生长点。
Because of concerns about environmental pollution by lead and worldwide Pb-banning legislation,the electronics industry has been moving to adopt lead-free solders to replace the traditional Sn-Pbsolder. A useful approach to improve the performance of lead-free solders is to alloy suitable elementsinto these solders. Rare earth elements (REs), also known as the “vitamins” of metals, have beenwidely recommended by researchers to add into lead-free solders and have shown many beneficialeffects. But the reliability of RE-containing solders has seldom been studied. In this research, effectsof rare earth Pr addition on the microstructure, properties, joint strength and reliability issues of SZGsolder were studied. The phenomenon of spontaneous Sn whisker growth induced by RE addition inthe solders was discovered, the whisker growth behavior and mechanism were discussed.
     The wetting balance results showed that adding a proper amount of Pr into SZG solder greatlyimproved solder wettability on Cu substrate by increasing the wetting force and decreasing thewetting time, especially when the Pr content is0.08wt.%. This effect is due to the surface-activefeature of RE, which decreases the interfacial surface energy between molten solder and flux andprotects Zn from oxidation. Microstructure analysis results showed that an appropriate amount of Praddition also improved the solder microstructure due to the adsorption effect of RE. However, anexcessive content of Pr can lead to the formation of new RE-rich PrSn3IMCs in the solder.Determined by nanoindentation, it was found that the Young’s Modulus and Hardness of PrSn3were58.92GPa and1.33Gpa respectively, which were much higher than that of Sn matrix, thus anexcessive addition of Pr can worsen the solder microstructure and mechanical properties.
     Micro-joint strength test results showed that the Pr addition enhanced the shear bond strength ofsolder joints after both soldering and thermal aging at100℃especially when the Pr content is0.08wt.%. The addition of a proper amount of Pr inhibited the growth of Cu5Zn8interfacial IMLs andrefined the as-soldered microstructures during soldering, this is the main reason that joint strengthenhanced. While thermal aging led to the degradation of interfacial microstructures including theformation of micro voids and spalling of IMLs, it was found that the presence of Pr inhibited theformation of Cu6Sn5at the interfaces during aging. By means of FEA method and Weibull analysis,the joint reliabilities of SZG-Pr, Sn-Ag, Sn-Zn and Sn-Pb solders under thermal cycling wereevaluated and it was demonstrated that the SZG-0.08Pr solder showed the highest reliability. Based on 2-parameter Weibull model, the PDF function of solder joint was built as
     It was found that an abnormal and spontaneous growth of Sn whiskers took place on the surface of solder and joint interface in high Pr-containing SZG-0.7Pr solder. It was further found that whiskers grew in different morphologies including needle-like, bent, twist, plate-like, hillock-like and many other complex shapes. The morphology mechanism analysis discussed that whisker morphology was governed by many factors such as the orientation and value of driving force, Sn source, initiation site and moment of gravity, any changes of the factors would result in the change in whisker morphologies. Considering the3D feature of whisker, a calculation method for whisker length based on2D measurements taken by SEM from two views and their3D geometry relationship was developed, which can avoid the measuring error effectively.
     The whisker growth behavior and effect factors were investigated by means of aging experiment, oxidation experiment and thermal cycling experiment. Aging results showed that the50℃aging condition accelerated whisker growth while whisker grew slower under room ambiance (25℃) and slowest under100℃and0℃aging condition. Oxidation results showed that the whiskers grew in hillock-type morphology under temperature humidity and in nodule-type under N2atmosphere while the typical needle-like whisker grew in room ambience. Unlike the needle-like whiskers grown mainly in ambience, it was found that coarse Sn hillocks were the dominant growth morphology under thermal cycling condition.
     The whisker growth mechanism was discussed based on the whisker growth behavior analysis. It was proposed that when the RE-containing solder is undergoing aging and oxidation processing, RE-induced growth of tin whiskers is governed by the oxidation of RE-rich IMCs, which generates compressive stress within the particles that creates fresh tin atoms and micro cracks on the IMC surfaces. The compressive stress then drives the newly released tin out from the weak points, forming the selective tin whisker growth from the RE-rich IMC surfaces on the bulk Sn-rich alloys. In the case of thermal cycling condition, it was discussed that the CTE mismatch between RE-rich IMC inclusions and surrounding solder matrix induced high thermal mismatch stress within the RE-rich IMCs, leading to the growth and propagation of cracks. The high local thermal stress and cracks ensured enough driving force and initiation sites for Sn hillock growth.
引文
[1]刘汉诚,汪正平,李宁成,等.电子制造技术[M].姜岩峰,张常年,译.北京:化学工业出版社,2005.
    [2]金德宣.微电子焊接技术[M].北京:电子工业出版社.1990.
    [3]马鑫,何鹏.电子组装中的无铅软钎焊技术[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [4] Abtew M, Selvaduray G. Lead-free solders in microelectronics[J]. Materials Science&Engineering R-Reports,2000,27(5-6):95~141.
    [5] Suganuma K. Advances in lead-free electronics soldering[J]. Current Opinion in Solid State&Materials Science,2001,5(1):55~64.
    [6] Lu B W J H, Li H, et al. effect of ceriμm on microstructure and properties of Sn-0.7Cu-0.5Ni[J].Journal of the Chinese Rare Earth,2007,25(2):217~222.
    [7]王慧.微合金化对Sn-9Zn无铅钎料钎焊性能影响及润湿机理研究,[博士学位论文].南京:南京航空航天大学,2010.
    [8] Shnawah D A, Sabri M F M, Badruddin I A. A review on thermal cycling and drop impactreliability of SAC solder joint in portable electronic products[J]. Microelectronics Reliability,2012,52(1):90~99.
    [9] ASM Handbook Volume3: Alloy Phase Diagrams.(H.Baker). ASM International,1992.
    [10]张启运.钎焊手册[M].北京:机械工业出版社,2008.
    [11] Chuang T H, Yen S F, Wu H M. Intermetallic formation in Sn3Ag0.5Cu andSn3Ag0.5Cu0.06Ni0.01Ge solder BGA packages with immersion Ag surface finish[J]. Journalof Electronic Materials,2006,35(2):310~318.
    [12] Anderson I E. Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solderapplications[J]. Journal of Materials Science-Materials in Electronics,2007,18(1-3):55~76.
    [13] Yoon J W, Lee Y H, Kim D G, et al. Intermetallic compound layer growth at the interfacebetween Sn-Cu-Ni solder and Cu substrate[J]. Journal of Alloys and Compounds,2004,381(1-2):151~157.
    [14] Pao Y H, Badgley S, Govila R, et al. An Experimental and Modeling Study of Thermal CyclicBehavior of Sn-Cu and Sn-Pb Solder Joints[J]. Electronic Packaging Materials Science Vii,1994,323(1):153~158.
    [15] Zeng G, Xue S B, Zhang L, et al. Recent advances on Sn-Cu solders with alloying elements:review[J]. Journal of Materials Science-Materials in Electronics,2011,22(6):565~578.
    [16] Gu X, Yung K C, Chan Y C, et al. Thermomigration and electromigration in Sn8Zn3Bi solderjoints[J]. Journal of Materials Science-Materials in Electronics,2011,22(3):217~222.
    [17] Baker H, Okamoto H. Alloy Phase Diagrams (ASME International, ASME Handbook),1992
    [18] Yagi S, Ichitsubo T, Matsubara E, et al. Interfacial reaction of gas-atomized Sn-Zn soldercontaining Ni and Cu additives[J]. Journal of Alloys and Compounds,2009,484(1-2):185~189.
    [19]黄慧珍. Sn-9Zn无铅电子焊料及其合金化改性研究[博士学位论文].南昌:南昌大学,2006.
    [20] Yu D Q, Xie H P, Wang L. Investigation of interfacial microstructure and wetting property ofnewly developed Sn-Zn-Cu solders with Cu substrate[J]. Journal of Alloys and Compounds,2004,385(1-2):119~125.
    [21] Zhang L, Xue S B, Han Z J, et al. Mechanical Properties of Fine Pitch Devices Soldered JointsBased on Creep Model[J]. Chinese Journal of Mechanical Engineering,2008,21(6):82~85.
    [22] Lin K L, Shih C L. Wetting interaction between Sn-Zn-Ag solders and Cu[J]. Journal ofElectronic Materials,2003,32(2):95~100.
    [23] Liu N S, Lin K L. The effect of Ga content on the wetting reaction and interfacial morphologyformed between Sn-8.55Zn-0.5Ag-0.1Al-xGa solders and Cu[J]. Scripta Materialia,2006,54(2):219~224.
    [24] Wang H, Xue S B, Zhao F, et al. Effects of Ga, Al, Ag, and Ce multi-additions on theproperties of Sn-9Zn lead-free solder[J]. Journal of Materials Science-Materials in Electronics,2010,21(2):111~119.
    [25] Fukuda Y, Pecht M G, Fukuda K, et al. Lead-free soldering in the Japanese electronicsindustry[J]. IEEE Transactions on Components and Packaging Technologies,2003,26(3):616~624.
    [26]吴文云,邱小明,孙大谦,等. Sn-Zn-Bi无铅钎料成分设计[J].吉林大学学报(工学版),2004,34(4):538~543.
    [27] Song J M, Lui T S, Chang Y L, et al. Compositional effects on the microstructure and vibrationfracture properties of Sn-Zn-Bi alloys[J]. Journal of Alloys and Compounds,2005,403(1-2):191~196.
    [28] Chen K I, Lin K L. The microstructures and mechanical properties of the Sn-Zn-Ag-Al-Gasolder alloys-The effect of Ga[J]. Journal of Electronic Materials,2003,32(10):1111~1116.
    [29] Chen W X, Xue S B, Wang H. Wetting properties and interfacial microstructures of Sn-Zn-xGasolders on Cu substrate[J]. Materials&Design,2010,31(4):2196~2200.
    [30] Chen W X, Xue S B, Wang H, et al. Investigation on properties of Ga to Sn-9Zn lead-freesolder[J]. Journal of Materials Science-Materials in Electronics,2010,21(5):496~502.
    [31] Zhang Y, Liang T X, Jusheng M A. Phase diagram calculation on Sn-Zn-Ga solders[J]. Journalof Non-Crystalline Solids,2004,336(2):153~156.
    [32] Chen K I, Cheng S C, Wu S, et al. Effects of small additions of Ag, Al, and Ga on the structureand properties of the Sn-9Zn eutectic alloy[J]. Journal of Alloys and Compounds,2006,416(1-2):98~105.
    [33] Vaynman S, Fine M E. Flux development for lead-free solders containing zinc[J]. Journal ofElectronic Materials,2000,29(10):1160~1163.
    [34] Tojima K, Wetting Characteristics of Solders Senior Project Report, Materials EngineeringDepartmnet, San Jose State Unversity, May1999.
    [35]魏惠琴.亚共晶Sn-Zn合金无铅电子焊料研究[博士学位论文].南昌:南昌大学,2006.
    [36]金泉军,周浪,孙韦华,等. Sn-9Zn无铅电子钎料助焊剂研究[J].电子元件与材料,2005,24(5):27~29.
    [37]王慧,薛松柏,韩宗杰,等. Sn-Zn系无铅钎料的研究现状及发展趋势[J].焊接,2007,2:31~35.
    [38] Http://www.nihonsuperior.co.jp/chinese/topics/topics.php/156/.
    [39] Zhang L, Xue S B, Gao L L, et al. Effects of rare earths on properties and microstructures oflead-free solder alloys[J]. Journal of Materials Science-Materials in Electronics,2009,20(8):685~694.
    [40] Wu C M L, Yu D Q, Law C M T, et al. The properties of Sn-9Zn lead-free solder alloys dopedwith trace rare earth elements[J]. Journal of Electronic Materials,2002,31(9):921~927.
    [41] Wu C M L, Law C M T, Yu D Q, et al. The wettability and microstructure of Sn-Zn-REalloys[J]. Journal of Electronic Materials,2003,32(2):63~69.
    [42] Choi J O, Kim J Y, Choi C O, et al. Effect of rare earth element on microstructure formationand mechanical properties of thin wall ductile iron castings[J]. Materials Science andEngineering a-Structural Materials Properties Microstructure and Processing,2004,383(2):323~333.
    [43] Li Y, Jones H. Effect of rare earth and silicon additions on structure and properties of melt spunMg-9Al-1Zn alloy[J]. Material Science and Technology,1996,12(8):651~661.
    [44] Golmakaniyoon S, Mahmudi R. Microstructure and creep behavior of the rare-earth dopedMg-6Zn-3Cu cast alloy[J]. Materials Science and Engineering a-Structural Materials PropertiesMicrostructure and Processing,2011,528(3):1668~1677.
    [45] Ramirez A G, Mavoori H, Jin S H. Bonding nature of rare-earth-containing lead-free solders[J].Applied Physics Letters,2002,80(3):398~400.
    [46] Wu C M L, Wong Y W. Rare-earth additions to lead-free electronic solders[J]. Journal ofMaterials Science-Materials in Electronics,2007,18(1-3):77~91.
    [47] Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earthelement additions[J]. Materials Science&Engineering R-Reports,2004,44(1):1~44.
    [48] Wang L, Yu D Q, Zhao J, et al. Improvement of wettability and tensile property in Sn-Ag-RElead-free solder alloy[J]. Materials Letters,2002,56(6):1039~1042.
    [49] Chen Z G, Shi Y W, Xia Z D. Constitutive relations on creep for SnAgCuRE lead-free solderjoints[J]. Journal of Electronic Materials,2004,33(9):964~971.
    [50]薛松柏,陈燕,吕晓春,等.稀土元素Ce对锡银铜无铅钎料润湿性及钎缝力学性能的影响[J].焊接学报,2005,10(6):1~3.
    [51] He H W, Xu G C, Guo F. Effect of small amount of rare earth addition on electromigration ineutectic SnBi solder reaction couple[J]. Journal of Materials Science,2009,44(8):2089~2096.
    [52]卢斌,栗斌,王娟辉,等.稀土Er对Sn-3.0Ag-0.5Cu无铅焊料合金组织与性能的影响[J].中国有色金属学报,2007,17(4):518~524.
    [53]周迎春,潘清林,何运斌,等. La对Sn-Ag-Cu无铅钎料组织与性能的影响[J].电子工艺技术,2007,6(28):341~345.
    [54]周洪彪.无铅微焊点热循环可靠性及寿命预测研究,[硕士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [55]张亮. SnAgCu系无铅焊点可靠性及相关理论研究,[博士学位论文].南京:南京航空航天大学,2011.
    [56]上官东恺.无铅焊料互联及可靠性[M].刘建影孙鹏,译.北京:电子工业出版社,2008.
    [57]郭福.无铅钎焊技术与应用[M].北京:科学出版社,2005.
    [58]周良知.微电子器件封装材料与封装技术[M].北京:化学工业出版社,2006.
    [59]樊融融.现代电子装联无铅焊接技术[M].北京:电子工业出版社,2008.
    [60] Shi X Q, Zhou W, Pang H L J, et al. Effect of temperature and strain rate on mechanicalproperties of63Sn/37Pb solder alloy[J]. Journal of Electronic Packaging,1999,121(3):179~185.
    [61]白宁.无铅钎料的统一型本构模型,[博士学位论文].天津:天津大学,2008.
    [62]王谦.电子封装中的焊点及其可靠性[J].电子元件与材料,2000,19(2):24~26.
    [63] Zhang Z, Yao D P, Shang J K. Fatigue crack initiation in solder joints[J]. Journal of ElectronicPackaging,1996,118(2):45~48.
    [64]马鑫.微电子表面组装焊点失效的相关力学及金属学因素分析,[博士学位论文].哈尔滨:哈尔滨工业大学,2000.
    [65] Zheng S, Sheng J G. Thermal stress analysis and low-cycle fatigue in boiler drun walls ofpecking units[J]. Dongli Gongcheng/Power Engineering,1988,8(6):18~26.
    [66] Clatterbaugh G V. Thermal mechanical behavior of soldered interconnects for surfacemounting[C]. In: IEEE Compoents ed. Proceedings of IEEE35th Electronic ComponentsConference. USA: IEEE Components,1985,60~72.
    [67] Ridout S, Dusek M, Bailey C, et al. Assessing the performance of crack detection tests forsolder joints[J]. Microelectronics Reliability,2006,46(12):2122~2130.
    [68]李晓延,严永长.电子封装焊点可靠性及疲劳寿命预测方法[J].机械强度,2005,27(4):470~479.
    [69] Li X Y, Wang Z S. Thermo-fatigue life evaluation of SnAgCu solder joints in flip chipassemblies[J]. Journal of Materials Processing Technology,2007,183(1):6~12.
    [70] Zheng Y Q. Effect of surface finished and intermetallics on the reliability of SnAgCuinterconnects,[Doctoral dissertation]. Maryland: University of Maryland,2005.
    [71] Lau J, Dauksher W. Effects of ramp-time on the thermal-fatigue life of SnAgCu lead-freesolder joints[C].55th Electronic Components&Technology Conference,2005:1292~1298.
    [72] Darveaux R, Banerji K. Constitutive Relations for Tin-Based Solder Joints[J]. IEEE Transactionson Components Hybrids and Manufacturing Technology,1992,15(6):1013~1024.
    [73] Li R S. A methodology for fatigue prediction of electronic components under random vibrationload[J]. Journal of Electronic Packaging,2001,123(4):394~400.
    [74] Osenbach J W, DeLucca J M, Potteiger B D, et al. Sn-whiskers: truths and myths[J]. Journal ofMaterials Science-Materials in Electronics,2007,18(1-3):283~305.
    [75] Hunsicker H Y, Kempf L W. Growth of whiskers on Sn-Alμminμm bearings[J]. Q Trans SAE,1947,1:6.
    [76] Compton K G, Mendizza A, Mmold S M. Filamentary growths on metal surfaces-whiskers[J].Corrosion,1951,7(10):327~334.
    [77] Amold S. Growth of metal whiskers on electrical components[C]. Proc.43rd AnnualConvention of the American Electroplater's Soc. San Francisco,1956,26~31.
    [78] Tu K N, Chen C,Wu A T. Stress analysis of spontaneous Sn whisker growth[J]. Journal ofMaterials Science-Materials in Electronics,2007,18(1-3):269~281.
    [79] Courey K J, Asfour S S, Bayliss J A, et al. Tin whisker electrical short circuit characteristics-Part I[J]. IEEE Transactions on Electronics Packaging Manufacturing,2008,31(1):32~40.
    [80] NASA Goddard Space Flight Center. Tin (and Other Metal) Whisker Induced Failures[EB/OL].[2009-11-20]. http://nepp.nasa.gov/whisker/failures/index.htm.[J].
    [81] Brusse J A, Ewell G L, Siplon J P. Tin whisker: attributes and mitigation[C].16th PassiveComponents Symposiμm, CART Europe,2002.
    [82] Martin M, Lea D, Nottay J, et al. Processability of lead-free component terminationmaterials[R]. Nat Phys Laboratory, Middlesex, UK, NPL Rep. MATC (A),.2001,47.
    [83] Kim K S, Yu C H, Yang J M. Behavior of tin whisker formation and growth on lead-free solderfinish[J]. Thin Solid Films,2006,504(1-2):350~354.
    [84] Boettinger W J, Johnson C E, Bendersky L A, et al. Whisker and hillock formation on Sn,Sn-Cu and Sn-Pb electrodeposits[J]. Acta Materialia,2005,53(19):5033~5050.
    [85] Kao H J, Wu W C, Tsai S T, et al. Effect of Cu additives on Sn whisker formation of Sn(Cu)finishes[J]. Journal of Electronic Materials,2006,35(10):1885~1891.
    [86] Yu C F, Hsieh K C. The Mechanism of Residual Stress Relief for Various Tin GrainStructures[J]. Journal of Electronic Materials,2010,39(8):1315~1318.
    [87] Howard H P, Cheng J, Vianco P T, et al. Interface flow mechanism for tin whisker growth[J].Acta Materialia,2011,59(5):1957~1963.
    [88] Dimitrovska A, Kovacevic R. Environmental Influence on Sn Whisker Growth[J]. IEEETransactions on Electronics Packaging Manufacturing,2010,33(3):193~197.
    [89] Yu C F, Chan C M, Hsieh K C. The effect of tin grain structure on whisker growth[J].Microelectronics Reliability,2010,50(8):1146~1151.
    [90] Shin S J, Kim J J, Son Y K. Analysis of plating grain size effect on whisker[J]. Journal ofMechanical Science and Technology,2009,23(11):2885~2890.
    [91] Puttlitz K J, Galyon G T. Impact of the ROHS Directive on high-performance electronicsystems-Part II: key reliability issues preventing the implementation of lead-free solders[J].Journal of Materials Science-Materials in Electronics,2007,18(1-3):347~365.
    [92] Amold S M. The growth and properties of metal whiskers[C].43rd Annual Convention of theAmerican Electroplaters, Soc,1956:26~31.
    [93] P Harris, The Growth of Tin Whiskers, pp.1-171994:ITRI.
    [94] Woodrow, T, et al. Tin Whisker Mitigation Study: Phase1: Evaluation of Environments forGrowing Tin Whiskers. Draft report, Released August1,2003.
    [95] Klubochkin A V, Budueva V G, Sakulin B M. Special features of nucleation and growth of tincrystals in the temperature range of its polymorphic transformation[J]. Metal Science and HeatTreatment,2002,44(11-12):505~509.
    [96] Mathew S, Osterman M, Shibutani T, et al. Tin whiskers: How to mitigate and manage therisks[J]. HDP'07: Proceedings of the2007International Symposiμm on High DensityPackaging and Microsystem Integration,2007,22~29.
    [97] Nychka J A, Li Y, Yang F Q, et al. Can whiskers grow on bulk lead-free solder?[J]. Journal ofElectronic Materials,2008,37(1):90~95.
    [98] Song J M, Lui T S, Chang Y L, et al. Tin whiskers of bulk solders generated underresonance[J]. Journal of Materials Research,2005,20(6):1385~1388.
    [99] Chuang T H, Yen S F. Abnormal growth of tin whiskers in a Sn3Ag0.5Cu0.05Ce solder ballgrid array package[J]. Journal of Electronic Materials,2006,35(8):162~1627.
    [100] Dudek M A, Chawla N. Effect of Rare-Earth (La, Ce, and Y) Additions on the Microstructureand Mechanical Behavior of Sn-3.9Ag-0.7Cu Solder Alloy[J]. Metallurgical and MaterialsTransactions a-Physical Metallurgy and Materials Science,2010,41A(3):610~620.
    [101] Dudek M A, Chawla N. Mechanisms for Sn whisker growth in rare earth-containing Pb-freesolders[J]. Acta Materialia,2009,57(15):4588~4599.
    [102] Liu M, Xian A P. Tin Whisker Growth on the Surface of Sn-0.7Cu Lead-Free Solder with aRare Earth (Nd) Addition[J]. Journal of Electronic Materials,2009,38(11):2353~2361.
    [103] Hao H, Shi Y W, Xia Z D, et al. Oxidization-Induced Tin Whisker Growth on the Surface ofSn-3.8Ag-0.7Cu-1.0Er Alloy[J]. Metallurgical and Materials Transactions a-PhysicalMetallurgy and Materials Science,2009,40A(8):2016~2021.
    [104] Tong F. Tin whisker risk assessment studies [Doctor of Philosophy]. University of Maryland,2005.
    [105] Koonce S E, Amold S M. Growth of metal whiskers[J]. Journal of Applied Physics,1953,24(3):365~365.
    [106] Frank F C. On tin whiskers[J]. Philosophical Magazine,1953,44(355):854~860.
    [107] Eshelby J D. A tentative theory of metallic whisker growth[J]. Physics Review,1953,91:755~756.
    [108] Amelinckx S, Bontinck W, Dekeyser W, et al. On the formation and properties of helicaldislocations[J]. Philosophical Magazine,1957,2(15):355~378.
    [109] Ellis W C, Gibbons D F, Treuting R C. Growth of metal whiskers from the solid[J]. Growth andPerfection of Crystals,1958,102~120.
    [110] Glazunova V K, Kudryavtsev N T. An investigation of the conditions of spontaneous growth offiliform crystals on electrolytic coating, Translated from Zhurnal Prikladnoi Khimii,1963,36(3):543~550.
    [111] Kakeshita T, Shimizu K, Kawanaka R, et al. Grain size effect of electro-plated tin coating onwhisker growth[J]. Journal of Materials Science,1982,17(9):2560~2566.
    [112] Furuta N, Hamamura K. Growth mechanism of proper tin-whisker[J]. Journal of AppliedPhysics,1969,8(12):1404.
    [113] Tu K N, Tu K, Thompson R. Kinetics of interfacial reaction in bimetallic Cu-Sn thin films[J].Acta Metallurgica,1982,30(5):947~952.
    [114] Tu K N, Li J C M. Spontaneous whisker growth on lead-free solder finishes[J]. MaterialsScience and Engineering a-Structural Materials Properties Microstructure and Processing,2005,409(1-2):131~139.
    [115] Tu K,Thompson R. Kinetics of interfacial reaction in bimetallic Cu-Sn thin films[J]. ActaMetallurgica,1982,30(5):947~952.
    [116] Lin C K, Lin T H. Effects of continuously applied stress on tin whisker growth[J].Microelectronics Reliability,2008,48(10):1737~1740.
    [117] Shibutani T, Yu Q, Shiratori M, et al. Pressure-induced tin whisker formation[J].Microelectronics Reliability,2008,48(7):1033~1039.
    [118] Smetana J. Theory of tin whisker growth:"The end game"[J]. IEEE Transactions on ElectronicsPackaging Manufacturing,2007,30(1):11~22.
    [119] Li C F,Liu Z Q. Microstructure and growth mechanism of tin whiskers on RESn3compounds[J].Acta Materialia,2013,61(2):589~601.
    [120] Liu S H, Chen C, Liu P C, et al. Tin whisker growth driven by electrical currents[J]. Journal ofApplied Physics,2004,95(12):7742~7747.
    [121]卢斌,栗慧,王娟辉.添加微量稀土元素对Sn-Ag-Cu系无铅钎料性能的影响[J].稀有金属与硬质合金,2007,35(1):27~30.
    [122] Kim K S, Huh S H, Suganuma K. Effects of fourth alloying additive on microstructures andtensile properties of Sn-Ag-Cu alloy and joints with Cu[J]. Microelectronics Reliability,2003,43(2):259~267.
    [123] Shohji I, Yoshida T, Takahashi T, et al. Tensile properties of Sn-Ag based lead-free solders andstrain rate sensitivity[J]. Materials Science and Engineering a-Structural Materials PropertiesMicrostructure and Processing,2004,366(1):50~55.
    [124] Lucas B N, Oliver W C. Indentation power-law creep of high-purity indiμm[J]. Metallurgicaland Materials Transactions a-Physical Metallurgy and Materials Science,1999,30(3):601~610.
    [125] Mayo M J, Nix W D. A micro-indentation study of superplasticity in Pb, Sn, andSn-38wt%Pb[J]. Acta Metallurgica Sinica,1988,36(8):2183~2192.
    [126]陈吉,汪伟,卢磊,等.纳米压痕法测量Cu的室温蠕变速率敏感指数[J].金属学报,2001,37(11):1179~1183.
    [127]谭孟曦.利用纳米压痕加载曲线计算硬度-压入深度关系及弹性模量[J].金属学报,2005,41(10):1020~1024.
    [128] Dudek M A, Chawla N. Nanoindentation of rare earth-Sn intermetallics in Pb-free solders[J].Intermetallics,2010,18(5):1016~1020.
    [129]王飞,徐可为.晶粒尺寸与保载载荷对Cu膜纳米压入蠕变性能的影响[J].金属学报,2004,40(10):1032~1036.
    [130] Pharr G M, Oliver W C, Brolzen F R. On the generality of relationship among contact stiffness,contact area, and elastic modulus during indentation[J]. Material Research,1992,7:613~617.
    [131]王春亮.纳米压痕试验方法研究,[硕士学位论文].上海:机械科学研究总院,2007.
    [132]潘金生.材料科学基础[M].北京:清华大学出版社,1998.
    [133] Xiao Z X, Xue S B, Hu Y H, et al. Properties and microstructure of Sn-9Zn lead-free solderalloy bearing Pr[J]. Journal of Materials Science-Materials in Electronics,2011,22(6):659~665.
    [134] Ma X, Yoshida F. Interaction relation in60Sn-Pb-0.05La ternary solder alloy[J]. MaterialsLetters,2002,56(4):441~445.
    [135] Ma X, Qian Y Y, Yoshida F. Effect of La on the Sn-rich halo formation in Sn60-Pb40alloy[J].Journal of Alloys and Compounds,2001,327(1-2):263~266.
    [136]王凤江.基于纳米压痕法的无铅BGA焊点力学性能及其尺寸效应研究,[博士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [137] Hong B Z. Thermal fatigue analysis of a CBGA package with lead-free solder fillets[J]. Itherm'98: Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena inElectronic Systems,1998,205~211.
    [138] Hong B Z, Burrell L G. Nonlinear Finite-Element Simulation of ThermoviscoplasticDeformation of C4Solder Joints in High-Density Packaging under Thermal Cycling[J]. IEEETransactions on Components Packaging and Manufacturing Technology Part A,1995,18(3):585~591.
    [139]陈祝同.失效分析及其应用[M].北京:国防工业出版社,1996,65-69.
    [140] Richard E B. Mathematical theory of reliability. A historical perspective[J]. IEEE Transactionson Reliability,1984,33(1):16~20.
    [141] Wong J Y. Estimating the three weibull parameters by maximizing the logarithm of thelikelihood function directly[J]. Microelectronics Reliability,1993,33(10):1561~1565.
    [142] Yoon S W, Choi W K, Lee H M. Interfacial reaction between Sn-1Bi-5In-9Zn solder and Cusubstrate[J]. Scripta Materialia,1999,40(3):327~332.
    [143] Hsiao H Y, Hu C C, Guo M Y, et al. Inhibiting the consμmption of Cu during multiple reflowsof Pb-free solder on Cu[J]. Scripta Materialia,2011,65(10):907~910.
    [144]王俭辛.稀土Ce对Sn-Ag-Cu和Sn-Cu-Ni钎料性能及焊点可靠性影响的研究,[博士学位论文].南京:南京航空航天大学,2009.
    [145] Ha S S, Jang J K, Ha S O, et al. Effect of multiple reflows on interfacial reaction and shearstrength of Sn-Ag electroplated solder bμmps for flip chip package[J]. MicroelectronicEngineering,2010,87(3):517~521.
    [146] Jiang B, Xian A P. Discontinuous growth of tin whiskers[J]. Philosophical Magazine Letters,2006,86(8):521~527.
    [147]郝虎,李光东,史耀武,等. Sn晶须形态的研究[J].材料科学与工艺,2010,18(1):111~115.
    [148] Shibutani T, Osterman M, Pecht M. Standards for Tin Whisker Test Methods on Lead-FreeComponents[J]. IEEE Transactions on Components and Packaging Technologies,2009,32(1):216~219.
    [149] JEDEC. Environmental Acceptance Requirements for Tin whisker susceptibility of Tin and Tinalloy surface finishes, JEDEC Solid state Technology Association2005.
    [150] Chuang T H, Lin H J. Inhibition of Whisker Growth on the Surface of Sn-3Ag-0.5Cu-0.5CeSolder Alloyed with Zn[J]. Journal of Electronic Materials,2009,38(3):420~424.
    [151] Ye H, Xue S B, Zhang L, et al. Sn whisker growth in Sn-9Zn-0.5Ga-0.7Pr lead-free solder[J].Journal of Alloys and Compounds,2011,509(5):52~55.
    [152] Ye H, Xue S B, Pecht M. Evaluation of the microstructure and whisker growth in Sn-Zn-Gasolder with Pr content[J]. Journal of Materials Research,2012,27(14):1887~1894.
    [153]郝虎.稀土相加速Sn晶须生长及Sn晶须生长机制的研究,[博士学位论文].北京:北京工业大学,2009.
    [154] Fang T, Osterman M, Pecht M. Statistical analysis of tin whisker growth[J]. MicroelectronicsReliability,2006,46(5-6):846~849.
    [155] Speight J G, Lange’s Handbook of Chemistry,16th ed, McGraw-Hill, New York,2005.
    [156] Http://mits.nims.go.jp/index_en.html.
    [157] Xian A P, Liu M. Observations of continuous tin whisker growth in NdSn3intermetalliccompound[J]. Journal of Materials Research,2009,24(9):2775~2783.
    [158] Lankford J, Intel. Metals. Reviews.22(1977):221~228.
    [159] Spedding F, A H Daane. The Rare Earth, John Wiley&Sons,1961.
    [160] Dudek M A, Chawla N. Oxidation Behavior of Rare-Earth-Containing Pb-Free Solders[J].Journal of Electronic Materials,2009,38(2):210~220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700