用户名: 密码: 验证码:
过共晶铝硅铁合金的半固态加工行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过共晶Al-Si-Fe合金是一种重要的铸造Al-Si系合金,该合金是一种软基体上分布着硬质点的理想轻质耐磨结构材料,特别适用于制造轻质、耐磨零件,是传统耐磨材料的理想替代材料。但过共晶Al-Si-Fe合金因其组织中的粗大相严重影响了其组织完整性和力学性能的发挥,限制了过共晶Al-Si-Fe合金的应用。本文以过共晶Al-20Si-3Fe-1Mn-4Cu-1Mg合金为研究对象,通过半固态触变挤压成形工艺及理论研究,建立反映半固态合金固液相变行为的非线性数学模型,揭示半固态合金在二次加热过程中液相率的变化规律,通过对合金变形行为的研究,构建该合金在半固态触变挤压成形过程的本构关系,经数值模拟对半固态触变挤压成形工艺参数进行了优化,并对半固态触变挤压成形工艺对该合金的组织、性能的影响进行了研究。
     研究表明,电磁搅拌对过共晶Al-20Si-3Fe-1Mn-4Cu-1Mg合金中的α-Al基体相细化作用明显,而对其它相效果较差。电磁搅拌电压在120V~150V为宜,能够得到基本细小,圆整化的非枝晶α-Al基体。通过DSC实验,获得该合金的开始凝固温度为507℃,完全熔化温度为627℃,凝固温度区间较宽,适于半固态加工。在570℃~580℃的温度区间,该合金具有较小的固相分数温度敏感性,适合进行二次加热。合金组织中共晶Si、初生Si和富Fe相随二次加热温度的升高而细化、圆整化,α-Al基体则球化、粗化,温度越高这种作用越明显。随着保温时间的延长,合金组织具有长大趋势,晶粒长大对加热时间更敏感。采用热涵法获得了该合金液相率与加热温度曲线,二者的关系不是Scheil公式描述的简单线性增加,而是随温度升高液相率非线性增加;在不同的温度区间,液相率的增长速率并不完全一致,导致曲线呈现S形,依此建立了半固态合金固液相变液相率的非线性数学模型;采用过共晶Al-20Si-3Fe-1Mn-4Cu-1Mg合金验证了模型的正确性,并表现出较Scheil线性回归模型离散度更小、准确性更高的特点。
     Al-20Si-3Fe-1Mn-4Cu-1Mg合金的半固态单向压缩实验表明,流变应力及变形程度随温度的升高而减小,过高的温度不易破碎组织中粗大相,不利于提高合金的力学性能。变形抗力在变形温度相同的情况下随应变速率的增加而增大,说明该合金是正应变速率敏感材料。变形抗力在相同应变速率条件下随变形温度的升高而降低,应变速率过低不利于破碎粗大相。半固态触变挤压成形工艺参数选择范围为:变形温度在570℃~580℃区间,应变速率在0.1s-1~0.01s-1。根据半固态触变压缩真应力-真应变曲线的特征,提出在不同的真应变范围分为3个不同的变形阶段,即类弹性变形、加工硬化和流变-粘塑性变形阶段,并分阶段建立了半固态触变本构方程,采用多元回归进行了求解。通过对半固态触变挤压成形过程进行的数值模拟表明,模具结构设计能够满足制备合格制件的要求,经模拟优化得到了半固态触变挤压工艺参数:坯料二次加热温度为580℃,模具温度为550℃,挤压速度为2mm/s。
     经半固态触变挤压成形后,Al-20Si-3Fe-1Mn-4Cu-1Mg合金组织中粗大相显著破碎并分裂为小块,组织明显细化。在变形较大的部位,呈方向性链状分布的Si相与连续分布的Al基体使合金组织具有一定的方向性,有助于提高合金的力学性能。Al-20Si-3Fe-1Mn-4Cu-1Mg合金经半固态触变挤压成形之后的抗拉强度达到了227MPa,为铸态抗拉强度的1.92倍,硬度也增加为121HB,伸长率则达到了1.8%,提高了1倍。而经热处理后的触变成形合金,其抗拉强度达到了264MPa,比铸态提高了123.3%,硬度则提高到138HB,塑性也保持了较高的水平。高温干摩擦实验表明,经半固态触变挤压的合金的耐磨性显著好于A390合金,经T1、T6热处理的合金的耐磨性进一步提高。
The hypereutectic Al-Si-Fe alloy is an important casting Al-Si alloy, which is a lightwear-resisting material with hard spots distribute on soft substrates.The hypereutectic Al-Si-Fealloy is especially suitable for the manufacture of lightweight, wear-resistant parts, and is anideal alternative to traditional wear-resisting material. However, the application ofhypereutectic Al-Si-Fe alloy is limited by the bulky phase which seriously affect itsorganization integrity and mechanical properties.In this paper, the nonlinear mathematicalexpression of liquid mass fraction in solid-liquid phase transition is derived by theexperimental and theoretic study on semi-solid thixotropy extrusion of the Al-Si-Fe alloy. Theexpression could reveal the evolution rule of liquid mass fraction of semi-solid alloy in theprocess of reheating.The thixoforming constitutive equations of hypereutecticAl-20Si-3Fe-1Mn-4Cu-1Mg alloy are established and the semi-solid thixotropic extrusionforming process parameters are optimized by numerical simulation, more ever, the influenceof semi-solid thixotropic extrusion forming process on the properties and organization of thealloy is studied.
     The results show that electromagnetism stirring only has a obvious effect on therefinement of the matrix phase α-Al in hypereutectic Al-20Si-3Fe-1Mn-4Cu-1Mg alloy, whenthe electric voltage is at120V~150V, fine and spherical non dendrite α-Al matrix can beobtained. The solidification temperature and completely melting temperature ofAl-20Si-3Fe-1Mn-4Cu-1Mg alloy are507℃and627℃this alloy has a wide range ofsolidification temperature and is suitable for semi-solid processing. At the range of57℃0~580℃, the alloy has smaller solid fraction temperature sensitivity and suitable for reheating.
     The microstructures of eutectic Si,primary Si and Fe-riched phase of the alloy are morefiner and spherical,with the reheating temperature increasing, the α-Al is more spherical andlarger, and this effect is obvious when the temperature is higher. The grain growth is verysensitive to the heating time.The curve of liquid mass fraction and heating temperature of thealloy is obtained by DSC, the liquid mass fraction is not simple linear increased with heatingtemperature as Scheil expression described, but nonlinear increased.The growth rate of liquid mass fraction was not entirely consistent in different temperature range, which formedS-shaped curve.The nonlinear mathematical expression of liquid mass fraction in solid-liquidphase transition of semi-solid alloy is derived from thermodynamic equations.The research ofsolid-liquid phase transition in the alloy show that the nonlinear mathematical expression has asmaller discrete degree compared with the Scheil linear regression expression.
     The semi-solid thixoforming behavior of hypereutectic Al-20Si-3Fe-1Mn-4Cu-1Mg alloyis studied by single-pass compression experiment,the results show that the flow stress anddeformation degree decrease with the increase of temperature,the mechanical properties of thealloy are hardly improved when temperature is too high to break the thick phase of thealloy.The alloy is a positive strain rate sensitive material at the same temperature, the flowstress is increased with strain rate rising. At the same strain rate, the flow stress is decreasedwith temperature increasing and the strain rate is too low to break the thick phase of thealloy.The process parameter of semi-solid thixotropic extrusion forming is: temperature at570℃~580℃,strain rate in0.1~0.01s-1.A new method is discussed that semi-solidthixoforming process can be separated into elastic deformation, strain hardening andrheology-viscoplastic deformation stage in different true strain range,and the thixoformingconstitutive equations are derived by multiple regression in different deformationstage,according to the characteristic of semi-solid thixotropic compression stress-straincurve.The semi-solid thixoforming die can meet the requirements of forming process after theanalysis of numerical simulation. The optimization of semi-solid thixotropic extrusion processparameters obtained via numerical simulation is: reheating temperature is580℃,moldtemperature is55℃, thespeedofextrusionis2mm/s.
     The microstructure of the alloy is finer cause thick phase of the alloy is broken and splitinto small pieces by semi-solid thixotropy extrusion.The anisotropy textural microstructure ofalloy which is constitute of the directional chain distribution of Si phase and continuousdistribution of Al matrix organization improve mechanical properties of the alloy. The tensilestrength reaches227MPa,192%higher than as-cast, hardness increase to121HB, elongationis1.8%, increased by100%. The properties of the heat treatment for thixoforming alloyis:tensile strength is264MPa,123.3%higher than that of as-cast,hardness is increased to138HB,plastic maintained a higher level.The high temperature wear experiments show that thewearability of semi-solid alloy by thixotropic extrusion was significantly better than A390 alloy, the T1, T6heat treatment of the alloy also have high wear resistance.
引文
[1]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.
    [2]孙廷富,杨波,翟景.等.过共晶铝硅合金缸体/缸套工作面加工技术及应用[J].兵器材料科学与工程,2013,36(5):120-124.
    [3]全燕鸣.过共晶型铝—硅合金研究的进展[J].轻合金加工技术,1996,24(2):26-30.
    [4]熊艳才.铸造铝合金现状及未来发展[J].特种铸造及有色合金,1998(4):1-5.
    [5]邱庆荣,孙宝德,周尧和.铝合金铸件在汽车上的应用[J].铸造,1998,1(6):46-49.
    [6] Haque M M, Maleque M A. Effect of process variables on structure and properties ofaluminium–silicon piston alloy[J]. Journal of Materials Processing Technology,1998,77(1):122-128.
    [7]赵树国.铝硅铁合金半固态成形技术的研究[D].沈阳:沈阳工业大学,2009.
    [8]尹卓湘.过共晶Al-Si合金的变质处理[J].轻金属,1998(9):52-54.
    [9]康福伟,孙剑飞,沈军.等.喷射成形工艺的发展及应用[J].稀有金属,2004,28(2):402-407.
    [10]徐骏,田战峰,曾怡丹.等.铝合金半固态加工技术的应用研究[J].特种铸造及有色合金,2007,27(8):603-607.
    [11] Flemings M C. Behavior of metal alloys in the semisolid state[J]. Metallurgical Transactions B,1991,22(3):269-293.
    [12]杨为佑,陈振华.半固态非枝晶组织合金的制备技术[J].铝加工,2001,24(1):32-36.
    [13]陈平昌,朱六妹,李赞.材料成形原理[M].北京:机械工业出版社,2001.
    [14]毛卫民.半固态金属成形技术[M].北京:机械工业出版社,2004.
    [15]陈刚.高强变形铝合金触变成形及缺陷控制研究[D].哈尔滨:哈尔滨工业大学,2013.
    [16]张景新,张奎,刘国钧.等.电磁搅拌制备半固态材料非枝晶组织的形成机制[J].中国有色金属学报,2000,10(4):151-155.
    [17]彭著刚,张家涛,樊刚.等.等温电磁搅拌对半固态Al-25%Si合金组织的影响[J].昆明理工大学学报(理工版),2006(1):19-22.
    [18]康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术[M].北京:科学出版社,2004.
    [19]管仁国,康立文,尚剑洪.等.倾斜式冷却剪切工艺条件对半固态合金组织的影响[J].特种铸造及有色合金,2006,25(10):600-603.
    [20]管仁国,李俊鹏,温景林.等.倾斜式冷却剪切流变对Al-Mg合金组织的影响[J].轻合金加工技术,2005,32(11):15-18.
    [21]陈永炳.Mg-2Si/Al复合材料半固态挤压组织及磨损性的研究[D].长春:吉林大学,2013.
    [22] Chan Choi J, Jin Park H. Microstructural characteristics of aluminum2024by cold working in theSIMA process[J]. Journal of Materials Processing Technology,1998,82(1):107-116.
    [23]谢水生,黄声宏.半固态金属加工技术及其应用[M].北京:冶金工业出版社,1999.
    [24]王金国.应变诱发法镁合金AZ91D半固态组织演变机制[D].长春:吉林大学,2005.
    [25] Bergsma S C, Tolle M C, Kassner M E, et al. Semi-solid thermal transformations of Al-Si alloysand the resulting mechanical properties[J].Materials Science and Engineering: A,1997,237(1):24-34.
    [26] Thanabumrungkul S, Janudom S, Burapa R, et al. Industrial development of gas inducedsemi-solid process[J]. Transactions of Nonferrous Metals Society of China,2010,20:s1016-s1021.
    [27] Payandeh M, Jarfors A E, Wessén M. Effect of superheat on melting rate of EEM of Al alloysduring stirring using the RheoMetal process[J]. Solid State Phenomena,2013,192:392-397.
    [28] Itamura M, Anzai K, Hirata N, et al. Development of Generation Technology of High QualitySemi-Solid Slurry by Double-Axis-Electromagnetic Stirrer Combined with Properly DesignedCup[J]. Solid State Phenomena,2013,192:441-446.
    [29]陈强.合金加工流变学及其应用[M].北京:冶金工业出版社,2012.
    [30] Fan Z, Ji S, Bevis M J. Twin-screw rheomoulding-a new semi-solid processingtechnology[C].Proc. of the6th Int. Conf. on Semi-Solid Processing uf Alloys and Composites,edited by GL Chiarmetta and M. Rosso,(Italy, Politec-nico DI Torino,2000) p,2000.
    [31] Ji S, Fan Z, Bevis M J. Semi-solid processing of engineering alloys by a twin-screwrheomoulding process[J]. Materials Science and Engineering: A,2001,299(1):210-217.
    [32] Fan Z, Ji S, Fang X. Rheo-diecasting of aluminum alloys and components[C].Proc.8th Int.Conference on the Processing of Semi-Solid Alloys and Composite. Limassol, Cyprus,Sept21st-23rd,2004.
    [33] Shibata R, Kaneuchi T, Soda T, et al. New semi-liquid metal casting process[C].Proceedings of4th Internat. Conf. on Semisolid Processing of Alloys and Composites, Sheffield (UK),1996.
    [34] Adachi M, Sasaki H, Harada Y, et al. Method and apparatus for shaping semisolid metals[Z].Google Patents,2005.
    [35] Giordano P, Chiarmetta G L. Thixo and rheo casting: comparison on a high production volumecomponent[J]. Proceedings of the7th S2P Advanced Semi-solid Processing of Alloys andComposites, ed. Tsutsui, Kiuchi, Ichikawa, Tsukuba, Japan,2002:665-670.
    [36]邢书明,胡汉起,李亚敏.难变形钢铁材料半固态连铸技术研究[D].北京:北京科技大学,1999.
    [37]褚祥治,齐铁力,刘芳.等.半固态合金成形技术综述[J].唐山学院学报,2006,18(4):107-110.
    [38]赵大志.铝合金半固态挤压成形工艺及理论研究[D].沈阳:东北大学,2009.
    [39] Tzimas E, Zavaliangos A. Materials selection for semisolid processing[J]. Materials andmanufacturing processes,1999,14(2):217-230.
    [40]闫洪,夏巨谌.半固态金属成形的本构关系[J].材料导报,2002,16(11):8-10.
    [41]杜平,李双寿,唐靖林.等.半固态铝合金触变压铸技术中关键问题的讨论[J].铸造技术,2006(6):l1.
    [42]赵军峰.Al-25Si组织控制与性能研究[D].沈阳:沈阳工业大学,2010.
    [43] Young K P. Recent advances in semi-solid metal (SSM) cast aluminum and magnesiumcomponents[C]. Proceedings of the Fourth International Conference on Semi-Solid Processing ofAlloys and Composites, The University of Sheffield, Sheffield, UK,1996.
    [44]罗中华,张质良.半固态固相体积分数的拟合公式[J].铸造技术,2005,26(7):557-559.
    [45]王晓颖.非均质材料控制加热过程的组织演变与熔化行为[D].西安:西北工业大学,2003.
    [46]江海涛.半固态Al-4Cu-Mg合金的制备及微观组织演化研究[D].西安:西北工业大学,2004.
    [47]曾大新,苏俊义.固-液相变问题的数学模型和数值求解方法[J].湖北汽车工业学院学报,2001,15(2):16-21.
    [48] Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport inbinary solid-liquid phase change systems—I. Model formulation[J]. International Journal of Heatand Mass Transfer,1987,30(10):2161-2170.
    [49] Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport inbinary solid-liquid phase change systems-II. Application to solidification in a rectangular cavity[J].International Journal of Heat and Mass Transfer,1987,30(10):2171-2187.
    [50] Patankar S. Numerical heat transfer and fluid flow[M]. CRC Press,1980.
    [51] Chiang K C, Tsai H L. Interaction between shrinkage-induced fluid flow and natural convectionduring alloy solidification[J]. International journal of heat and mass transfer,1992,35(7):1771-1778.
    [52]曾大新,陈勉己.自然对流条件下Si-Fe在铁液中熔化过程的数值模拟[J].金属学报,2000,36(7):739-743.
    [53]曾大新,陈勉己.型内孕育硅铁块熔化过程的数值模拟研究[J].机械工程学报,2000,36(11):59-63.
    [54] Xu D, Li Q, Pehlke R D. Computer simulation of Al-Cu alloy solidification using a continuummodel[J]. AFS Trans,1991,91:737-745.
    [55]徐达鸣,李庆春.合金凝固传热,传质和液相流动的数值模拟及宏观偏析的预测[J].金属学报,1990,26(4):267-270.
    [56]王胜良.半固态镁合金固相体积分数检测技术研究[D].大连:大连交通大学,2009.
    [57] Muller-Spath H, Bernhard D, Sahm P R. The use of a dynamic penetration method for thecharacterization of semi-solid alloys[C]. Proceedings of the Fifth International Conference onSemi-Solid Processing of Alloys and Composites, Colorado, USA,1998.
    [58]陈春天,魏玮.金属电阻-温度线性关系准确度条件[J].大学物理实验,1997,10(1):45-46.
    [59]崔晓鹏,刘勇兵,曹占义.等.半固态触变注射成形镁合金显微组织的评定[J].铸造,2006,55(6):593-596.
    [60]路贵民,任栖锋.7075Al合金LSC铸锭二次加热中的液固相体积分数[J].东北大学学报:自然科学版,2002,23(9):876-879.
    [61]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990.
    [62] Kim W T, Zhang D L, Cantor B. Nucleation of solidification in liquid droplets[J]. MetallurgicalTransactions A,1991,22(10):2487-2501.
    [63]刘波.铝铁基合金半固态成形技术及组织性能研究[D].沈阳:沈阳工业大学,2012.
    [64]杨湘杰,郭洪民,潘明强.非枝晶铝合金(A356)半固态感应加热模式及控制模型[J].特种铸造及有色合金,2001(S1):209-211
    [65] Cremer R, Winkelmann A, Hirt G. Sensor controlled induction heating of aluminium alloys forsemi solid forming[J].1996:132-141.
    [66]路贵民,只立群,马鸣图.半固态金属触变成形本构关系的研究现状[J].汽车工程,2009,31(5):430-434.
    [67] Joly P A, Mehrabian R. The rheology of a partially solid alloy[J]. Journal of Materials Science,1976,11(8):1393-1418.
    [68] Taha M A, El-Mahallawy N A, Assar A M. Control of the continuous rheocasting process[J].Journal of materials science,1988,23(4):1379-1384.
    [69] Lehuy H, Masounave J, Blain J. Rheological behaviour and microstructure of stir-castingzinc-aluminium alloys[J]. Journal of materials science,1985,20(1):105-113.
    [70] Zhong Hua L, Zhi Liang Z. Application of BP neural network to s@emi-solid apparent viscositysimulation[J]. Training,2003,10:0.
    [71]陈金玉,鞠丽平,李亮.半固态A1-6.5Si合金的流变特性[J].金属学报,2003,39(5):476-481.
    [72] Kumar P, Martin C L, Brown S. Shear rate thickening flow behavior of semisolid slurries[J].Metallurgical Transactions A,1993,24(5):1107-1116.
    [73] Kumar P, Martin C L, Brown S. Constitutive modeling and characterization of the flow behaviorof semi-solid metal alloys slurries-I. The flow response[J]. Acta metallurgica et materialia,1994,42(11):3595-3602.
    [74] Martin C L, Kumar P, Brown S. Constitutive modeling and characterization of the flow behaviorof semi-solid metal alloy slurries—II. Structural evolution under shear deformation[J]. Actametallurgica et materialia,1994,42(11):3603-3614.
    [75] Kirkwood D H, Ward P J. Modeling of thixotropic breakdown[C].Proceedings of the8thInternational Conference on Semi-Solid Processing of Alloys and Composite,2004.
    [76]张家泉,于震宗.合金凝固温区的流变模型及其微分型本构方程[J].科技通报,1995,11(1):23-26.
    [77] Jonas J J, Sellars C M, Tegart W M. Strength and structure under hot-working conditions[J].Metallurgical Reviews,1969,14(1):1-24.
    [78]朱维,韩志强,贾湛湛.等.挤压铸造铝合金弹粘塑性本构模型[J].金属学报,2008,44(4):440-444.
    [79] Carley L R, Bain J A, Fedder G K, et al. Single-chip computers with microelectromechanicalsystems-based magnetic memory[J]. Journal of applied physics,2000,87(9):6680-6685.
    [80] Martin C L, Favier D, Suery M. Viscoplastic behaviour of porous metallic materials saturatedwith liquid Part1: Constitutive Equations-Part2: Experimental identification of a Sn Pb modelalloy[J]. International Journal of Plasticity,1997,3:215-259.
    [81] Martin C L, Favier D, Suéry M. Fracture behaviour in tension of viscoplastic porous metallicmaterials saturated with liquid[J]. International Journal of Plasticity,1999,15(10):981-1008.
    [82]薛守义.弹塑性力学[M].北京:中国建材工业出版社,2005.
    [83] Nguyen T G, Favier D, Suery M. Theoretical and experimental study of the isothermal mechanicalbehaviour of alloys in the semi-solid state[J]. International journal of plasticity,1994,10(6):663-693.
    [84] Kiuchi M, Yanagimoto J, Yokobayashi H. Flow stress, yield criterion and constitutive equation ofmushy/semi-solid alloys[J]. CIRP Annals-Manufacturing Technology,2001,50(1):157-160.
    [85] Kang C G, Kang B S, Kim J I. An investigation of the mushy state forging process by the finiteelement method[J]. Journal of Materials Processing Technology,1998,80:444-449.
    [86] Kang C G, Jung H K. Finite element analysis with deformation behavior modeling of globularmicrostructure in forming process of semi-solid materials[J]. International journal of mechanicalsciences,1999,41(12):1423-1445.
    [87] Kang C G, Bae J W. Numerical simulation of mold filling and deformation behavior in rheologyforming process[J]. International Journal of Mechanical Sciences,2008,50(5):944-955.
    [88]王平,董维国,路贵民.等.半固态A356合金的压缩变形行为[J].东北大学学报:自然科学版,2003,24(6):586-588.
    [89]蒙多尔福,王祝堂.铝合金的组织与性能[M].北京:冶金工业出版社,1988.
    [90]周鹏飞.Al-20Si变质与等温处理组织演变关系研究[D].兰州:兰州理工大学,2012.
    [91]崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,1989.
    [92]胡慧芳.Al-25%Si合金Si相形态,变质及性能研究[D].重庆:重庆大学,2010.
    [93]欧阳志英.铸造铝硅合金熔体处理中添加元素的行为及相互作用研究[D].上海:上海大学,2006.
    [94] Kobayashi K F, Hogan L M. The crystal growth of silicon in Al-Si alloys[J]. Journal of MaterialsScience,1985,20(6):1961-1975.
    [95] Jenkinson D C, Hogan L M. The modification of aluminium-silicon alloys with strontium[J].Journal of Crystal Growth,1975,28(2):171-187.
    [96]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制[D].长春:吉林大学,2007.
    [97]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,2000.
    [98]印飞,李振,杨江波.等.铝硅合金中铁相的凝固行为及其影响因素[J].热加工工艺,2001(5):35-39.
    [99]赖华清,范宏训,徐祥.过共晶铝硅合金的研究及应用[J].汽车工艺与材料,2001,10(21):21-24.
    [100]罗松.Al-Si二元合金熔体混合凝固组织和性能研究[D].成都:西华大学,2013.
    [101]蔡宗德,张连芳,孙建荣.过共晶铝硅合金的生产及其应用[J].特种铸造及有色合金,1990(4):37-39.
    [102] Xu C L, Wang H Y, Yang Y F, et al. Effect of Al–P–Ti–TiC–Nd2O3modifier onthe microstructure and mechanical properties of hypereutectic Al–20wt.%Si alloy[J]. MaterialsScience and Engineering: A,2007,452:341-346.
    [103] Kwang Seok H, Chul Lee J, In Lee H. Extrusion of spray-formed Al–25Si–X composites and theirevaluation[J]. Journal of materials processing technology,2005,160(3):354-360.
    [104] Nikanorov S P, Volkov M P, Gurin V N, et al. Structural and mechanical properties of Al–Si alloysobtained by fast cooling of a levitated melt[J]. Materials Science and Engineering: A,2005,390(1):63-69.
    [105] Wang F, Ma Y, Zhang Z, et al. A comparison of the sliding wear behavior of a hypereutectic Al–Sialloy prepared by spray-deposition and conventional casting methods[J]. Wear,2004,256(3):342-345.
    [106]易宏坤.稀土La及喷射沉积对铝硅合金的组织与性能影响研究[D].上海:上海交通大学,2003.
    [107]全燕鸣,周泽华.过共晶铝硅合金组织对切削加工性能的影响[J].机械工程学报,1998,34(1):1-6.
    [108]王建中,曹丽云,陈淑英.Al-Si合金在汽车工业中的应用前景及研究现状[J].辽宁工学院学报,2000(4):1-3.
    [109] Dasgupta R. Property improvement in Al–Si alloys through rapid solidification processing[J].Journal of materials processing technology,1997,72(3):380-384.
    [110] Hong S J, Kim T S, Kim W T, et al. The effects of Cr and Zr addition on the microstructure andmechanical properties of rapidly solidified Al-20Si-5Fe alloys[J]. Materials Science andEngineering: A,1997,226:878-882.
    [111]彭著刚.半固态过共晶铝硅合金的电磁搅拌工艺与性能研究[D].昆明:昆明理工大学,2005.
    [112]叶春生,张新平.机械搅拌对过共晶Al-Si合金半固体组织的影响[J].热加工工艺,2002(1):27-29.
    [113]王强,王春江,庞雪君.等.利用强磁场控制过共晶铝硅合金的凝固组织[J].材料研究学报,2009,18(6):568-576.
    [114] Robles Hernandez F C, Sokolowski J H. Comparison among chemical and electromagneticstirring and vibration melt treatments for Al–Si hypereutectic alloys[J]. Journal of alloys andcompounds,2006,426(1):205-212.
    [115]毛卫民,李树索.电磁搅拌对过共晶Al-Si合金初生Si分布的影响[J].金属学报,2001,37(7):781-784.
    [116]王德仁,毛卫民.Al-24%Si合金半固态等温搅拌时的微观组织[J].北京科技大学学报,1998,20(4):336-339.
    [117]毛卫民,李树索.电磁搅拌Al-24%Si合金的显微组织[J].中国有色金属学报,2001,11(5):819-823.
    [118] Hellawell A. Grain evolution in conventional and rheo-castings[J].1996.
    [119] Kattamis T Z, Coughlin J C, Flemings M C. Influence of coarsening on dendrite arm spacing ofaluminum-copper alloys[J]. AIME MET SOC TRANS,1967,239(10).
    [120]戴光星.熔体等温处理法制备AlSi7Mg合金半固态坯料的研究[D].合肥:合肥工业大学,2006.
    [121] Hunt J D. Solidification and casting of metals[J]. The Metal Society, London,1979:3.
    [122]王杰芳,谢敬佩,刘忠侠.等.国内外铝硅活塞合金的研究及应用述评[J].铸造,2005,54(1):24-27.
    [123]陈世平.汽车轻量化及其材料[J].汽车工艺与材料,1995(4):1-3.
    [124]李胜.半固态成形铝硅铁合金第二相破碎机理及性能的研究[D].沈阳:沈阳工业大学,2006.
    [125]闫质昭.汽车铝硅合金发动机缸套的半固态成形工艺[D].沈阳:沈阳工业大学,2011.
    [126]王旭.斜坡法制备半固态过共晶铝硅合金组织性能的研究[D].沈阳:沈阳工业大学,2012.
    [127] Batterham R J, Dry R J. Ironmaking and steelmaking[Z]. Google Patents,2012.
    [128] Srivastava V C, Mandal R K, Ojha S N. Microstructure and mechanical properties of Al–Si alloysproduced by spray forming process[J]. Materials Science and Engineering: A,2001,304:555-558.
    [129] Xiufang B, Junhua C, Xiangfa L, et al. The effect of magnesium on the antimony modification ofAl-Si[J]. JOM,1997,49(2):35-36.
    [130] Mondolfo L F. Aluminum alloys: structure and properties[M]. Butterworths London,1976.
    [131]朱明善.工程热力学[M].北京:清华大学出版社,1995.
    [132]胡汉起.金属凝固原理[M].机械工业出版社,2000.
    [133]朱军.线性模型分析原理[M].科学出版社,1999.
    [134]赵建平,张秀敏,沈士明.材料韧脆转变温度数据处理方法探讨[J].石油化工设备,2004,33(4):29-32.
    [135]唐小玲,尚淑珍,路贵民.等.6063铝合金半固态变形本构模型研究[J].特种铸造及有色合金,2010(12):1113-1116.
    [136]余小鲁,李付国,李淼泉.半固态材料触变成形通用本构方程及其优化[J].机械工程学报,2007,43(10):72-76.
    [137]卢雅琳,李淼泉.Al-4Cu-Mg合金的半固态变形及模型化研究[J].材料工程,2007(5):10.
    [138]李赫亮,袁晓光,郑伟.等.Al-Mg-Si合金热压缩变形的流变应力方程[J].沈阳工业大学学报,2012(6):11-15.
    [139] Lalli L A. A model for deformation and segregation of solid-liquid mixtures[J]. MetallurgicalTransactions A,1985,16(8):1393-1403.
    [140] Dutkiewicz J, Litynska L. The effect of plastic deformation on structure and properties of chosen6000series aluminium alloys[J]. Materials Science and Engineering: A,2002,324(1):239-243.
    [141] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of AppliedPhysics,2004,15(1):22-32.
    [142] Shi H, McLaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress ofaluminium alloys[J]. Materials Science and Technology,1997,13(3):210-216.
    [143]凌闯,王敬丰,赵亮.等.高硅铝合金标准样品的热变形行为[J].中国有色金属学报,2010,20(5):833-839.
    [144]郑小燕.H13模具钢热处理工艺优化及表面渗氮处理研究[D].长沙:中南大学,2008.
    [145]李传民,王向丽,闫华军.DEFORM5.03金属成形有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [146]马斌.6061铝合金连杆闭塞锻造成形过程的数值分析与实验研究[D].重庆:重庆大学,2009.
    [147]李晓峰.6061合金半固态触变模锻成形工艺研究[D].沈阳:东北大学,2011.
    [148]张早明.AlSi-9Mg合金半固态坯料制备有限元分析及工艺参数优化[D].合肥:合肥工业大学,2007.
    [149]李传民,王向丽,闰华军.金属成形有限元分析实例教程指导[M].北京:机械工业出版社,2007.
    [150]甘春雷.6xxx系铝合金低温快速挤压模拟研究[D].长沙:中南大学,2004.
    [151]徐晨.半固态轻合金触变模锻成形数值模拟[D].南昌:南昌大学,2006.
    [152]吴萍.AZ91D镁合金半固态铸轧工艺过程的数值模拟[D].哈尔滨:哈尔滨工业大学,2008.
    [153]李升军.DEFORM在金属塑性成形中的应用[M].北京:机械工业出版社,2009.
    [154]李润霞,于洪江,袁晓光.等.热处理对过共晶Al-Si合金组织与性能的影响[J].热加工工艺,2009(14):121-123.
    [155]王爱琴,谢敬佩,王文焱.等.快速凝固Al-21Si-0.8Mg-1.5Cu合金时效析出行为[J].材料热处理学报,2013,34(1):86-89.
    [156]赵树国,袁晓光,李胜.等.半固态成型Al-Si-Fe合金的组织及性能[J].材料工程,2007(2):34-38.
    [157]孙业赞,张国伟.铁在铝硅合金中存在的形态及其作用分析[J].铸造,1998(7):42-46.
    [158]关绍康,王利国,朱世杰.等.快速凝固合金的研究发展趋势[J].现代铸铁,2004,24(4):22-26.
    [159]张大辉,钟雪友.半固态加工成形技术及其发展现状[J].航空制造技术,2002(11):28-31.
    [160]刘丹.铝合金液相线铸造制浆及半固态加工工艺及理论研究[D].沈阳:东北大学,1999.
    [161]赵树国,袁晓光,张维维.等.铁锰比对铝硅铁合金微观组织的影响[J].沈阳工业大学学报,2005,27(2):143-147.
    [162]谭建波,李志勇,王英杰.等.倾斜冷却剪切流变参数对半固态AlSi9Mg合金组织的影响[J].中国有色金属学报,2009(4):607-612.
    [163]皇志富,刑建东,高义民.半固态过共晶高铬铸铁的制备及组织定量分析[J].铸造技术,2004,25(10):756-758.
    [164]陈莉娟.电磁搅拌对铝合金半固态浆料组织及偏析的影响[D].昆明:昆明理工大学,2008.
    [165] Chen C P, Tsao C. Semi-solid deformation of non-dendritic structures—I. Phenomenologicalbehavior[J]. Acta materialia,1997,45(5):1955-1968.
    [166] Margarido M, Robert M H. Influence of thermomechanical treatments on the production ofrheocast slurries by partial melting[J]. Journal of materials processing technology,2003,133(1):149-157.
    [167]刘波,袁晓光,张韶华.等.铝铁合金半固态变形的组织演变[J].塑性工程学报,2009,16(6):11-17.
    [168]宁志良,刘殿魁.控制浇注法制备半固态坯料的研究[J].哈尔滨理工大学学报,2005,10(3):4-6.
    [169] Yoon J, Im Y, Kim N. Finite element modeling of the deformation behavior of semi-solidmaterials[J]. Journal of Materials Processing Technology,2001,113(1):153-159.
    [170] Jung H K, Kang C G. Induction heating process of an Al–Si aluminum alloy for semi-solid diecasting and its resulting microstructure[J]. Journal of Materials Processing Technology,2002,120(1):355-364.
    [171] Zhu Y, Tang J, Xiong Y, et al. The influences of the microstructure morphology of A356alloy onits rheological behavior in the semi-solid state[J]. Science and Technology of Advanced Materials,2001,2(1):219-223.
    [172] Chalay-Amoly A, Zarei-Hanzaki A, Changizian P, et al. An investigation into themicrostructure/strain pattern relationship in backward extruded AZ91magnesium alloy[J].Materials&Design,2013,47:820-827.
    [173]李烔辉.金属材料金相图谱[M].机械工业出版社,2006.
    [174]袁晓光,崔成松.快速凝固(2024Al)-20Si-5Fe合金的磨损行为[J].金属学报,2002,38(5):467-473.
    [175] Mondolfo L F. Aluminum alloys: structure and properties[M]. Butterworths London,1976.
    [176]孙瑜,陈晋.铝硅合金硅相演变及其对力学性能的影响[J].特种铸造及有色合金,2001(6):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700