用户名: 密码: 验证码:
纤维素酶修饰及其对纤维素纤维作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶在纤维素纤维织物加工中具有反应条件温和、加工过程清洁环保、处理后织物柔软性提高等优点,广泛应用于生物抛光和牛仔织物返旧整理。但是,纤维素酶处理纤维素纤维织物时,织物内部的纤维以及纤维内部被过度降解,导致织物强力损失过大。利用大分子修饰剂对纤维素酶进行改性,可以得到大体积的修饰纤维素酶。利用大体积修饰纤维素酶处理织物时,酶在织物内的渗透以及在纤维内的扩散位阻增大,水解作用更多发生在纤维和织物的表面,从而避免酶对纤维和织物造成过度损伤。
     本课题通过共价修饰和非共价修饰两种方式,将可逆可溶大分子修饰剂Eudragit(含Eudragit S-100和Eudragit L-100两种)与纤维素酶分子连接在一起,制备三类Eudragit修饰纤维素酶。(1) Eudragit共价修饰纤维素酶。通过碳二亚胺盐酸盐(EDC)活化Eudragit上的羧基,使其与纤维素酶上的氨基共价结合,得到大体积的Eudragit共价修饰纤维素酶。(2) Eudragit非共价修饰纤维素酶。通过修饰剂Eudragit与纤维素酶分子间的非共价作用,制备大体积的Eudragit非共价修饰纤维素酶。(3) Eudragit-纤维素酶-漆酶共修饰酶。通过EDC作用,使Eudragit、纤维素酶和漆酶共价交联,得到大体积的Eudragit-纤维素酶-漆酶共修饰酶。分别考察上述修饰酶在棉、麻织物抛光整理和牛仔织物返旧整理中的应用效果。课题详细研究了修饰酶的制备过程、修饰酶的结构和性质、修饰酶对纤维素纤维织物的作用模式以及修饰酶处理纤维素纤维织物的效果。主要研究内容和结论如下:
     1.研究了Eudragit修饰纤维素酶的制备。
     体积排阻色谱结果显示,与未修饰酶相比,共价修饰酶的最早被检测出时间和整个峰形出峰时间均提前,表明共价修饰酶的体积大于未修饰酶。红外光谱结果显示,非共价修饰酶谱图中存在明显的蛋白特征吸收峰。这些结果表明共价和非共价修饰均成功发生,酶蛋白分子和修饰剂分子连接在一起。
     以未修饰酶的游离氨基量和酶活为100%,制得的Eudragit S-100共价修饰纤维素酶和Eudragit L-100共价修饰纤维素酶的氨基修饰率分别为50.72%和51.98%,纤维素酶相对酶活分别为80.04%和76.88%;Eudragit S-100非共价修饰酶和Eudragit L-100非共价修饰酶的纤维素酶相对酶活分别为82.2%和78.2%;Eudragit S-100-纤维素酶-漆酶共修饰酶和Eudragit L-100-纤维素酶-漆酶共修饰酶的氨基修饰率分别为38.06%和42.24%,纤维素酶相对酶活分别为78.46%和75.62%,漆酶相对酶活分别为88.28%和86.76%。
     2.研究了修饰纤维素酶的蛋白二级结构,酶学性质,以及重复使用性能。
     圆二色谱和荧光光谱结果表明,修饰会对酶蛋白的二级结构产生影响。修饰后酶蛋白二级结构中的α-螺旋结构所占比例下降,β-折叠和β-转角结构所占比例上升,并且Eudragit L-100修饰剂对蛋白二级结构的影响大于Eudragit S-100。
     酶的温度和pH稳定性实验结果表明,与未修饰酶相比,Eudragit修饰酶的温度和pH稳定性发生改变。Eudragit共价修饰纤维素酶在60℃~80℃和pH6.0~9.0范围内的稳定性提高。Eudragit非共价修饰纤维素酶的最适作用温度由未修饰纤维素酶的50℃提高至60℃,最适作用pH不变。Eudragit-纤维素酶-漆酶共修饰酶的最适作用温度为50℃,最适作用pH为5.0。
     修饰酶的重复使用性能实验结果表明,经5次重复使用后,Eudragit共价修饰纤维素酶的酶活保留率在50%以上,Eudragit非共价修饰纤维素酶的酶活保留率在30%左右,Eudragit-纤维素酶-漆酶共修饰酶的纤维素酶酶活与漆酶酶活保留率均为40%左右,均具有一定的重复使用性能。
     3.研究了Eudragit S-100共价修饰纤维素酶处理对纤维结构的影响,以及EudragitS-100共价修饰纤维素酶对不同形态底物、不同纤维素纤维织物的水解作用。
     通过XRD、ATR-FTIR和亚甲基蓝吸附法分别对酶处理前后棉纤维的结晶度、表面区域氢键、可及性进行研究。结果表明,与Eudragit S-100共价修饰纤维素酶处理相比,未修饰纤维素酶处理对纤维无定形区、表面区域分子间氢键以及内部孔道结构的破坏更大。
     未修饰纤维素酶与Eudragit S-100共价修饰纤维素酶水解不同形态底物(棉织物,棉纱线,棉纤维)的实验结果表明,当底物形态分别为纤维和纱线时,未修饰酶处理棉纤维比处理棉纱线生成的还原糖量多39.90%,修饰酶处理棉纤维比处理棉纱线生成的还原糖量多71.95%;当底物形态分别为纱线和织物时,未修饰酶的水解作用不受影响,而修饰酶处理棉织物生成的还原糖量少于处理棉纱线生成的还原糖量。可以看出,织物形态对修饰酶水解作用的影响大于对未修饰酶水解作用的影响。
     未修饰纤维素酶与Eudragit S-100共价修饰纤维素酶水解苎麻织物、棉织物、丝光棉织物、粘胶纤维织物的实验结果显示,当织物中纤维可及性增大时,对未修饰纤维素酶水解作用影响更大,Eudragit S-100共价修饰纤维素酶对织物中纤维可及性增大的敏感性较低。
     4.研究了Eudragit S-100共价修饰纤维素酶在棉、苎麻织物抛光整理中的应用。
     研究发现,当纤维素酶酶活浓度为5.64U/mL时,未修饰和修饰纤维素酶处理棉织物的减量率分别为7.26%和5.34%、苎麻织物的减量率分别为2.79%和2.62%、棉织物中纤维铜值分别为0.04861和0.02790、苎麻织物中纤维铜值分别为0.02427和0.02286。与未修饰酶处理相比,修饰酶处理织物减量率较小,纤维铜值较低,表明未修饰酶处理对棉和苎麻织物中纤维的水解作用更强,损伤更大。
     当纤维素酶酶活浓度为1.88U/mL时,未修饰和修饰纤维素酶处理棉织物的强力损失分别为15.09%和5.61%、苎麻织物的强力损失分别为24.60%和10.65%。可以看出,Eudragit S-100共价修饰纤维素酶处理织物的强力损失明显低于未修饰纤维素酶处理织物的强力损失。
     SEM和AFM结果表明,未修饰和修饰纤维素酶处理均能去除棉和苎麻织物中纤维表面的微原纤,改善织物表面形貌,但未修饰酶处理织物中断裂纤维的数量明显多于修饰酶处理织物中断裂纤维数量。
     5.研究了Eudragit S-100共价修饰纤维素酶和Eudragit-纤维素酶-漆酶共修饰酶在牛仔织物返旧整理中的应用。
     当纤维素酶酶活浓度为5.64U/mL时,未修饰纤维素酶和Eudragit S-100共价修饰纤维素酶处理牛仔织物的CIE L值接近,均为25左右,表明褪色效果相当,织物强力损失分别达到46.21%和30.90%。
     在纤维素酶酶活为1.88U/mL时,未修饰纤维素酶、Eudragit S-100共价修饰纤维素酶、Eudragit S-100-纤维素酶-漆酶共修饰酶处理牛仔织物的CIE L值分别为22.91、22.68和25.76,处理牛仔织物的强力损失分别达到30.13%、13.41%和12.67%。利用Eudragit-纤维素酶-漆酶共修饰酶进行牛仔织物返旧整理,织物既达到了很好的褪色效果,又具有很高的强力保留。
Cellulases are the most successfully used enzymes in textile wet processing, such asbiopolishing, and denim washing. Cellulase treatments have many advantages, such as mildreaction conditions, clean environment-friendly processing, and improved flexibility of fabric.However, the use of cellulases used in textile processes often results in a certain loss ofcellulosic fabric strength. Cellulases can easily penetrate cellulosic fibers, leading tosignificant losses of weight and tensile strength. Tensile strength loss can be minimized bycellulase modification. Enlarging the molecule of enzyme will limit the enzyme’s action morerelatively to the surface of the cellulosic fiber and fabric, and the diffusion of an enlargedenzyme molecule is significantly inhibited particularly in the interior of cellulosic fibers.
     In this study, cellulases were modified with Eudragit, using carbodiimide (EDC)covalently coupling and non-covalent methods. Cellulase, laccase and Eudragit wereco-modified with covalently coupling method. The modified enzymes were applied tobio-polishing of cellulosic fabrics or denim washing, respectively. Preparation of modifiedenzymes, structure and nature of modified enzymes, action mode of modified cellulase oncellulosic fabrics, effects of treatments of modified enzymes on cellulosic fabrics, had beenstudied in detail. The research contents and conclusions were as follows:
     1. Preparation of modified enzymes was studied.
     The results of gel filtration analysis revealed that the earliest detected times of covalentmodified enzymes were earlier than those of free enzymes. This result indicated that covalentmodified enzymes had a higher molecular weight than free enzymes. The typical absorptionof protein was detected in FTIR spectra of modified cellulases with non-covalent method. Theresults showed that enzymes were successfully modified with Eudragit.
     The modification rates of free amino of covalent-Eudragit S-100-cellulase andcovalent-Eudragit L-100-cellulase reached50.72%and51.98%, respectively. The relativecellulase activities of covalent-Eudragit S-100-cellulase and covalent-EudragitL-100-cellulase were80.04%and76.88%, respectively. The relative cellulase activities ofnon-covalent-Eudragit S-100-cellulase and non-covalent-Eudragit L-100-cellulase were82.20%and78.20%, respectively. The modification rates of free amino of EudragitS-100-cellulase-laccase and Eudragit L-100-cellulase-laccase reached38.06%and42.24%,respectively. The relative cellulase activities of Eudragit S-100-cellulase-laccase and EudragitL-100-cellulase-laccase were78.46%and75.62%, respectively. The relative laccaseactivities of Eudragit S-100-cellulase-laccase and Eudragit L-100-cellulase-laccase were88.28%and86.76%, respectively.
     2. The second structure of protein, temperature and pH stability, and reusability ofmodified enzymes were studied.
     The results of Circular dichroism and Fluorescence emission spectra indicated that thesecond structure of enzyme protein could be changed afier the modification. The proportionof helix reduced, and the proportions of strand and turns increased. Moreover, the morechange of second structure of protein caused by Eudragit L-100than Eudragit S-100.
     This study showed that the modification of cellulase via covalent binding onto Eudragitgained better stability, especially at pH6.0~9.0and temperature60~80℃. The cellulasemodification with non-covalent method changed its temperature profile, and the maximumactivities of the free and modified cellulases were observed at50℃and60℃, respectively.The optimum temperature and the optimum pH of Eudragit-cellulase-laccase were50℃andpH5.0, respectively.
     Covalent-Eudragit-cellulase retained about50%of its original activity after five cyclesof repeated uses, showing high reusability. Non-covalent-Eudragit-cellulase retained about30%of its original activity after five cycles of repeated uses. Eudragit-cellulase-laccase retainedabout40%of its original cellulase and laccase activities.
     3. The effects of covalent-Eudragit S-100-cellulase treatment on cotton fiber structureand the hydrolysis of different cellulosic fabrics or different forms of substrates withcovalent-Eudragit S-100-cellulase were studied.
     The results of XRD, ATR-FTIR and fibre accessibility indicated that the hydrolysisoccurring in the interior of the cotton fibers was limited during covalent-EudragitS-100-cellulase treatment.
     The results of hydrolysis of different forms of substrates (cotton fabric, cotton yarn,cotton fiber) indicated that the reducing sugars released from cotton fiber were39.90%morethan that from cotton yarn at free cellulase treatment; the reducing sugars released from cottonfiber were71.95%more than that from cotton yarn at covalent-Eudragit S-100-cellulasetreatment; the reducing sugars released from cotton yarn and fabric were close at freecellulase treatment; the reducing sugars released from cotton fabric were less than that fromcotton yarn at covalent-Eudragit S-100-cellulase treatment.
     The results of hydrolysis viscose fabrics, mercerizing fabrics, cotton fabrics and ramiefabrics by free cellulase or covalent-Eudragit S-100-cellulase treatments showed the moreinfluence on hydrolysis by free cellulase with the increase of fiber accessibility of the fabrics.
     4. The enzymatic treatments on bio-polishing of cotton and ramie fabrics using freecellulase or covalent-Eudragit S-100-cellulase were investigated.
     The results revealed that weight losses of cotton fabrics with free cellulase orcovalent-Eudragit S-100-cellulase treatments (cellulase activity5.64U/mL) were7.26%and5.34%, respectively; weight losses of ramie fabrics with free cellulase or covalent-EudragitS-100-cellulase treatments were2.79%and2.62%, respectively; fiber copper values ofcotton fabrics with free cellulase or covalent-Eudragit S-100-cellulase treatments were0.04861and0.02790, respectively; fiber copper values of ramie fabrics with free cellulase orcovalent-Eudragit S-100-cellulase treatments were0.02427and0.02286, respectively. Theresults showed that the cotton and ramie fibers treated with free cellulase were morehydrolyzed and more destruction than those treated with covalent-Eudragit S-100-cellulase.
     The results revealed that tensile strengths of cotton fabrics with free cellulase orcovalent-Eudragit S-100-cellulase treatments (cellulase activity1.88U/mL) were15.09%and5.61%, respectively; tensile strengths of ramie fabrics with free cellulase orcovalent-Eudragit S-100-cellulase treatments were24.60%and10.65%, respectively.
     As seen from TM-AFM and SEM images, the covalent-Eudragit S-100-cellulasetreatment could produce smooth cotton fibre surfaces without causing serious damages to thefibre surface structures.
     5. The enzymatic treatments of the denim fabrics using free cellulase and modifiedenzymes were investigated.
     At a cellulase activity of5.64U/mL, CIE L values of the denim fabrics treated with thefree and covalent Eudragit-cellulase were close to25. This result revealed that the enzymatictreatments with the free and covalent Eudragit-cellulase produced similar decolorationefficiency for the denim fabrics. The tensile strength losses of denim fabrics treated with freecellulase or covalent Eudragit-cellulase reached46.21%and30.9%, respectively.
     At a cellulase activity of1.88U/mL, CIE L values of the denim fabric treated with freecellulase, covalent Eudragit-cellulase and Eudragit-cellulase-laccase were22.91,22.68and25.76, respectively. The tensile strength losses of the denim fabric treated with free cellulase,covalent Eudragit-cellulase and Eudragit-cellulase-laccase were30.13%,13.41%and12.67%, respectively. The enzymatic treatments with Eudragit-cellulase-laccase produced betterdecoloration efficiency and higher tensile strength for the denim fabrics.
引文
1. Johnson E A,Sakajoh M,Halliwell G,et al. Saccharification of complex cellulosic substrates by thecellulase system from clostridium thermocellum[J]. Applied and Environmental Microbiology,1982,43(5):1125-1132.
    2.张名佳.纤维素酶高效水解_回收再用与反应机理的研究[D]:[博士学位论文].天津:天津大学,2010.
    3. Zhang Y H P,Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems[J]. Biotechnology and Bioengineering,2004,88(7):797-824.
    4. Lee H J,Brown J R M. A comparative structural characterization of two cellobiohydrolases fromTrichoderma reesei: a high resolution electron microscopy study[J]. Journal of Biotechnology,1997,57(1):127-136.
    5. Linder M, Teeri T T. The roles and function of cellulose-binding domains[J]. Journal ofBiotechnology,1997,57(1):15-28.
    6.刘树立,王华,王春艳等.纤维素酶分子结构及作用机理的研究进展[J].食品科技,2007,32(7):12-15.
    7.郭锐.固定化纤维素酶的制备及其性质研究[D]:[硕士学位论文].天津:天津大学,2009.
    8. Himmel M E,Ding S Y,Johnson D K,et al. Biomass recalcitrance: engineering plants and enzymesfor biofuels production[J]. Science,2007,315(5813):804-807.
    9. Linder M, Teeri T T. The roles and function of cellulose-binding domains[J]. Journal ofBiotechnology,1997,57(1):15-28.
    10.汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能[J].生物工程进展,2000,20(2):37-40.
    11. Poole D M,Hazlewood G P,Huskisson N S,et al. The role of conserved tryptophan residues in theinteraction of a bacterial cellulose binding domain with its ligand[J]. FEMS Microbiology Letters,1993,106(1):77-83.
    12. Divne C,Stahlberg J,Reinikainen T,et al. The three-dimensional crystal structure of the catalytic coreof cellobiohydrolase I from Trichoderma reesei[J]. Science,1994,265(5171):524-528.
    13. Divne C,St hlberg J,Teeri T T,et al. High-resolution crystal structures reveal how a cellulose chainis bound in the50long tunnel of cellobiohydrolase I from Trichoderma reesei[J]. Journal ofMolecular Biology,1998,275(2):309-325.
    14. St hlberg J,Divne C,Koivula A,et al. Activity studies and crystal structures of catalytically deficientmutants of cellobiohydrolase I from Trichoderma reesei[J]. Journal of Molecular Biology,1996,264(2):337-349.
    15. Srisodsuk M,Kleman-Leyer K,Ker nen S,et al. Modes of action on cotton and bacterial cellulose ofa homologous endoglucanase-exoglucanase pair from Trichoderma reesei[J]. European Journal ofBiochemistry,1998,251(3):885-892.
    16.武彬.纤维材料酶解机理分析与应用策略探讨[D]:[博士学位论文].济南:山东大学,2007.
    17. Reese E T,Siu R G H,Levinson H S. The biological degradation of soluble cellulose derivatives andits relationship to the mechanism of cellulose hydrolysis[J]. Journal of Bacteriology,1950,59(4):485.
    18.夏黎明.可再生纤维素资源酶法降解的研究进展[J].林产化工通讯,1999,33(1):23-28.
    19. Gilligan W,Reese E T. Evidence for multiple components in microbial cellulases[J]. Canadian Journalof Microbiology,1954,1(2):90-107.
    20. Walker L P,Wilson D B. Enzymatic hydrolysis of cellulose: an overview[J]. Bioresource Technology,1991,36(1):3-14.
    21. Sheehan J,Himmel M. Enzymes, energy, and the environment: a strategic perspective on the USDepartment of Energy's research and development activities for bioethanol[J]. BiotechnologyProgress,1999,15(5):817-827.
    22. Lynd L R,Weimer P J,Van Zyl W H,et al. Microbial cellulose utilization: fundamentals andbiotechnology[J]. Microbiology and Molecular Biology Reviews,2002,66(3):506-577.
    23. Koo H,Ueda M,Wakida T,et al. Cellulase treatment of cotton fabrics[J]. Textile Research Journal,1994,64(2):70-74.
    24. Cavaco-Paulo A,Cortez J,Almeida L. The effect of cellulase treatment in textile washing processes[J].Journal of the Society of Dyers and Colourists,1997,113(7-8):218-222.
    25. Li Y, Hardin I R. Treating cotton with cellulases and pectinases: effects on cuticle and fiberproperties[J]. Textile Research Journal,1998,68(9):671-679.
    26. Tyndall R M. Improving the softness and surface appearance of cotton fabrics and garments bytreatment with cellulase enzymes[J]. Textile Chemist&Colorist,1992,24(6):23-26.
    27. Chikkodi S V,Khan S,Mehta R D. Effects of biofinishing on cotton/wool blended fabrics[J]. TextileResearch Journal,1995,65(10):564-569.
    28. Cavaco-Paulo A,Almeida L. Cellulase hydrolysis of cotton cellulose: the effects of mechanical action,enzyme concentration and dyed substrates[J]. Biocatalysis and Biotransformation,1994,10(1-4):353-360.
    29.阎克路.染整工艺学教程(第一分册)[M].北京:中国纺织出版社,2005.125.
    30.胡映清.酶法去除棉织物上残留棉籽壳的基础研究[D]:[硕士学位论文].上海:东华大学,2010.
    31.范雪荣.生物酶在棉针织物染整加工中的应用[J].针织工业,2008,(5):47-52.
    32. Csiszár E,Szakács G,Rusznak I. Combining traditional cotton scouring with cellulase enzymatictreatment[J]. Textile Research Journal,1998,68(3):163-167.
    33. Csiszár E,Losonczi A,Szakács G,et al. Enzymes and chelating agent in cotton pretreatment[J].Journal of Biotechnology,2001,89(2):271-279.
    34. Csiszár E,Urbánszki K,Szakács G. Biotreatment of desized cotton fabric by commercial cellulase andxylanase enzymes[J]. Journal of Molecular Catalysis B: Enzymatic,2001,11(4):1065-1072.
    35. Losonczi A,Csiszar E,Szakács G,et al. Role of the EDTAchelating agent in bioscouring of cotton[J].Textile Research Journal,2005,75(5):411-417.
    36. Yang C Q,Zhou W,Lickfield G C,et al. Cellulase treatment of durable press finished cotton fabric:Effects on fabric strength, abrasion resistance, and handle[J]. Textile Research Journal,2003,73(12):1057-1062.
    37.吴赞敏.棉织物环境友好型生物-化学法超柔软整理及模糊专家评估系统的开发研究[D]:[博士学位论文].天津:天津工业大学,2003.
    38. Csiszár E, Somlai P. Improving softness and hand of linen and linen-containing fabrics withfinishing[J]. AATCC Review,2004,4(3):17-21.
    39.王革辉,王芳,赵涛.纤维素酶处理对高支纯苎麻织物性能的影响[J].纺织学报,2010,(9):45-48.
    40. Shah S R. Chemistry and applications of cellulase in textile wet processing[J]. Research Journal ofEngineering Sciences,2013,2(7):1-5.
    41. Pere J,Puolakka A,Nousiainen P,et al. Action of purified Trichoderma reesei cellulases on cottonfibers and yarn[J]. Journal of Biotechnology,2001,89(2):247-255.
    42. Sreenath H K,Shah A B,Yang V W,et al. Enzymatic polishing of jute/cotton blended fabrics[J].Journal of Fermentation and Bioengineering,1996,81(1):18-20.
    43. Fu K,Lu D. Effect of ethanediamine on bio-polishing of cotton fabrics with cellulase[J]. Cellulose,2013,20(6):3093-3100.
    44. Pazarlio lu N K,Sarii ik M,Telefoncu A. Treating denim fabrics with immobilized commercialcellulases[J]. Process Biochemistry,2005,40(2):767-771.
    45. Saravanan D,Vasanthi N S,Ramachandran T. A review on influential behaviour of biopolishing ondyeability and certain physico-mechanical properties of cotton fabrics[J]. Carbohydrate Polymers,2009,76(1):1-7.
    46. Kan C W,Yuen C W M,Wong W Y. Optimizing color fading effect of cotton denim fabric by enzymetreatment[J]. Journal ofApplied Polymer Science,2011,120(6):3596-3603.
    47. Andreaus J,Campos R,Gübitz G,et al. Influence of cellulases on indigo backstaining[J]. TextileResearch Journal,2000,70(7):628-632.
    48. Cavaco-Paulo A,Morgado J,Almeida L,et al. Indigo backstaining during cellulase washing[J].Textile Research Journal,1998,68(6):398-401.
    49. Miettinen-Oinonen A,Londesborough J,Joutsjoki V,et al. Three cellulases from Melanocarpusalbomyces for textile treatment at neutral pH[J]. Enzyme and Microbial Technology,2004,34(3):332-341.
    50.郝龙云.纤维素酶对靛蓝染色棉织物的作用及反沾色机理的研究[D]:[博士学位论文].青岛:青岛大学,2008.
    51. Mamma D,Kalantzi S A,Christakopoulos P. Effect of adsorption characteristics of a modifiedcellulase on indigo backstaining[J]. Journal of Chemical Technology and Biotechnology,2004,79(6):639-644.
    52.陈新琪,易长海,甘厚磊等.超声波条件下纤维素酶的活性及其在牛仔布洗水中的应用[J].天津工业大学学报,2012,31(5):55-58.
    53.蔡再生.纤维化学与物理[M].北京:中国纺织出版社,2004.188.
    54.蒋少军,吴红玲,张红. Lyocell纤维原纤化酶处理技术的研讨[J].染整技术,2005,27(9):11-14.
    55. Morgado J,Cavaco-Paulo A,Rousselle M A. Enzymatic treatment of lyocell-clarification of depillingmechanisms[J]. Textile Research Journal,2000,70(8):696-699.
    56. Kumar A, Partell C,Lepola M. Enzymatic treatment of man-made cellulosic fabrics[J]. TextileChemist&Colorist,1994,26(10):25-28.
    57. Shin Y,Son K,Yoo D. Structural changes in tencel by enzymatic hydrolysis[J]. Journal of AppliedPolymer Science,2000,76(11):1644-1651.
    58. Lenting H B M,Warmoeskerken M. Guidelines to come to minimized tensile strength loss uponcellulase application[J]. Journal of Biotechnology,2001,89(2):227-232.
    59. Bower B S,Clarkson K A,Larenas EA,et al. Enlarged cellulase compositions for use in the treatmentof textiles[P]. European Patent,WO1998028411A2.1998-07-02.
    60. Azevedo H,Bishop D,Cavaco-Paulo A. Effects of agitation level on the adsorption, desorption, andactivities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA(Cellulomonas fimi)[J]. Enzyme and Microbial Technology,2000,27(3):325-329.
    61.郭勇.酶改性技术研究[J].华南理工大学学报(自然科学版),2007,35(10):143-146.
    62.刘军平.聚乙二醇修饰对去折叠胰蛋白酶的影响[D]:[硕士学位论文].南昌:南昌大学,2012.
    63. Villalonga R,Tachibana S,Pérez Y,et al. Increased conformational and thermal stability propertiesfor phenylalanine dehydrogenase by chemical glycosidation with end-group activated dextran[J].Biotechnology Letters,2005,27(17):1311-1317.
    64. Park J W,Park K,Song H,et al. Saccharification and adsorption characteristics of modified cellulaseswith hydrophilic/hydrophobic copolymers[J]. Journal of Biotechnology,2002,93(3):203-208.
    65.张裕卿,李滨县.聚氧乙烯-马来酸酐聚合物改性纤维素酶催化酸水解盾叶薯蓣薯蓣皂苷元的研究[J].中草药,2007,38(4):527-530.
    66. Kotorman M,Cseri A,Laczko I,et al. Stabilization of α-chymotrypsin in aqueous organicsolvents by chemical modification with organic acid anhydrides [J]. Journal of Molecular Catalysis B:Enzymatic,2009,59(1-3):153-157.
    67. Bund R K,Singhal R S. An alkali stable cellulase by chemical modification using maleic anhydride[J].Carbohydrate Polymers,2002,47(2):137-141.
    68. Venkatesh R, Sundaram P V. Modulation of stability properties of bovine trypsin after in vitrostructural changes with a variety of chemical modifiers[J]. Protein Engineering,1998,11(8):691-698.
    69. Wang M,Qi W,Yu Q,et al. Cross-linking enzyme aggregates in the macropores of silica gel: apractical and efficient method for enzyme stabilization[J]. Biochemical Engineering Journal,2010,52(2):168-174.
    70.薛勇.木瓜蛋白酶的化学修饰及固定化研究[D]:[硕士学位论文].上海:东华大学,2009.
    71. Silva C J S M,Prabaharan M,Gübitz G,et al. Treatment of wool fibres with subtilisin andsubtilisin-PEG[J]. Enzyme and Microbial Technology,2005,36(7):917-922.
    72. Silva C J S M,Zhang Q,Shen J,et al. Immobilization of proteases with a water soluble–insolublereversible polymer for treatment of wool[J]. Enzyme and Microbial Technology,2006,39(4):634-640.
    73. Shen J,Rushforth M,Cavaco-Paulo A,et al. Development and industrialisation of enzymaticshrink-resist process based on modified proteases for wool machine washability[J]. Enzyme andMicrobial Technology,2007,40(7):1656-1661.
    74. Tzanov T,Costa S A,Gübitz G M,et al. Hydrogen peroxide generation with immobilized glucoseoxidase for textile bleaching[J]. Journal of Biotechnology,2002,93(1):87-94.
    75.胡英俊,范雪荣,王强等.羊毛织物的固定化溶菌酶抗菌整理[J].印染,2008,34(9):8-10.
    76.胡英俊,范雪荣,王强等.溶菌酶在羊毛织物上的固定化[J].毛纺科技,2008(10):15-18.
    77.王强,高笑笑,范雪荣等.溶菌酶在羊毛表面的静电自组装固定化及其抗菌性能[J].化学学报,2010,68(20):2099-2103.
    78.黄栋,范雪荣,崔莉等. MTG酶催化羊毛固定化溶菌酶的酶学性质及抗菌性能[J].化工进展,
    2009,28(7):1231-1236.
    1. Khan M Z I,Prebeg,Kurjakovi N. A pH-dependent colon targeted oral drug delivery system usingmethacrylic acid copolymers: I. Manipulation of drug release using Eudragit L100-55andEudragit S100combinations[J]. Journal of Controlled Release,1999,58(2):215-222.
    2. Smith E,Schroeder M,Guebitz G,et al. Covalent bonding of protease to different sized entericpolymers and their potential use in wool processing[J]. Enzyme and Microbial Technology,2010,47(3):105-111.
    3. Wang R,Kim J H,Kim B S,et al. Preparation and characterization of non-covalently immobilizedamylosucrase using a pH-dependent autoprecipitating carrier[J]. Bioresource Technology,2011,102(10):6370-6374.
    4. Zhou J. Immobilization of cellulase on a reversibly soluble-insoluble support: properties andapplication[J]. Journal ofAgricultural and Food Chemistry,2010,58(11):6741-6746.
    5. Zhu J,Zhang Y,Lu D,et al. Temperature-responsive enzyme-polymer nanoconjugates with enhancedcatalytic activities in organic media[J]. Chemical Communications,2013,49(54):6090-6092.
    6.周玉恒,张厚瑞,蔡爱华等. Eudragit L-100固定球毛壳霉菌木聚糖酶酶学性质的研究[J].食品科学,2007,28(3):198-203.
    7. Zhang Y,Tang L,An X,et al. Modification of cellulase and its application to extraction of diosgeninfrom Dioscorea zingiberensis CH Wright[J]. Biochemical Engineering Journal,2009,47(1):80-86.
    8.周文龙.酶在纺织中的应用[M].中国纺织出版社,2002:355-356.
    9.张鹏.以ABTS为底物测定漆酶活力的方法[J].印染助剂,2007,24(1):43-45.
    10.丛峰松.生物化学实验[M].上海交通大学出版社,2005:119-120.
    11. Lin M,Lu D,Zhu J,et al. Magnetic enzyme nanogel (MENG): a universal synthetic route forbiocatalysts[J]. Chemical Communications,2012,48(27):3315-3317.
    12. Kweon H Y,Um I C,Park Y H. Structural and thermal characteristics of Antheraea pernyi silkfibroin/chitosan blend film[J]. Polymer,2001,42(15):6651-6656.
    1.吴颉.磁性高分子微球固定化α-淀粉酶的研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,
    2003.
    2.陈实公.固定化纤维素酶的制备及其性质研究[D]:[硕士学位论文].合肥:合肥工业大学,2006.
    3.黄曼,卞科.蛋白质疏水性测定方法研究进展[J].粮油食品科技,2004,12(2):31-32.
    4. Greenfield N J,Fasman G D. Computed circular dichroism spectra for the evaluation of proteinconformation[J]. Biochemistry,1969,8(10):4108-4116.
    5. Kelly S M, Price N C. The application of circular dichroism to studies of protein folding andunfolding[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1997,1338(2):161-185.
    6. Liu H,Webster T J. Nanomedicine for implants: A review of studies and necessary experimentaltools[J]. Biomaterials,2007,28(2):354-369.
    7.董斌.脂肪酶构象的刻录及荧光光谱分析[D]:[硕士学位论文].杭州:浙江大学,2006.
    8. Dourado F,Bastos M,Mota M,et al. Studies on the properties of Celluclast/Eudragit L-100conjugate[J]. Journal of Biotechnology,2002,99(2):121-131.
    9.沈琼,黄滨,邵嘉亮等.运用圆二色谱研究酶与化合物相互作用的机理[J].中山大学学报:自然科学版,2006,45(4):62-64.
    10.陈忍忍.蛋白酶的化学修饰及其在羊毛防毡缩整理中的应用[D]:[硕士学位论文].无锡:江南大学,2012.
    11. Khoshnevisan K, Bordbar A K, Zare D, et al. Immobilization of cellulase enzyme onsuperparamagnetic nanoparticles and determination of its activity and stability[J]. ChemicalEngineering Journal,2011,171(2):669-673.
    12.罗贵民.酶工程[M].北京:化学工业出版社,2003:121-165.
    13. Fujimura M,Mori T,Tosa T. Preparation and properties of soluble-insoluble immobilized proteases[J].Biotechnology and Bioengineering,1987,29(6):747-752.
    14. Taniguchi M,Tanahashi S,Fujii M. Properties and repeated use of a reversibly soluble-insoluble yeastlytic enzyme[J].Applied Microbiology and Biotechnology,1990,33(6):629-632.
    15. Dourado F,Bastos M,Mota M,et al. Studies on the properties of Celluclast/Eudragit L-100conjugate[J]. Journal of Biotechnology,2002,99(2):121-131.
    16. Cong L,Kaul R,Dissing U,et al.A model study on Eudragit and polyethyleneimine as soluble carriersof α-amylase for repeated hydrolysis of starch[J]. Journal of Biotechnology,1995,42(1):75-84.
    17. Taniguchi M,Kobayashi M,Fujii M. Properties of a reversible soluble–insoluble cellulase and itsapplication to repeated hydrolysis of crystalline cellulose[J]. Biotechnology and Bioengineering,1989,34(8):1092-1097.
    18.柴梅,袁振宏,颜涌捷.肠溶衣聚合物固定化纤维素酶性质的研究[J].微生物学通报,2007,34(3):410-413.
    1. Mansfield S D,Mooney C,Saddler J N. Substrate and enzyme characteristics that limit cellulosehydrolysis[J]. Biotechnology Progress,1999,15(5):804-816.
    2. Lynd L R,Weimer P J,Van Zyl W H,et al. Microbial cellulose utilization: fundamentals andbiotechnology[J]. Microbiology and Molecular Biology Reviews,2002,66(3):506-577.
    3. Fierobe H P,Bayer E A,Tardif C,et al. Degradation of cellulose substrates by cellulosome chimerasSubstrate targeting versus proximity of enzyme components[J]. Journal of Biological Chemistry,2002,277(51):49621-49630.
    4.武彬.纤维材料酶解机理分析与应用策略探讨[D]:[博士学位论文].济南:山东大学,2007.
    5.周文龙.酶在纺织中的应用酶活[M].中国纺织出版社,2002:355-356.
    6. Graham D. Characterization of physical adsorption systems. III. The separate effects of pore size andsurface acidity upon the adsorbent capacities of activated carbons[J]. The Journal of PhysicalChemistry,1955,59(9):896-900.
    7. Heinze T,Liebert T. Unconventional methods in cellulose functionalization[J]. Progress in PolymerScience,2001,26(9):1689-1762.
    8.肖青,万金泉.桉木浆半纤维素含量对再生纤维超分子结构及成纸性能的影响[J].纸和造纸,2009,28(7):30-34.
    9. Cao Y, Tan H. Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-raydiffraction[J]. Enzyme and Microbial Technology,2005,36(2):314-317.
    10. Wang L,Zhang Y,Gao P,et al. Changes in the structural properties and rate of hydrolysis of cottonfibers during extended enzymatic hydrolysis[J]. Biotechnology and Bioengineering,2006,93(3):443-456.
    11. Park S,Venditti R A,Abrecht D G,et al. Surface and pore structure modification of cellulose fibersthrough cellulase treatment[J]. Journal of Applied Polymer Science,2007,103(6):3833-3839.
    12. Cavaco-Paulo A,Almeida L,Bishop D. Effects of agitation and endoglucanase pretreatment on thehydrolysis of cotton fabrics by a total cellulase[J]. Textile Research Journal,1996,66(5):287-294.
    13. Cavaco-Pauio A,Almeida L,Bishop D. Cellulase activities and finishing effects[J]. Textile Chemist&Colorist,1996,28(6):28-32.
    14. Buschle-Diller G,Zeronian S H,Pan N, et al. Enzymatic hydrolysis of cotton, linen, ramie, andviscose rayon fabrics[J]. Textile Research Journal,1994,64(5):270-279.
    15. Rousselle M A,Bertoniere N R,Howley P S,et al. Effect of purified Trichoderma reesei cellulaseson the supramolecular structure of cotton cellulose[J]. Textile Research Journal,2003,73(10):921-928.
    16. Caparrós C,López C,Torrell M,et al. Treatment of cotton with an alkaline Bacillus spp cellulase:Activity towards crystalline cellulose[J]. Biotechnology Journal,2012,7(2):275-283.
    17. Ribitsch V,Stana‐Kleinschek K,Kreze T,et al. The significance of surface charge and structure onthe accessibility of cellulose fibres[J]. Macromolecular Materials and Engineering,2001,286(10):648-654.
    18. Ciolacu D, Kovac J, Kokol V. The effect of the cellulose-binding domain from Clostridiumcellulovorans on the supramolecular structure of cellulose fibers[J]. Carbohydrate Research,2010,345(5):621-630.
    19.吕惠琳,马邕文,万金泉等.综纤维素氢键模式的研究[J].中国造纸学报,2011,26(1):1-5.
    1. Bhat M K. Cellulases and related enzymes in biotechnology[J]. Biotechnology Advances,2000,18(5):355-383.
    2. Kumar V,Meenakshisundaram S,Selvakumar N. Conservation of cellulase enzyme in biopolishingapplication of cotton fabrics[J]. Journal of the Textile Institute,2008,99(4):339-346.
    3. Pere J,Puolakka A,Nousiainen P,et al. Action of purified Trichoderma reesei cellulases on cottonfibers and yarn[J]. Journal of Biotechnology,2001,89(2):247-255.
    4. Kumar A,Yoon M,Purtell C. Optimizing the use of cellulase enzymes in finishing cellulosic fabrics[J].Textile Chemist&Colorist,1997,29(4):37-42.
    5.吕家华.纤维素酶对纤维素纤维的作用[D]:[博士学位论文].上海:东华大学,2003.
    6.邓一民,刘平,张高军.纤维素酶整理苎麻织物的减量及强力变化[J].山东纺织科技,2009,50(4):10-13.
    7. Silva C J S M,Zhang Q,Shen J,et al. Immobilization of proteases with a water soluble–insolublereversible polymer for treatment of wool[J]. Enzyme and Microbial Technology,2006,39(4):634-640.
    8. Smith E,Zhang Q,Shen J,et al. Modification of Esperase by covalent bonding to Eudragitpolymers L100and S100for wool fibre surface treatment[J]. Biocatalysis and Biotransformation,2008,26(5):391-398.
    9. Smith E,Schroeder M,Guebitz G,et al. Covalent bonding of protease to different sized entericpolymers and their potential use in wool processing[J]. Enzyme and Microbial Technology,2010,47(3):105-111.
    10. Shen J, Rushforth M,Cavaco-Paulo A, et al. Development and industrialisation of enzymaticshrink-resist process based on modified proteases for wool machine washability[J]. Enzyme andMicrobial Technology,2007,40(7):1656-1661.
    11.吴颖喆,邵建中,付国栋.纤维素酶洗涤对提高涤棉织物易去污性的作用机理[J].浙江理工大学学报,2012,9(1):40-43.
    1. Heikinheimo L,Buchert J,Miettinen-Oinonen A,et al. Treating denim fabrics with Trichoderma reeseicellulases[J]. Textile Research Journal,2000,70(11):969-973.
    2. Anish R, Rahman M S, Rao M. Application of cellulases from an alkalothermophilicThermomonospora sp. in biopolishing of denims[J]. Biotechnology and Bioengineering,2007,96(1):48-56.
    3.王蕊.纤维素酶水洗对牛仔织物强力的影响[J].染整技术,2007,29(7):21-23.
    4. Kumar A,Harnden A. Performance characterization of cellulase enzymes in garment processing of100%Tencel and its blends[C]. Book of Papers,AATCC International Conference and Exhibition,Philadelphia,PA.1998:22-25.
    5. Liu J,Otto E,Lange N K,et al. Bio-polishing of cotton knit: from multicomponent cellulase complexto mono-component[C]//Book of papers of the International Conference and Exhibition of theAATCC,Philadelphia,PA.1998:445-454.
    6.郝龙云,蔡玉青.漆酶在靛蓝牛仔布水洗中的应用[J].印染,2007,33(17):19-20.
    7.高恩丽,张树江,夏黎明等.云芝漆酶在牛仔布生物整理中的应用[J].纺织学报,2007,28(4):73-75.
    8.郝龙云.纤维素酶对靛蓝染色棉织物的作用及返沾色机理的研究[D]:[博士学位论文].青岛:青岛大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700