用户名: 密码: 验证码:
锰基熔体系统磷杂质净化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰基合金产业是我国钢铁行业重要分支之一,随着我国钢铁行业的快速发展,目前我国已经成为世界第一锰基合金生产大国,但随着世界金融危机影响的进一步加剧,钢铁行业出现严重产能过剩,面临巨大困难,锰基合金产业长期以来的弊端暴露无遗:生产技术停滞不前,长期依靠进口高品位锰矿,生产成本受制于人;能耗居高不下,资源浪费严重;产品品质低下,磷等杂质元素含量高,无法满足客户需求,行业已经到了转型升级的关键时刻。在这样的背景下,本文开展了锰基熔体系统的基础研究,旨在阐述锰基熔体中各结构单元的热力学行为,为锰基合金冶炼过程提供最佳工艺参数,减少合金元素损失;为锰基合金磷杂质的去除提供理论依据,有效降低锰基合金中杂质元素含量,提高产品品质;同时填补锰基多元熔体热力学模型研究的空缺,为此本文对锰基熔体系统主要做了以下几个方面的工作:
     ①基于共存理论建立了锰基合金系统涉及的Mn-Fe-Si、Mn-Fe-P三元熔体系统、Mn-Fe-Si-P-C复杂多元熔体系统热力学模型。并通过模型计算值与实验值比较,证明了此类熔体中三元缔合物MnFeSi、MnFeP的存在,阐述了计算活度值与实验测定值在P含量较高时出现偏差的原因,证明了基于共存理论建立的三元和多元锰基熔体数学模型能够准确的描述熔体中各元素的热力学行为和各元素在各结构单元中的分布情况。
     ②基于共存理论建立了CaO-MnO-SiO2、BaO-MnO-SiO2两种锰基合金冶炼中常见三元渣系热力学模型,分析了BaO基三元熔体中BaSiO3、Ba2SiO4盐类原子团的存在;基于共存理论建立了CaO-BaO-MnO-SiO2四元渣系热力学模型,为锰基合金冶炼中CaO基渣系中添加BaO提供热力学理论计算工具;基于共存理论建立了CaO-SiO2-MnO-FeO-Fe2O3多元渣系热力学模型,为实际生产中锰矿冶炼中锰的还原与氧化损失提供理论计算工具。
     ③利用Mn-Fe-Si-P-C多元熔体模型,计算了1600K~2000K之间8种国标典型成分的锰基熔体中Mn、Fe、Si、C、P元素的活度,以此计算了锰基熔体内部各元素氧化所需的最低溶解氧活度,从而判断4种锰硅合金内部理论上无法完成P的氧化去除,而在4种锰铁合金中,虽然Mn先于Si氧化,但是P氧化临界溶解氧活度仍大于Fe、C、Si、Mn四种元素,同样无法完成P的氧化去除。
     ④通过将熔体熔渣系统模型进行耦合,分析了硅锰合金的氧化脱磷热力学可行性,得出了与实验结果一致的结论:硅锰合金无法完成氧化脱磷,并且给出的硅锰合金无法完成氧化脱磷的根本原因是硅锰合金中的Si含量大,具有极低的临界氧化氧活度;理论模型给出了锰铁合金完成氧化脱磷的BaO基渣系中最多可以添加摩尔分数为0.1的CaO,SiO2浓度小于0.18适合锰铁合金氧化脱磷保锰;C可以提高P的活度,降低Mn的活度,有利于脱磷保锰。
     ⑤分析了锰基合金还原脱磷可能出现的三种情况,建立了熔体内部还原脱磷的Ca-Mn-Si-Fe-P-C多元熔体模型,计算表明:当Ca含量摩尔分数大于0.17后,脱磷率开始大于10%,当Ca含量达到0.32以后,脱磷率无限接近于1,再继续添加更多的Ca对脱磷无任何作用;建立了带析出相的多元熔体模型,计算表明:当Ca小于0.148时,熔体内部不可能发生脱磷反应,对于熔体内部的还原脱磷反应,Ca的加入量在0.154~0.294之间,改变Ca的加入量具有实际的还原脱磷调控能力,当Ca加入量为0.36时,脱磷率接近1;建立了带析出相的多元熔体熔渣耦合模型,对锰基还原脱磷过程进行了数学模拟,计算表明:当渣中Ca3P2摩尔分数从0.1~1.0变化,脱磷量(率)变化趋势均一致,但是开始脱磷的Ca加入量随着Ca3P2摩尔分数的减小而减小,渣系达到极限脱磷率接近1时的Ca加入量也随着l的减小而减小。
     ⑥实验分析了锰基多元合金系统结构失效粉化的过程,讨论了磷杂质元素对锰基合金结构稳定性的影响,表明Mn-Al-Fe-Si合金的彻底解体粉化是合金凝固时物相体积突变和磷化物等夹杂物水解反应两个过程共同作用的结果,水解反应和微裂纹的生长是相辅相成的过程,后者为前者提供反应的动力学通道,前者为后者的进一步生长提供突变能壁所需能量,而Ti的加入能够在合金中发挥抑制水解反应的发生,但它并不能阻止δ-Mn到β-Mn的晶型转变和相的生成过程带来的体积突变,所以Ti的添加并不能阻止合金的开裂,仅能减少合金的粉化。
Manganese-based alloys industry is an important branch of China's steel industry.With the rapid development of China's iron and steel industry, China has become theworld's largest producer of manganese-based alloys at present. But with the deepeningimpact of the world financial crisis, steel industry appeared serious overcapacity andfaces enormous difficulties. The shortcomings of manganese industry has beenthoroughly exposed: stagnant production technology, long depending on importedhigh-grade manganese ore, cost of production controlled by others; and also high energyconsumption, serious waste of resources, low product quality, and high content ofphosphorus and other impurities. It is unable to meet customer demands, and hasreached a critical moment of transformation and upgrading. With this background, thebasic research on manganese-based melt system was carried out in this paper forillustrating the thermodynamic behavior of the various structural units in themanganese-based melt system, to provide the best smelting technological parameter ofthe manganese-based alloy smelting process, to reduce the alloy elements loss, toprovide a theoretical basis for the removal of phosphorus impurities inmanganese-based alloys, to effectively reduce the impurity elements inmanganese-based alloys, to improve product quality, and Meanwhile, to fill the vacancyof the study on the multi-thermodynamic model of manganese-based melt and toprovide a basis research methods for further study on manganese-based alloy meltsystem. So based on manganese melt system it was mainly done the following aspectsof the work in this paper:
     ①Based on the ideal association solution theory, A ternary thermodynamicsmodel for Mn-Fe-Si, Mn-Fe-P and multiple thermodynamics model for Mn-Fe-Si-P-Csystem were established. Compareing the model calculating value and experimentalvalue, it was proved that the existing of the ternary assciations MnFeSi and MnFeP. itexplained the reasons for the activity deviation between calculating value and measuredvalues at higher P content. It also proved that the ternary and multiple modelsestablished can accurately describe the thermodynamic behavior of all elements and itsdistribution in the structural units of the maganese-based melt.
     ②Base on the coexisting theory, the ternary thermodynamics model forCaO-MnO-SiO2and BaO-MnO-SiO2slag used for Mn-based alloys smelting was established and with the model the salt association BaSiO3and Ba2SiO4was provedexisiting. Base on the coexisting theory, a quaternary thermodynamics model forCaO-BaO-MnO-SiO2slag used for Mn-based alloys smelting was established forcalculating the thermodynamics property of the CaO-based slag with BaO added. Amultiple slag thermodynamics model for CaO-SiO2-MnO-FeO-Fe2O3was establishedfor Mn-based alloys smelting to provide the theoretical calculation tool used in analysisof the oxidization and reducing of alloy elements and Mn loss.
     ③With the Mn-Fe-Si-P-C multiple melt model, the activity of Mn、Fe、Si、C、P of eight typical chemical composition Mn-based alloys was calculated under thetemperature1600K~2000K, and by this results the lowest critical oxygen activity foreach elements was calculated to show that:4kinds of MnSi alloys can not be oxidizingdephosphorized on the inside of MnSi melt, and on the inside of4kinds of MnFe alloysmelt, Mn was oxidized before Si, the critical oxygen activity of P was larger than that ofFe、C、Si、Mn, it also can not finish the oxidizing dephosphorization.
     ④By coupling the melt and slag system model to analyze the thermodynamicsfeasibility of MnSi alloys alloys oxidizing dephosphorization and draw a conclusionwhich was consistent with the experimental results: it was unable to complete oxidationdephosphorizing in MnSi alloy, and suggest that the root cause of this was Si had verylow critical oxygen activity. The theoretical model shows the most molar fraction ofCaO added up to BaO-based slag to completed oxidation dephosphorization in MnFealloys is0.1, the mole fraction of SiO2less than0.18is suitable to dephosphorizationand saving Mn, and C can increase the activity of P, reduce Mn activity which also isconducive for dephosphorization and saving Mn.
     ⑤Three cases of reducing dephosphorization for manganese-based alloys wasarosed. A multiple model for the case a on the inside of Ca-Mn-Si-Fe-P-C melt wasestablished. The calculation showed that when the Ca mole fraction was greater than0.17, the dephosphorization rate began to be larger than10%, and when it was greaterthan0.32, the dephosphorizing rate was infinitely close to1. A multiple model withprecipitated phase for the case b was established. The calculation results showed thatwhen the Ca mole fraction was less than0.148, it was impossible to dephosphorize.When the Ca-content is in the range of0.154~0.294, it could effectively control thereducing dephosphorization rate. When the more fraction of Ca was0.36, thedephosphorizing rate was infinitely close to1. A coupling multiple model between meltand slag with precipitated phase for the case c was established to analyze the process of dephosphorization on the interface of slag and melt. The calculating results showed thatthe change tendency was consistent when the Ca3P2-content in slag was changing from0.1to1, and the Ca-content for beginning to dephosphorize reduced as the Ca3P2molefraction reduced, and the quantity of Ca added for reaching to the dephosphorizationlimit was reduce when l came down.
     ⑥The process of the cracking and disintegration of the Mn-Al-Fe-Si masteralloys and the effect of P on the stablity of the alloys was analyzed by experimentsdesigned. It revealed that pulverization of this alloy is due to the internal stress causedby volume change and hydrolysis. The two steps interacted with each other and led tocomplete disintegration of the alloys together, The latter provided kinetics channel forthe former and the former provided the energy for further development of the latter.Addition of Ti can decrease the hydrolysis reactions due to the lower free energy of TiCand TiP than that of AlP and Al4C3. But it did not influence phase transitions of β-Mnand ζ phase, So the addition of Ti only can reduce the powder rate of the alloys but didnot work on the crack action which just divided the alloys into smaller blocks.
引文
[1] Lisa A. Corathers, Joseph Gambogi, Peter H. Kuck, John F. Papp, Désirée E. Polyak, Kim B.Shedd.2010Minerals Yearbook FERROALLOYS[M]. U.S. Department of the Interior, U.S.Geological Survey.2010.
    [2] Survey U.S. Geological. Manganese end-use statistics[M]. in Kelly, T.D., and Matos, G.R.,comps., Historical statistics for mineral and material commodities in the United States: U.S.Geological Survey Data Series140, available online at http://pubs.usgs.gov/ds/2005/140/.(Accessed [date].)
    [3]中国工业信息部.2012年钢铁工业运行情况分析和2013年运行展望[EB/01].http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/15188138.html,2013.
    [4]阿里巴巴五金.2012年中国钢铁行业发展回顾分析[EB/01].http://info.china.alibaba.com/detail/1089308661.html,2013.
    [5]国研网. http://www.drcnet.com.cn/www/integrated/,2012.
    [6] Survey U S Geological. Mineral Commodity Summaries2012[M]. U.S. Geological Survey,Reston, Virginia,2012.
    [7]中国锰矿进口量走势图[EB/01]. www.qqthj.com,全球铁合金网,2012.
    [8]陈仁义,柏琴.中国锰矿资源现状及锰矿勘查设想[J].中国锰业,2004,22(2):1-4.
    [9]何良菊,张维庆,魏德洲,郑少奎.高磷贫碳酸锰矿石微生物的脱磷机理[J].中国锰业,1999,17(4):29-32.
    [10]张瑞香,张耀,王爽,李永全. GB/T4008-2008.锰硅合金[S].北京:中国国家标准管理委员会,2008,1-2.
    [11]凌荃,资深,甘琦, YB/T319-2007.冶金用锰矿品位及杂质含量标准[S].北京:中国国家标准管理委员会,2007,1-3.
    [12]张萍萍,田学达,刘树根,陈桢.高磷锰矿脱磷技术研究现状与展望[J].中国锰业,2006,24(1):13-16.
    [13] Liu, X. Wijk, O. Selin, R. Edstroem, J. O. Oxidizing dephosphorization of ferro-manganese[J]. Iron and Steel Society.1996,25(5):204-215.
    [14]曾世林,储少军,禹华芳,梁枝林.锰硅合金沉淀脱磷工艺制度的优化[J].铁合金,2009,(6):1-5.
    [15] Chen Er-Bao, Wang Shi-Jun. Thermodynamic Properties of Mn-C Melts[J]. Journal of Ironand Steel Research, International,2008,15(2):1-6.
    [16] J. Kim E, J. Pak J. Thermodynamics of Carbon in Liquid Ferromanganese Alloys[C].Steelmaking Conference2002, Warrendale, ISS.2002,715.
    [17] Lee Y. E. Thermodynamic assessment of liquid Mn-Fe-C system by unified interactionparameter model[J]. Isij Int,2003,43(2):144-152.
    [18] Lee Y. E. Thermodynamics of the Mn-P system[J]. MTB,1986,17(4):777-783.
    [19] Hansen M. Constitution of Binary Alloys[M]. McGraw-Hill, New York: NY,1958.
    [20] Baratashvili I. B., Tsagareishvili D. S., Dashniami I. N. Soobshch Akad Nauk Gruz SSR,1980,99:121-123.
    [21] Tagirov V. K., Kazenas E. K., Dashevskii V. Ya., Kashin V. I., Rakitina N. I. Fiz.-Khim. Osn.Metall. Margantsa [M]. Nauka, Moscow, USSR,1975.
    [22] Chizhikov D.M., Kashin V. I., Kazenas E. K., Tagirov V. K., Dashevskiy V. Ya., Rakitina N.I. Russ Metall (Metally),1975,5(52~56(English),64(Russian).
    [23] F. Grandjean, D. W. Osborne, W. G. Lyon, Flotow. H. E. Dimanganese phosphide, Mn P:heat capacity from5to350K, magnetic entropy, and thermodynamic functions to1300K[J]J Chem Thermodyn,1977,(9):549-559.
    [24] Barin I., Knacke O. Thermochemical Properties of Inorganic Substances[M]. Heidelbergand Verlag Stahleisen mbH, Düsseldorf, Berlin: Springer-Verlag,1977.
    [25] Batalin G.I., Stukalo V.A., Neshchimenko N. Ya. Enthalpies of formation of liquid alloys ofyttrium with silicon[J] Uk. Khim. Zh.,1977,(43):602-604.
    [26] Dashevskii V. Ya., Kashin V.I., Rakitina N.I., Ageev M.S. Nauka, Moscow, USSR,1976.
    [27]郭上型,董元篪. Fe-Mn-C-P系高锰熔体的热力学研究[J].金属学报,1995,(18):241-246.
    [28] Pelton Arthurd, Bale Christopherw. A modified interaction parameter formalism fornon-dilute solutions[J]. MTA,1986,17(7):1211-1215.
    [29] Darken L. S. Thermodynamics of binary metallic solutions[M]. Transactions of theMetallurgical Society of AIME American Institute of Mining, Metallurgical, and PetroleumEngineers.1967:80-89.
    [30] Dresler W. Oxygen Refining of High-Carbon Ferromanganese[J]. Canadian MetallurgicalQuartely,1989,28(2):109-115.
    [31] Ueda Shigeru, Morita Kazuki, Sano Nobuo. Thermodynamics of phosphorus in moltenSi-Fe and Si-Mn alloys[J]. MMTB,1997,28(6):1151-1155.
    [32] Miki Takahiro, Ueda Shigeru, Morita Kazuki, Sano Nobuo. Thermodynamics of phosphorusin molten Si and Si based alloys[C]. proceedings of the Proceedings of the1998TMSAnnual Meeting, San Antonio, TX, USA: Minerals, Metals&Materials Soc (TMS).1998
    [33]刘守平,唐萍.锰铁脱磷方法探讨[J].铁合金,2003,(4):5-6.
    [34]朱本立,邓美珍,董元篪,李大经.锰铁合金氧化脱磷的热力学分析[J].华东冶金学院学报,1993,(2):13-18.
    [35]王海川,王世俊,周云,吴宝国,董元旎.锰铁合金真空氧化脱磷过程成分变化研究[J].铁合金,2004,(2):24-27.
    [36]郭培民,李正邦,林功文.高碳锰铁氧化脱磷的理论分析[J].铁合金,2000,(3):1-4.
    [37]郭上型,董元篪,张友平,陈二保.锰铁合金中硅含量对锰铁合金氧化脱磷的影响[J].铁合金,1998,(1):1-5.
    [38] Maramba B., Eric R. H. Phosphide capacities of ferromanganese smelting slags[J]. MineralsEngineering,2008,21(2):132-137.
    [39] Shin Jae Hong, Park Joo Hyun. Thermodynamics of Reducing Refining of Phosphorus fromSi-Mn Alloy Using CaO-CaF2Slag[J]. MMTB,2012,43(6):1243-1246.
    [40]陈兆平,姜茂发,李殷泰.硅锰合金选择性氧化脱磷的研究[J].钢铁研究,1992,(6):3-6.
    [41] Tabuchi S., Sano N. Thermodynamics of phosphate and phosphide in CaO-CaF2melts [J].MTB,1984,15(2):351-356.
    [42] Shimpo Tomohito, Yoshikawa Takeshi, Morita Kazuki. Thermodynamic study of the effectof calcium on removal of phosphorus from silicon by acid leaching treatment[J]. MMTB,2004,35(2):277-284.
    [43] Shim Sang Chul, Morita K., Sano N. Thermodynamics of phosphorus in carbon-saturatedmanganese-based alloys[J]. Anglais,1994,(37):244-250.
    [44] Zaitsev A. I., Shelkova N. E., Kodentsov A. A. Thermodynamic properties and phaseequilibria in the silicon-phosphorous system[J]. Journal of Phase Equilibria,2000,21(6):528-533.
    [45]曾世林,刘军,李辉.锰硅合金炉外脱磷试验研究[J].铁合金,2004,(1):1-5.
    [46]相田英二,閔東晙,佐野信雄.溶融Mn-Si合金とCaO-SiO2-MnO-CaF2系スラグ間のりんの分配平衡[J]. ISIJ,1988,10(74):1931-1938.
    [47] Schmid Rainer, Chang Y. Austin. A thermodynamic study on an associated solution modelfor liquid alloys[J]. Calphad,1985,9(4):363-382.
    [48]张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007.
    [49] International Asm. Alloy phase diagrams [M]. Materials Park, Ohio, USA: ASMInternational1992.
    [50] Paek Min-Kyu, Pak Jong-Jin, Kang Youn-Bae. Phase equilibria and thermodynamics ofMn–C, Mn–Si, Si–C binary systems and Mn–Si–C ternary system by critical evaluation,combined with experiment and thermodynamic modeling[J]. Calphad,2014,46(0):92-102.
    [51] Ahmad Nazir, Pratt Johnn. Thermodynamic properties of liquid manganese-silicon alloys[J].MTA,1978,9(12):1857-1863.
    [52] Zaitsev A. I., Dobrokhotova Zh V., Litvina A. D., Mogutnov B. M. Thermodynamicproperties and phase equilibria in the Fe-P system[J]. Journal of the Chemical Society,Faraday Transactions,1995,91(4):703-712.
    [53] Zaitsev A. I., Zemchenko M. A., D Litvina A., M Mogutnov B. Thermodynamic propertiesof Mn-P alloys[J]. Z Metallkd,1993,84(3):178-184.
    [54] Batalin G. I., Stukalo V. A., N.Ya. Neshchimenko, Gladkih V. A., Luberets O. M.Thermodynamic properties of liquid alloys of silicon with nickel and yttrium[C]. thePhysicochemical Processes in the Electrothermics of Ferroalloys, Nauka, Moscow:1981.
    [55] Sichen Du, Seetharaman S., Staffansson L. I. Standard gibbs energies of formation of thecarbides of manganese by emf measurements[J]. MTB,1988,19(6):951-957.
    [56] Predel B. C-Mn (Carbon-Manganese)[M]. Springer Berlin Heidelberg.2012:139-139.
    [57] Kim Eui-Jun, You Byung-Don, Pak Jong-Jin. Thermodynamics of carbon in liquidmanganese and ferromanganese alloys[J]. Metallurgical and Materials Transactions B,2003,34(1):51-59.
    [58] Kubaschewski Oswald. Iron--Binary Phase Diagrams[M]. New York: Springer-Verlag,1982.
    [59] Chipman J., Fulton J. C., Gokcen N., Caskey Jr G. R. Activity of silicon in liquid Fe-Si andFe-C-Si alloys[J]. Acta Metallurgica,1954,2(3):439-450.
    [60] Franke P., Neuschütz D. Fe-P[M] Binary systems Part3: Binary Systems from Cs-K toMg-Zr. Springer Berlin Heidelberg.2005:1-3.
    [61] Okamoto H. The C-Fe (carbon-iron) system[J]. Journal of Phase Equilibria,1992,13(5):543-565.
    [62] Chipman John. Thermodynamics and phase diagram of the Fe-C system[J]. MT,1972,3(1):55-64.
    [63] E Schurmann, R Schmid. A short-range model for the calculation of thermodynamic mixingvariables and its application to the system iron-carbon[J]. Archiv für das Eisenhüttenwesen,1979,50(3):101-107.
    [64] Chipman John. Thermodynamics of liquid Fe-C solutions[J]. MT,1970,1(8):2163-2168.
    [65] Olesinski R. W., Kanani N., Abbaschian G. J. The P-Si (Phosphorus-Silicon) system[J].Bulletin of Alloy Phase Diagrams,1985,6(2):130-133.
    [66] Predel B. P-Si (Phosphorus-Silicon)[M]. Springer Berlin Heidelberg.1998:1-3.
    [67] Olesinski R. W., Abbaschian G. J. The C Si (Carbon-Silicon) system[J]. Bulletin of AlloyPhase Diagrams,1984,5(5):486-489.
    [68] Raghavan V. Fe-Mn-Si (Iron-Manganese-Silicon)[J]. Journal of Phase Equilibria,1994,15(6):619-620.
    [69] Sudavtsova V.S., Batalin G.I., Bondarenko T.E. Heats of Formation of Liquid Alloys of theFeSi-Mn System[J]. Zh Fiz Khim,1988,62(5):1383-1385.
    [70] Zaitsev A. I., Litvina A. D., Shelkova N. E., Mogutnov B. M. Association in ternary metallicmelts Fe-Mn-Si, Fe-Cr-P and Fe-Mn-P[J]. Thermochimica Acta,1998,314(1-2):307-315.
    [71] Perrier Ch, Kreisel J., Vincent H., Chaix-Pluchery O., Madar R. Synthesis, crystal structure,physical properties and Raman spectroscopy of transition metal phospho-silicides MSixPy(M=Fe, Co, Ru, Rh, Pd, Os, Ir, Pt)[J]. Journal of Alloys and Compounds,1997,262-263:71-77.
    [72] Korniyenko Kostyantyn. Iron-Phosphorus-Silicon[M] Ternary Alloy Systems. SpringerBerlin Heidelberg.2009:512-533.
    [73] Vavilova V. V., Palii N. A., Kovneristyi Yu K., Timofeev V. N. Nanocrystalline Fe-P-Sialloys[J]. Inorg. Mater.,2000,36(8):783-787.
    [74] Il'nitskaya O. N., Kuz'ma Yu B. Interaction of components in the Re-B-P and Re-Si-Psystems[J]. Powder Metall. Met. Ceram.,1992,31(10):848-850.
    [75]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社,2009.
    [76] M Chuiko N. Detennination of activities for slag components in consideration of ions andundecomposed compounds[J]. Izv AK Nauk SSSR Otdelenie Tekn,1958,(11):7-14.
    [77]泽村企好. CaO-SiO2二元渣系CaO的活度测量[J].铁与钢,1961,57(14):1873-1878.
    [78] A Sharma R, D Richardson F. The solubility of calcium sulphide and activities in lime-sílicamelts[J]. J lron and Steel lnst,1962,200(5):373-379.
    [79] P Rao D, R Gaskell D. The thermodynamic properies of melts in the system MnO-SiO2[J].Met Trans B,1981,12B(2):311-317.
    [80] Bale Christopher W. BaO-SiO2Binary Phase Diagram[EB/01]. FactSage.2013.
    [81]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [82] CaO-FeO Binary Phase Diagram[EB/01]. http://www.crct.polymtl.ca/fact/FactSage.2013.
    [83] CaO-FeO1.5Binary Phase Diagram[EB/01]. http://www.crct.polymtl.ca/fact/FactSage.2013.
    [84]张鉴,王潮,佟福生.多元熔渣氧化能力的计算模型[J].钢铁研究学报,1992,4(2):23-32.
    [85] FeO-SiO2Binary Phase Diagram[EB/01]. http://www.crct.polymtl.ca/fact/FactSage.2013.
    [86] Deo Brahma, Kachhawaha J. S., Tare V. B. Free energy of formation of barium ferrites[J].MTB,1976,7(3):405-409.
    [87]陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社,1984.
    [88]吴宝国,樊希安. BaCO3-BaF2-MnO2渣系对高炉锰铁脱硅的实验研究[J].华东冶金学院学报,2000,17(3):192-195.
    [89]杨希富,阎志强,樊大新,莫国宝,王玉龙,张瑞香,虞汉贤.2006. GB/T3795-2006——锰铁[S].北京:中国国家标准管理委员会,2006,2-3.
    [90] Chaudhary P. N., Minj R. K., Goel R. P. Development of a process for dephosphorisation ofhigh carbon ferromanganese[C]. the11th International Conference on Innovations in theFerro Alloy Industry, Infacon XI, New Delhi, India: Macmillan Publishers India,2007.
    [91]郭上型,董元篪. BaO-BaF2系熔剂对锰铁合金氧化脱磷的实验研究[J].铁合金,1997,(2):32-36.
    [92]郭上型,董元篪.锰铁合金用BaO-卤化物渣系脱磷的实验[J].钢铁,1998,33(1):26-28,52.
    [93] Tsukihashi Fumitaka, Nakamura Migiei, Orimoto Takashi, Sano Nobuo. Thermodynamicsof Phosphorus for the CaO-BaO-CaF2-SiO2and CaO-Al2O3Systems[J]. Tetsu-to-Hagane,1990,76(10):1664-1671.
    [94] Min D. J., Sano N. Determination of the standard gibbs energies of formation of Ba3P2andBa3(PO4)2[J]. MTB,1989,20(6):871-877.
    [95] H Yamazoye, E Ichise. Free energy changes for the reacton3Ca4P2O9(s)+P(g)+(5/2)O2(g)=4Ca3P2O8(s)[J]. I&SM,1991,18(5):75-80.
    [96] Calcium phosphide[EB/01]. http://www.alfa.com/en/GP100W.pgm?DSSTK=19115, AlfaAesar.2014.
    [97] I Zaitsev A, M Mogutnov B. A new viewpoint on the structure of molten slags [J]. Stal (InRussian),1994,9):17-22.
    [98] Min D. J., Sano N. Determination of standard free energies of formation of Ca3P2andCa2Sn at high temperatures [J]. MTB,1988,19(3):433-439.
    [99]刘新锦.无机元素化学(第二版)氮族元素[M].北京:科学出版社,2010.
    [100] Mikhailov G. G., Chernova L. A. Thermodynamic analysis of steel deoxidation withcalcium and aluminum [J]. Russ Metall,2008,2008(8):727-729.
    [101] Taguchi Kenji, Ono-Nakazato Hideki, Usui Tateo, Marukawa Katsukiyo, Katogi Ken,Kosaka Hiroaki. Complex deoxidation equilibria of molten iron by aluminum andcalcium[J]. Isij Int,2005,45(11):1572-1576.
    [102] Volkov I. G., Fomin N. A., Gordienko M. S., Monastyrskii V. Ya, But V. P., D'yakonov V. M.Deoxidation of rail steel with ferromanganese-silicon-aluminum[J]. Metallurgist,1986,30(4):123-124.
    [103] Fujisawa Toshiharu, Sakao Hiroshi. Equilibrium Relations between the Liquid Iron Alloysand the Deoxidation Products Resulting from Mn-Si-Al Complex Deoxidation[J]. Tetsu-to-Hagane,1977,63(9):1494-1503.
    [104] Inoue A., Yano N., Matsuzaki K., Masumoto T. Microstructure and superconductingproperties of melt-quenched insoluble Al-Pb and Al-Pb-Bi alloys[J]. Journal of MaterialsScience,1987,22(1):123-131.
    [105] Zhao J Z, Ratke L, Feuerbacher B. Microstructure evolution of immiscible alloys duringcooling through the miscibility gap[J]. Modelling and Simulation in Materials Science andEngineering,1998,6(2):123.
    [106] Carlberg T., Fredriksson H. The influence of microgravity on the solidification of Zn-Biimmiscible alloys[J]. MTA,1980,11(10):1665-1676.
    [107] Horn Q., Heckel R., Nassaralla C. The Effect of magnesium additions on the evolution ofPH3gas from FeSi75alloys[C], the Electric Furnace Conference, New Orleans: Iron&Steel Society.1998.
    [108] Stellman J.M., Office International Labour. Encyclopaedia of Occupational Health andSafety[M]. International Labour Office,1998.
    [109] Fluck Ekkehard. The chemistry of phosphine[M]. Inorganic Chemistry. Springer BerlinHeidelberg.1973:1-64.
    [110] Gelwicks D.H., Badanjek L.A., Dodson C.L., Jun H. P., Rowe D. T., Rowe G. D.Ferrosilicon Toxicity Review[C], the Electric Furnace Conference, Orlando: Iron&SteelSociety,1995..
    [111] Ohnuma I., Abe S., Shimenouchi S., Omori T., Kainuma R., Ishida K. Experimental andthermodynamic studies of the Fe-Si binary system[J]. Isij Int,2012,52(4):540-548.
    [112] Sigfússon Thorsteinni, Helgason rn. Rates of transformations in the ferrosilicon system[J].Hyperfine Interact,1990,54(1-4):861-867.
    [113]赵群,任存治,涂赣峰,刑鹏飞,李春材,张成祥.稀土硅化物合金中PH3气体的逸出行为[J].中国有色金属学报,2001,11(2):3.
    [114]高浩军.稀土硅化物合金粉化原因的探讨及措施[J].包钢科技,2010,36(2):21-22,48.
    [115] Cayless R.B.C. Alloy and Temper Designation Systems for Aluminum and AluminumAlloys[M]. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Vol2, ASM Handbook. Materials Park, Ohio: ASM International.1990:1,121.
    [116] Stewart J. R., Hillier A. D., Hillier J. M., Cywinski R. Structural and dynamical study ofmoment localization in β-Mn1-xInx[J]. Physical Review B,2010,82(14):144439.
    [117] Kohara Takao, Asayama Kunisuke. NMR Study of Antiferromagnetic β-Mn Alloys[J].Journal of the Physical Society of Japan,1974,37(2):401-407.
    [118] R Askeland D, P Fulay P, J Wright W. Instructor`s Solution Manual, The Science&Engineering of Materials[M]. Stamford: Cengage Learning,2011.
    [119] Mcalister A.J., Murray J.L. Al-Mn (Aluminum-Manganese)[M]. Alloy phase diagrams, Vol3, ASM Handbook. Materials Park, Ohio: ASM International1992:111-113.
    [120]马立华.锰铝中间合金的研究[D].重庆:重庆大学,2006.
    [121] Walter H. U. Binary Systems with Miscibility Gap in the Liquid State[M] Materials sciencein Space. Newyork: Sprinverlag Press,1986:343-384.
    [122] Hodgson P., Parker B. A. The composition of insoluble intermetallic phases in aluminiumalloy6010[J]. Journal of Materials Science,1981,16(5):1343-1348.
    [123] Poole C.P. Encyclopedic Dictionary of Condensed Matter Physics[M]. London: ElsevierScience,2004.
    [124] Horn Q., Heckel R., Nassaralla C. Reactive phosphide inclusions in commercialferrosilicon[J]. Metallurgical and Materials Transactions B,1998,29(2):325-329.
    [125] Johannesson B., Sigfusson Th. L. Effect of Thermal History and Internal Stresses ondisintegration of ferrosilicon[C]. the8th International Ferroalloys Congress, Beijing: ChinaScience&Technology Press,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700