用户名: 密码: 验证码:
乳酸钾改善卷烟保润性能及烟气品质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卷烟保润性能对卷烟的物理特性(如烟丝的水分散失和造碎)、香气和吸食品质等有重要的影响。对于一些空气相对湿度较低的地区,烟丝水分将随烟草贮存时间的增加而逐渐散失,从而导致卷烟加工过程中的造碎以及抽吸过程中干燥感和刺激性的增强。随着人们生活水平的不断提高,人们对卷烟制品的要求也在发生一定的变化,从单纯追求生理上的满足感逐步向追求舒适感和享受感转移。因此,如何增强卷烟保润性能以及提高抽吸舒适度成为人们的首要关注问题。本课题针对我国卷烟低湿环境下水分散失较快、抽吸时烟气干燥的问题,采用添加新型保润剂的方法,在提高其物理保润性能的同时降低了烟气干燥感。主要研究内容及结果如下:
     烟草物理保润性能的差异不仅表现在不同品种之间,还表现在相同品种不同等级和生长部位之间,但造成这种差异的原因尚未明确,缺乏关于烟草物理结构和化学成分对其物理保润性能影响的系统分析。实验首先建立烟草水分散失动力学方程,从动力学角度确定了烟草物理保润性能的评价指标。并通过分析不同烟草的物理结构和化学成份差异,考察烟草物理化学特性对其物理保润特性的影响。结果表明:有效水分扩散系数(Deff)可作为评价烟草物理保润性能的一个有力指标。烟草在解吸环境中的Deff值高于吸湿环境,且Deff值随环境湿度的增加(RH=33%,43%,75%,83%)呈现先增加后降低的趋势。简单相关性分析结果表明,比孔体积越大越有利于水分散失;果胶、水溶性总糖和水溶性还原糖的含量与有效水分扩散系数呈显著负相关。
     通过添加保润剂的方法提高烟草的物理保润性能。对多糖类(透明质酸、裂褶菌多糖、壳聚糖和阿拉伯胶)、植物提取物(苹果皮、桔皮、山药、芦根和银耳提取物)以及有机盐(乳酸钾和乳酸钠)三类物质的保湿性分别进行比较,确定3类物质中透明质酸、芦根提取物和乳酸钾具有较高的保湿率。将透明质酸、芦根提取物和乳酸钾加入到烟草中,分析其对烟草物理保润性能的实际影响。结果表明:透明质酸、芦根提取物和乳酸钾均能提高烟草平衡水分,降低有效水分扩散系数,且有效水分扩散系数随其添加量的增加而降低。乳酸钾对烟草物理保润性能的提高最为明显。透明质酸、芦根提取物和乳酸钾对主流烟气中的总粒相物和焦油没有影响,但都不同程度的提高主流烟气中水分含量以及改善卷烟感官舒适度,乳酸钾对主流烟气水分的增加幅度最大,芦根提取物对感官舒适度的改善效果最为明显。
     乳酸钾能够有效提高卷烟的物理保润性能,可作为新型保润剂应用到烟草中,但同时也对卷烟感官品质产生影响,降低抽吸时的干燥感。为分析乳酸钾对卷烟化学特性的具体影响,分别考察加入不同含量的乳酸钾后,卷烟主流烟气常规、挥发性和半挥发性成分组成以及燃烧行为的变化。结果表明,乳酸钾对卷烟主流烟气中总粒相物、烟碱、焦油、抽吸口数以及挥发性羰基化合物没有影响;但能显著提高水分含量和降低烟气pH。乳酸钾对主流烟气粒相物中不同种类的半挥发性成分表现出不同的作用。乳酸钾促进醇类、内酯、杂环氧化物和酰胺类物质的生成;对醛类、酸类、吡咯和吡嗪类物质的产生具有抑制作用;而对于酮类、酯类、酚类、烃类、吡啶、烟碱、含氮化合物以及半挥发性成分总量,乳酸钾仅在低剂量添加时(0.2%)表现出了抑制作用,当添加量>0.2%时,则对这些物质的生成没有影响。采用TG-FTIR联用技术和扫描电镜分别考察了乳酸钾对卷烟燃烧行为及烟灰形态的影响。结果表明,乳酸钾降低裂解和燃烧阶段的最大热失重速率,并促使燃烧阶段的峰值温度和终点温度向高温区移动。乳酸钾在卷烟燃烧过程中对烟灰形态的改变可能是影响卷烟燃烧的原因之一。
     针对乳酸钾能显著提高卷烟主流烟气水分这一现象,为探讨乳酸钾影响烟气水分生成的原因,首先明确了卷烟烟气水分生成的影响因素。结果表明:烟草热失重过程主要有4个阶段,水分产生于600℃之前的三个热失重阶段。卷烟燃烧产生的水中,36%-38%是由于烟草自身吸附水在<140℃的低温区挥发;51-54%产生于第二失重阶段140-370℃;6%-12%在370-600℃温度范围内生成。热裂解过程中,烟草成分通过一级反应生成水。在低温区(<370℃)氧气呈现增强自由基效应,促进水分的生成;但在高温区,高浓度氧气(21%O2)则呈现出氧化破坏作用,抑制水分的形成。碳水化合物(葡萄糖、果糖、蔗糖和麦芽糖)、有机酸(苹果酸、草酸和柠檬酸)和木质素都能通过裂解或燃烧反应生成一定量的水分。其中单糖裂解生成水的产率最高,为烟气水分的主要前体物。
     在了解卷烟烟气水分的形成机制后,分别考察乳酸钾对烟草在不同温度范围生成水分及烟气水分前体物的影响,并探讨了钾离子和乳酸根离子对卷烟燃烧过程中生成水分所表现的作用。结果显示:乳酸钾通过增加烟草的平衡水分含量、影响烟草的裂解和燃烧状态而提高主流烟气水分含量。乳酸钾提高烟丝平衡水分主要是由于乳酸根和钾离子共同作用;在烟支的燃烧阶段,乳酸根促进烟气水分的产生,而以有机盐形式存在的钾离子起到抑制作用。对于不同的烟气水分前体物,乳酸钾对其反应生成水分的影响作用不同。乳酸钾促进单糖、淀粉和纤维素裂解和燃烧产生水分,对二糖和果胶裂解生成水分没有影响,但能提高其燃烧产生的水分。有机酸在裂解和燃烧阶段生成的水分都不受乳酸钾的影响。乳酸钾能够提高木质素裂解产生的水分含量,但当氧气存在时,乳酸钾阻碍木质素燃烧生成水分。
The moisture content of tobacco can influence its physical properties, processingcharacteristics, combustion, flavor and sensory quality. When placed in a dry envrioment, themoisture content of tobacco decreased and “dry” cigarettes can yield harsher and moreirritating smoke. With the improvement of people’s life, the requirement for the cigarette wasundergoing some changes, shifted from physiological satiation to the sense of comfort andenjoyment. Therefore, enhancing the water-holding capacity and sensory quality of cigarettesbecame the primary cancern of people. In this research, a new humectant was applied toincrease the water holding capacity of tobacco. Meanwhile, the mouth dryness was improvedby the addition of humectant. The main research contents and results are as follows:
     Differences in hygroscopicity may be observed not only between tobacco varieties butalso within different grades of the same variety. But the influence of physical structure andchemical composition of tobacco on the water holding capacity is still unclear. At first, thekinetic model of moisture migration was studied, and the evaluation index was established torepresent the water-holding capacity. The physical structure (specific surface area and porevolume) and chemical components (total nitrogen, protein, pectin, starch, water-soluble sugar,and total sugar) of tobacco were determined. Results showed that the effective diffusioncoefficient (Deff) could be a useful representation of water-holding capacity except forequilibrium moisture content (EMC).With the increasing of the relative humidity ofenvironment, the values of Deffincreased first, then decreased. Simple correlation analysisshowed that, the Deffwas significantly affected by the specific pore volume of tobacco atdesorption. Large specific pore volume was in favored of moisture diffusion. Besides, aremarkable negative correlation was found between the effective diffusion coefficient and thepectin, water-soluble sugar, and total sugar content.
     Adding humectants to the tobacco was used to improve its water holding capacity in thestudy. At first, the moisturizing efficiency of polysaccharide, plant extracts and organic saltswere determined at RH=40%and70%. They were polysaccharide: hyaluronic acid (HA),Schizophyllum, chitosan and arabic gum; plant extracts: extracts of apple peel, orange peel,Chinese yam, reed rhizome and tremella; organic salts: potassium lactate (PL) and sodiumlactate, respectively. The results showed that the HA, extract of reed rhizome and PLexhibited better moisture keeping performance. After added to the tobacco, HA, extract ofreed rhizome and PL could increase the EMC of tobacco, decrease the drying rate constantand Deff. The drying rate constant and Deffdecreased with the increasing of the adding amountof humectants. The effects of the three kinds of humectants on the mainstream chemisty andsensory quality of tobacco were investigated. The results demonstrated that HA, extract ofreed rhizome and PL had no effect on the total particulat matter and tar in the mainstreamsmoke, but increased the moisture content and sensory quality. The effect of PL on themoisture content in the mainstream smoke was the most obvious. The cigarettes treated withextract of reed rhizome exhibited the best sensory quality.
     PL could be a new humectant due to its perfect performance to enhance the water holding capacity of tobacco. At first, the effects of different added amounts of PL on mainstreamsmoke chemistry, components distribution were determined. The mainstream smokechemistry detection of the cigarettes presented that PL had no effect on the content of TPM,NFDPM, puff number, nicotine and volatile carbonyl compounds, while increased themoisture content and decreased the CO content and the pH of smoke. Adding PL in thetobacco could increase the yield of alcohols, lactons, miscellaneous oxygenated compoundsand amides, but decrease the yield of aldehydes, acids, pyrroles and pyrazines. A small addedamount (0.2%) could lead to the reduction of the content of semi-volatile substancescompared with the control. However, when the added amount was beyond0.2%, the totalcontent of semi-volatile substances was not affected by the presence of PL. The same resultswere also achieved during the generation of ketones, esters, phenols, hydrocarbons, pyridines,tobacco alkaloids, and nitrogenous compound. Finally, the effect of potassium latate on thecombustion behavior and ash morphologies from tobacco were elucidated by TG–FTIR andSEM analysis. The results revealed that the maximum weight loss rate was decreased by theaddition of PL. The peak and end-point temperature of the combustion stage slightly movedtowards higher temperature. PL altered the ash morphology in a way that bonded the ashstronger and restricted the air flow. The alteration of ash morphology may be one of thereasons for the change of combustion behavior.
     The moisture formation mechanism during the combustion of tobacco was firstlyresearched. DTG analysis revealed that tobacco thermal degradation occurred in four stepsand the H2O evolution was found to have three major peaks for the combustion of bothflue-cured and burley tobacco. About36%-38%of the H2O genterated at first step (from25℃to140℃) due to the evaporation of absorbed water;51-54%generated at140-370℃and6%-12%formed at370-600℃. The yield of moisture was not affected by the flow rateindicating that gas phase secondary reactions did not contribute to the yield of moisture at thethree stages.The radical enhancement effect caused by oxygen was dominant in the lowertemperature range(<370℃)and the oxygen promoted the generation of H2O. While theoxygen played the oxidative destruction effect in the higher temperature range and inhibitedthe formation of H2O. The H2O formed during the pyrolysis or combustion of carbohydrate,organic acid and lignin. The yield of H2O from monosaccharides was the highest, indicatingthe monosaccharide was the main potential precursor.
     The effects of PL on the generation of H2O at different temperature ranges andprecursors were studied. The results showed that PL increased the moisture content inmainstream smoke by increasing EMC and affecting the combustion behavior of tobacco. Theincrease of EMC was due to the potassium ion and lactate group. During the process ofcombustion, the lactate group promoted the generation of H2O, while the potassium ionpresented in organic salts hindered the formation of H2O. PL increased the yield of H2O fromthe pyrolysis and combustion of monosaccharide, starch and cellulose, showed no effect onthe formation of H2O from the pyrolysis of disaccharide and pectin, but promoted thegeneration in the process of combustion. The yield of H2O from organic acids was notaffected by PL. PL increased the yield of H2O from the pyrolysis of lignin, but prevented thegeneration of H2O from the combustion of lignin.
引文
[1] Bevan P C. A survey of the water activity-moisture content relationships of tobaccos andreconstituted[EB/OL]. http://legacy.library.ucsf.edu/tid/foh51f00.1988.
    [2]马林,周冰.烟草自身保润性能[J].广东化工,2009,36(10):93-94.
    [3]张丽.卷烟保润性能及其应用技术研究[D]:[硕士学位论文].长沙:湖南农业大学,2012.
    [4]王明锋.卷烟感官舒适性相关因素分析及应用技术研究[D]:[硕士学位论文].昆明:云南大学,2010.
    [5]许宗保.通风技术对卷烟内在质量的影响[J].芜湖职业技术学院学报,2004(02):90-93.
    [6]李庆华,杨叶昆,王保兴,等.卷烟纸、接装纸和滤嘴丝束对卷烟烟气水分和焦油的影响[J].烟草科技,2008(02):42-44.
    [7]郭国宁,严恒,蔡冰,等. Ksap-T的保润性能及其应用研究[J].安徽农业科学,2010,38(12):6569-6572.
    [8]伍锦鸣,卓浩廉.淀粉改性烟草保润剂的制备[J].现代食品科技,2012,28(1):77-81.
    [9]严恒.魔芋葡甘聚糖基吸水剂的保润性能研究[J].食品工业科技,2010(3):142-144.
    [10]徐安传,王超.烟叶内含有机酸和水溶性糖与其保润性间相互关系的研究[C]:中国烟草自主创新论坛,2007.
    [11]顾中铸,吴薇.烤烟烟叶的等温吸湿和解湿特性[J].南京师范大学学报(工程技术版),2004(04):32-34.
    [12] Bacot A M. The Chemical Composition of Representative Grades of the1952and1954Crops ofFlue-cured Tobacco, Including Chemical Methods[M]. Washington: U.S.Government Printing Office,1960.
    [13] Mckee C G, Frey C B, Hoyert J H. Effect of leaf moisture content on farm storage ability of Marylandtobacco packed in bales[J]. Tobacco International,1984(186):114-117.
    [14]金敖熙,黄绍和.烟叶的一些吸湿特性[J].烟草科技,1993(01):7-11.
    [15] Wolf A. Tobacco production and processing//Wynder E L, Hoffman D. Tobacco and tobaccosmoke[M]. Academic press,1967:5-44.
    [16] Samejima T, Nishikata Y, Yano T. Moisture permeability of cured tobacco epidermis[J]. Agricultureand Biological Chemistry,1984,48(2):439-443.
    [17] Samejima T, Yano T. Moisture Diffusion within Shredded Tobacco Leaves [J]. Agriculture andBiological Chemistry,1985,49(6):1809-1812.
    [18] Samejima T, Soh Y, Yano T. Moisture Sorption Isotherms of Various Tobaccos [J]. Agriculture andBiological Chemistry,1978,42(12):2285-2290.
    [19] Samejima T, Soh Y, Yano T. Specific Surface Area and Specific Pore Volume Distribution ofTobacco [J]. Agriculture and Biological Chemistry,1977,41(6):983-988.
    [20] Chang C S, Johnson W H. The relationship of specific surface area and specific pore volume of thetobacco[J]. Tobacco Science,1973,11:115-119.
    [21] Warner B R. Surface Areas of tobaccos by low temperature nitrogen adsorption[J].Archives ofBiochemistry and Biophysics,1952(40):143-152.
    [22] Horler J W. A relationship with relative humidity and with chemical composition of flue-curedtobacco[C]:20th Tobacco Chemists' research Conference, Winston Salem, N.C.,U.S.A,1966.
    [23] Mutasa E S, Seal K J, Magan N. The water content/water activity relationship of cured tobacco andwater relations of associated spoilage fungi[J]. International Biodeterioration,1990,26(6):381-396.
    [24]徐安传,王超,胡巍耀,等.红大烟叶保润性与其重要致香物质间相互关系的研究初探[C]:云南烟草协会年会,2006.
    [25]穆林,刘丁伟,王建民,等.烟叶粗纤维素含量与吸湿性及感官质量的相关性[J].西南农业学报,2011(02):509-512.
    [26] Elliot J M, Vickery L S. The effect of chlorine on the hygroscopicity of flue-cured tobacco[J].Canadian Journal of Plant Science,1961,41(1):195-198.
    [27]谢剑平.烟草与烟气化学成分[M].北京:化学工业出版社,2011.
    [28] Dixon L F, Darkis F R, Wolf F A, et al. Tobacco1: Natural Aging of Flue-Cured Cigarette Tobaccos[J].Industrial&Engineering Chemistry,1936,28(2):180-189.
    [29]赵铭钦,刘国顺.香料烟陈化过程中烟叶化学成分与品质变化的研究[J].中国烟草学报,2006(02):29-33.
    [30] Bacon C W, Wenger R, Bullock J F. Chemical Changes in Tobacco during Flue-Curing[J]. Industrial&Engineering Chemistry,1952,44(2):292-296.
    [31] Williams J F, Gerritsen B H. Changes in amino acid content of flue-cured tobacco during naturalaging[J]. Tobacco Science,1968,12:243-247.
    [32] Zhu D B, Han J F, Guan C Y, et al. Changes in Higher Fatty Acids and Related BiochemicalCharacteristics of Flue-cured Tobacco during Aging[J]. Beritrage zur tabakforschung international,2001,19(6):315-320.
    [33]许淑红,熊安言,赵伟民,等.真空回潮对烟叶质量的影响[J].烟草科技,2007(05):12-14.
    [34]欧清华,徐文兵,韦文,等.真空回潮对烤后叶片结构、化学成分及感官质量的影响研究[J].现代食品科技,2009(03):260-261.
    [35] Von E B. The Loss of Volatile Oils in Oriental Tobacco During Pre-Moistening in the VacuumChamber[J]. Beitrage zur Tabakforschung,1968,4(5):215-221.
    [36]吴娜,李雪梅,黄海涛,等.卷烟加工工艺重要工序及储叶条件对烟草中碳水化合物的影响研究[J].云南大学学报(自然科学版),2010(S1):143-149.
    [37] Green C R, Schumacher J N, Rodgman A. The Expansion of Tobacco and Its Effect on CigaretteMainstream Smoke Properties[J]. Beitrage zur tabakforschung international,2007,22(5):317-345.
    [38]张美华,李国钟,保宇,等.二氧化碳膨胀烟丝结构变化[J].中国烟草学报,1994,2(1):58-63.
    [39] Smit H. The Effect of Some Humectants on the Properties of a Flue-Cured Tobacco[J]. Beitrage zurTabakforschung,1970,5(5):231-238.
    [40]张效康.保润剂保润性能及过程的实验[J].烟草科技,1994(4):11.
    [41] Yan H, Cai B, Cheng Y, et al. Mechanism of lowering water activity of konjac glucomannan and itsderivatives[J]. Food Hydrocolloids,2012,26(2):383-388.
    [42] Stoilova A, Kratcbanova M, Kratcbanov C. Comparative Investigations of the Influence of PolyvalentAlcohols and Fruit Extracts on the Physicochemical Properties of Tobacco[J]. Beitrage zur tabakforschunginternational,1994,16(1):1-9.
    [43]刘洋,刘珊,胡军,等.仙人掌多糖的提取及其在卷烟中的应用[J].烟草科技,2010(10):8-11.
    [44]郭文,陶红,于立梅,等.柚子皮多糖提取工艺优化及保润特性研究[J].农业机械,2013(35):56-60.
    [45]黄芳芳,蒋健,李雪青,等.卤地菊多糖超声波提取工艺技术及其卷烟保润性[J].烟草科技,2014(2):44-48.
    [46]杨君,黄芳芳,叶超凡,等.铜藻多糖的提取工艺优化及其保润性能[J].烟草科技,2013(04):37-41.
    [47]阮晓明,王青海,徐海涛,等.新型天然保润剂Pds在卷烟中的应用[J].烟草科技,2006(09):8-10.
    [48]楼佳颖,沙云菲,杨斌,等.乳化玉米油的制备及其保润性能[J].烟草科技,2013(12):36-40.
    [49] Baker R R. A review of pyrolysis studies to unravel reaction steps in buring tobacco[J]. Journal ofanalytical and Applied Pyrolysis,1987,11:555-573.
    [50] Baker R R, Bishop L J. The pyrolysis of tobacco ingredients[J]. Journal of Analytical and AppliedPyrolysis,2004,71(1):223-311.
    [51] Leffingwell J C. Leaf chemistry:basic chemical constituents of tobacco leaf and differences amongtobacco types//Davis D, Nielsen M T. Tobacco:Production Chemistry and Technology[M]. Oxford:Blackwell Science,1999:265-284.
    [52] Talhout R, Opperhuizen A, van Amsterdam J G C. Sugars as tobacco ingredient Effects on mainstreamsmoke composition[J]. Food and chemical Toxicology,2006,44:1789-1798.
    [53] Rodgman A. Some Studies of the Effects of Additives on Cigarette Mainstream Smoke Properties. II.Casing Materials and Humectants[J]. Beitrage zur tabakforschung international,2002,20(4):279-299.
    [54] Creighton D E, Hirji T. The significance of pH in tobacco and tobacco smoke [EB/OL].http://tobaccodocuments.org/product_design/3223.html.1988.
    [55] Britt P F, Buchanan A C, Jr C V O, et al. Does glucose enhance the formation of nitrogen containingpolycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline[J]. Fuel,2004,83(11-12):1417-1432.
    [56] Lee L Y, Burki N K, Gerhardstein D C, et al. Airway irritation and cough evoked by inhaled cigarettesmoke:Role of neuronal nicotinic acetylcholine receptors[J]. Pulmonary Pharmacology&Therapeutics,2007,20:355-364.
    [57] Houseman T H. Studies of Cigarette Smoke Transfer Using Radioisotopically Labelled TobaccoConstituents Part II: The Transference of Radioisotopically Labelled Nicotine to Cigarette Smoke [J].Beitrage zur Tabakforschung,1973,7(3):142-147.
    [58] Schmeltz I, Wenger A, Hoffmann D, et al. Chemical studies on tobacco smoke.63.on the fate ofnicotine during pyrolysis and in a burning cigarette[J]. Journal of agricultural and food Chemistry,1979,27(3):606-608.
    [59] Torikaiu K, Uwano Y, Nakamori T, et al. Study on tobacco components involved in the pyrolyticgeneration of selected smoke constituents[J]. Food and Chemical Toxicology,2005,43(4):559-568.
    [60] Yoshida S, Kobayashi K. Role of amino acids in the formation of polycyclic aromatic amines duringpyrolysis of tobacco[J]. Journal of Analytical and Applied Pyrolysis,2013,104:508-513.
    [61] Schlotzhauer W S, Chortyk O T. Recent advances in studies on the pyrosynthesis of cigarette smokeconstituents[J]. Journal of Analytical and Applied Pyrolysis,1987,12:193-222.
    [62] Sharma R K, Wooten J B, Baliga V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel,2004,83(11-12):1469-1482.
    [63] Wang Z, Li X, Zhen S, et al. The important role of quinic acid in the formation of phenolic compoundsfrom pyrolysis of chlorogenic acid[J]. Journal of Thermal Analysis and Calorimetry,2013,114(3):1231-1238.
    [64] Sun J, He J, Wu F, et al. Comparative Analysis on Chemical Components and Sensory Quality ofAging Flue-Cured Tobacco from Four Main Tobacco Areas of China[J]. Agricultural Sciences in China,2011,10(8):1222-1231.
    [65] Fenner R A, Ferris R P, Leffingwell D, et al. Chemical and Sensory Aspects of Tobacco Flavor[C]:42nd Tobacco Chemists' Research Conference, Lexington, Kentucky,1998.
    [66] Rodgman A, Perfetti T A. The chemical components of tobacco and tobacco smoke[M]. NewYork,London: CRC press,2009.
    [67]陈洪,钱强,杨艳萍.润叶后不同储叶时间与烟叶品质变化关系的研究[J].烟草科技,2002(07):9-11.
    [68]徐安传,王超,胡巍耀.低温处理对卷烟烟气水分和Co的影响[J].烟草科技,2010(7):26-28.
    [69]席年生,张大波,李跃锋,等. Hxd蒸气喷射量对叶丝膨胀效果及卷烟内在质量的影响[J].烟草科技,2005(03):3-6.
    [70]刘炳军,李坚,唐桂芳,等.气流式干燥系统参数与卷烟内在质量的关系研究[J].中国科技财富,2009(04):56-57.
    [71] Baker R R, Pereira Da Silva J R, Smith G. The effect of tobacco ingredients on smoke chemistry. PartI: Flavourings and additives[J]. Food and Chemical Toxicology,2004,42(Supplement1):3-37.
    [72]杨凯,张朝平,余苓,等.卷烟烟气水分对感官舒适度的影响[J].烟草科技,2009(7):9-11.
    [73] Nayak A, Carpenter G H. A physiological model of tea-induced astringency[J]. Physiology&Behavior,2008,95(3):290-294.
    [74]黄正虹,刘钟祥.部分国产卷烟主流烟气水分的分析研究[J].食品工业,2011(02):44-47.
    [75] Andrewes P, Kelly M, Vardhanabhuti B, et al. Dynamic modelling of whey protein-saliva interactionsin the mouth and relation to astringency in acidic beverages[J]. International Dairy Journal,2011,21(8):523-530.
    [76] Mcgrath T E, Brown A P, Meruva N K, et al. Phenolic compound formation from the low temperaturepyrolysis of tobacco[J]. Journal of Analytical And Applied Pyrolysis,2009,84:170-178.
    [77] Obreque-Slier E, Pe a-Neira á, López-Solís R. Interactions of enological tannins with the proteinfraction of saliva and astringency perception are affected by pH[J]. LWT-Food Science and Technology,2012,45(1):88-93.
    [78] Fia G, Dinnella C, Bertuccioli M, et al. Prediction of grape polyphenol astringency by means of afluorimetric micro-plate assay[J]. Food Chemistry,2009,113(1):325-330.
    [79] Read G A, Baker R R, Stephenson A G, et al. The role of catechol and other smoke phenols in themonth dryness sensation[EB/OL]. http://legacy.library.ucsf.edu/documentStore/m/j/i/mji74a99/Smji74a99.pdf.1992.
    [80] Cassee F R, Arts J H E, Groten J P, et al. Sensory irritation to mixtures of formaldehyde, acrolein, andacetaldehyde in rats[J]. Archives of toxicology,1996,70:329-337.
    [81]朱保昆,王明锋,韩毅,等.烤烟主要烟气化学成分对卷烟感官舒适度的影响研究[J].云南大学学报(自然科学版),2012(01):77-83.
    [82] Baker R R, Silva J R P D, Smith G. The effect of tobacco ingredients on smoke chemistry. PartII:Casing ingredients[J]. Food and chemical Toxicology,42:39-52.
    [83] Keithly L, Wayne G F, Cullen D M, et al. Industry research on the use and effects of levulinic acid: Acase study in cigarette additives[J]. Nicotin&Tobacco research,2005,7(5):761-771.
    [84] Pickworth W B, Moolchan E T, Berlin I, et al. Sensory and physiologic effects of menthol andnonmenthol cigarettes with differing nicotine delivery[J]. Pharmacology Biochemistry and Behavior,2002,71(1-2):55-61.
    [85] Macpherson L J, Hwang S W, Miyamoto T, et al. More than cool: Promiscuous relationships ofmenthol and other sensory compounds [J]. Molecular and Cellular Neuroscience,2006,32(4):335-343.
    [86] Jenkins R W, Newman R H, Chavis M K. Cigarette Smoke Formation Studies II. Smoke Distributionand Mainstream Pyrolytic Composition of Added14C-Menthol (U)[J]. Beitrage zur Tabakforschung,1970,5(6):299-301.
    [87]姬小明,赵华新,李冰洁,等.金莲花浸膏挥发性成分分析及其卷烟应用[J].精细化工,2011(05):467-470.
    [88]陶冶,戴水平.枇杷叶黄酮类物质的提取工艺及其在卷烟中的应用[J].香料香精化妆品,2013(04):13-16.
    [89]孙雯,李雪梅,曾晓鹰,等.烟丝含水率对卷烟燃吸品质、烟气水分及粒相物挥发性成分的影响[J].烟草科技,2009(11):33-39.
    [90] Von H. Ehmke, Neurath G. The Influence of Tobacco Moisture Content on the Composition ofMainstream Smoke Yield II[J]. Beitrage zur Tabakforschung,1964,2(5):205-208.
    [91] Von G. Neurath, Ehmke H, Horstmann H. The Influence of Tobacco Moisture Content of Cigaretteson the Composition of Mainstream Smoke Yield III[J]. Beitrage zur tabakforschung,1964,2(7):361-369.
    [92] Von G. Neurath, Horstmann H. The Influence of Tobacco Moisture Content on the Composition ofMainstream Smoke Yield as well as on the Temperature in the Combustion Zone [J]. Beitrage zurtabakforschung,1963,2(3):93-100.
    [93]侯伟华.茶叶烘干机理与烘干机的节能改进[D]:[硕士学位论文].武汉:华中农业大学,2009.
    [94] Silva W P D, Silva C M D P, Gama F J A, et al. Mathematical models to describe thin-layer dryingand to determine drying rate of whole bananas[J]. Journal of the Saudi Society of Agricultural Sciences,2014,13:67-74.
    [95] Zhu A, Shen X. The model and mass transfer characteristics of convection drying of peach slices [J].International Journal of Heat and Mass Transfer,2014:345-351.
    [96] Doymaz. Drying behaviour of greenbeans[J]. Journal of Food Engineering,2005,69(2):161-165.
    [97] Walton L R, Casada M E, Henson W H. Diffusion of moisture from burley tobacco leaves duringcuring[J]. Transactions of the ASABE,1982,25(4):1099-1102.
    [98] Guine R P F, Barroca M J, Silva V. Mass Transfer Properties of Pears for Different Drying Methods[J].International Journal of Food Properties,2013(16):251-262.
    [99] Walton L R, Henry Z A, Henson W H. Moisture Diffusion in the Cured Burley Tobacco Leaf [J].Transactions of the ASABE,1976,19(4):796-800.
    [100] Brunauer S, Emmett P H, Teller E. Adsorption of Gases in Multimolecular Layers[J]. Journal of theAmerican Chemical Society,1938,60(2):309-319.
    [101]林洪,李明,章新,等.烟草中果胶的自动分析仪测定方法研究[J].玉溪师范学院学报,2007(12):1-4.
    [102]饶巍,庹苏行,钟科军,等.酶解-离子色谱法测定烟草中的果胶[J].化学研究,2010(03):72-74.
    [103]李星亮.烟草中淀粉含量测定[J].安徽农业科学,2010,38(15):7818-7819,7825.
    [104]胡有持,徐亮,张威,等.云南烤烟的吸湿特性研究[J].烟草科技,2000(09):8-12.
    [105] Panchariya P C, Popovic D, Sharma A L. Thin-layer modelling of black tea drying process[J].Journal of Food Engineering,2002,52(4):349-357.
    [106] Sacilik K, Unal G. Dehydration Characteristics of Kastamonu Garlic Slices[J]. BiosystemsEngineering,2005,92(2):207-215.
    [107]陈登宇.干燥和烘焙预处理制备高品质生物质原料的基础研究[D]:[硕士学位论文].合肥:中国科学技术大学,2013.
    [108]范柳萍.低脂胡萝卜脆片的加工及贮藏研究[D]:[博士学位论文].无锡:江南大学,2005.
    [109] Akanbi C T, Adeyemi R S, Ojo A. Drying characteristics and sorption isotherm of tomato slices[J].Journal of Food Engineering,2006,73(2):157-163.
    [110] Ngcobo M E K, Pathare P B, Delele M A, et al. Moisture diffusivity of table grape stems during lowtemperature storage conditions[J]. Biosystems Engineering,2013,115(3):346-353.
    [111] Fernando W J N, Low H C, Ahmad A L. Dependence of the effective diffusion coefficient ofmoisture with thickness and temperature in convective drying of sliced materials. A study on slices ofbanana, cassava and pumpkin[J]. Journal of Food Engineering,2011,102(4):310-316.
    [112] Erbay Z, Lcier F. A Review of Thin Layer Drying of Foods: Theory,Modeling, and ExperimentalResults[J]. Critical Reviews in Food Science And Nutrition,2010,50(5):441-464.
    [113] Yu X, Schmidt A R, Bello-Perez L A, et al. Determination of the Bulk Moisture DiffusionCoefficient for Corn Starch Using an Automated Water Sorption Instrument[J]. Journal of Agricultural andFood Chemistry,2007,56(1):50-58.
    [114] Karathanos V T, Villalobos G, Saravacos G D. Comparison of Two Methods of Estimation of theEffective Moisture Diffusivity from Drying Data[J]. Journal of Food Science,1990,55(1):218-223.
    [115] Madambaa P S, Robert H D, Ken A B. The thin-layer drying characteristics of garlicslices[J]. Journalof Food Engineering,1996,29(1):75-97.
    [116] Roberts J S, Kidd D R, Padilla-Zakour O. Drying kinetics of grape seeds[J]. Journal of FoodEngineering,2008,89(4):460-465.
    [117] Peleg M. An empirical model for the description of moisture soption curves[J]. Journal of foodscience,1988,53(4):1216-1219.
    [118] Doymaz. Pretreatment effect on sun drying of mulberry fruits (Morus alba L.)[J]. Journal of FoodEngineering,2004,65:205-209.
    [119] Xiong X, Narsimhan G, Okos M R. Effect of composition and pore structure on binding energy andeffective diffusivity of moisture in porous food[J]. Journal of Food Engineering,1992,15(3):187-208.
    [120]张相辉,李智宇,宋振兴,等.石油醚提取物与烟丝保润性能的关系研究[J].中国农学通报,2010(18):96-98.
    [121] Saravacos G D. Transport Properties of Foods [M].CRC Press,2001.
    [122] Chen L, Du Y, Zeng X. Relationships between the molecular structure and moisture-absorption andmoisture-retention abilities of carboxymethyl chitosan: II. Effect of degree of deacetylation andcarboxymethylation[J]. Carbohydrate Research,2003,338(4):333–340.
    [123] Kanchana S, Arumugam M, Giji S, et al. Bioactive Carbohydrates and Dietary Fibre,2013,2(1):1-7.
    [124]周林,郭祀远,蔡妙颜,等.裂褶多糖的吸湿和保湿性能初步研究[J].天然产物研究与开发,2005,17(6):708-711.
    [125] Li H, Xu J, Liu Y, et al. Antioxidant and moisture-retention activities of the polysaccharide fromNostoc commune[J]. Carbohydrate Polymers,2011,83:1821-1827.
    [126] Ghanem N, Mihoubi D, Kechaou N, et al. Microwave dehydration of three citrus peel cultivars:Effect on water and oil retention capacities, color, shrinkage and total phenols content[J]. Industrial Cropsand Products,2012,40:167-177.
    [127] Yang X, Yang S, Guo Y, et al. Compositional characterisation of soluble apple polysaccharides, andtheir antioxidant and hepatoprotective effects on acute CCl4-caused liver damage in mice[J]. FoodChemistry,2013,138:1256-1264.
    [128] Thilakarathna S H, Rupasinghe H P V, Needs P W. Apple peel bioactive rich extracts effectivelyinhibit in vitro human LDL cholesterol oxidation[J]. Food Chemistry,2013,138:463-470.
    [129] Xu G H, Chen J C, Liu D H, et al. Minerals, phenolic compounds, and antioxidant capacity of citruspeel extract by hot water[J]. Journal of food science,2007,73(1):11-18.
    [130]戴水平,陶冶.苦菜根总黄酮的提取及其在卷烟中的应用[J].食品工业,2013(06):108-110.
    [131] Huang Z, Liang Z, Li G, et al. Response surface methodology to extraction of dioscoreaepolysaccharides and the effects on rat's bone quality[J]. Carbohydrate Polymers,2011,83:32-37.
    [132]沈蔚,任晓婷,张建,等.芦根多糖的提取及其抗氧化活性的研究[J].时珍国医国药,2010(05):1078-1080.
    [133] Chen Y, Zhao L, Liu B, et al. Application of Response Surface Methodology to OptimizeMicrowave-assisted Extraction of Polysaccharide from Tremella[J]. Physics Procedia,2012,24:429-433.
    [134]刘新,王令充,吴皓,等.四角蛤蜊多糖的吸湿保湿性及体外抗氧化性研究[J].食品工业科技,2012,33(24):85-88.
    [135] Noriaki N, Shingo S, Masayuki M, et al. Relationship Between NMF (Lactate and Potassium)Content and the Physical Properties of the Stratum Corneum in Healthy Subjects[J]. Journal ofInvestigative Dermatology,2004,122:755-763.
    [136]关志强,王秀芝,李敏,等.荔枝果肉热风干燥薄层模型[J].农业机械学报,2012(2).
    [137] Carmines E L, Gaworski C L. Toxicological evaluation of glycerin as a cigarette ingredient[J]. Foodand chemical Toxicology,2005,43:1521-1539.
    [138] Zha Q, Moldoveanu S C. The Influence of Cigarette Moisture to the Chemistry of Particulate PhaseSmoke of a Common Commercial Cigarette[J]. Beitrage zur Tabakforschung International/Contributions toTobacco Research,2004,21(3):184-191.
    [139] Von G. Neurath, Horstmann H. The Influence of Tobacco Moisture Content on the Composition ofMainstream Smoke Yield as well as on the Temperature in the Combustion Zone [J]. Beitrage zurTabakforschung,1963,3(2):93-100.
    [140]王华.芦根的挥发性成分分析及在卷烟中的应用[J].云南化工,2008,35(6):62-64.
    [141] Baker R R, Silva J R P D, Smith G. The effect of tobacco ingredients on smoke chemistry. PartII.Casing ingredients[J]. Food and Chemical Toxicology,2004,42:39-52.
    [142] Talhout R, Opperhuizen A, van Amsterdam J G C. Sugars as tobacco ingredient: Effects onmainstream smoke composition[J]. Food and Chemical Toxicology,2006,44(11):1789-1798.
    [143]周博,张天栋,李赓,等.乳酸和乳酸盐在卷烟保润中的应用[J].中国烟草学报,2011,17(06):8-12.
    [144] Wójtowicz M A, Bassilakis R, Smith W W, et al. Modeling the evolution of volatile species duringtobacco pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):235-261.
    [145]谢玉龙,朱先约,翟玉俊,等.6种西北地区植物多糖对卷烟主流烟气水分含量及Ph的影响[J].食品工业科技,2012,33(22):189-191.
    [146] Lee L Y, Gerhardstein D C, Wang A L, et al. Nicotine is responsible for airway irritation evoked bycigarette smoke inhalation in men[J]. Journal of applied physiology,1993,75(5):1955-1961.
    [147] Misnawi, Jinap S, Jamilah B, et al. Sensory properties of cocoa liquor as affected by polyphenolconcentration and duration of roasting[J]. Food quality and preference,2004,15:403-409.
    [148] Peng F, Sheng L, Liu B, et al. Comparison of different extraction methods:steam distillation,simultaneous distillation and extraction and headspace co-distillation,used for the analysis of the volatilecomponents in aged flue-cured tobacco leaves[J]. Journal of Chromatography A,2004(1040):1-17.
    [149] Liu C, Pariy A. Potassium Organic Salts as Burn Additives in Cigarettes[J]. Beitrage zurTabakforschung International,2003,20(5):341-347.
    [150] Brunnemann K D, Hoffmann. D. The pH of tobacco smoke[J]. Food and cosmetics toxicology,1974,12(1):115-124.
    [151] Hoffmann D, Hoffmann I. The changing of cigarettes,1950-1995[J]. Journal of Toxicology andEnvironmental Health,1997,50(4):307-364.
    [152] Hoffmann D, Hecht S.S. Advances in Tobacco Carcinogenesis[J]. Chemical carcinogenesis andmutagenesis I. Handbook of experimental pharmacology,1990,94(1):63-102.
    [153]舒俊生.降低卷烟主流烟气中羰基化合物和一氧化氮研究[D]:[博士学位论文].无锡:江南大学,2010.
    [154] Baker R R, Coburn S, Liu C, et al. Pyrolysis of saccharide tobacco ingredients:a TGA-FTIRinvestigation[J]. Journal of Analytical and Applied Pyrolysis,2005(74):171-180.
    [155] Baker R R, Coburn S, Liu C. The pyrolytic formation of formaldehyde from sugars and tobacco[J].Journal of Analytical and Applied Pyrolysis,2006,77(1):12-21.
    [156] Sanders E B, Goldsmith A I, Seeman J I. A model that distinguishes the pyrolysis ofD-glucose,D-fructose, and sucrose from that of cellulose. Application to the understanding of cigarretesmoke formation[J]. Journal of Analytical and Applied Pyrolysis,2003(66):29-50.
    [157] Baker R R. The generation of formaldehyde in cigarettes—Overview and recent experiments[J].Food and Chemical Toxicology,2006,44:1799-1822.
    [158] Ge S, Xu Y, Tian Z, et al. Effect of urea phosphate on thermal decomposition of reconstitutedtobacco and CO evolution[J]. Journal of Analytical and Applied Pyrolysis,2013,99:178-183.
    [159] Wu S, Shen D, Hu J, et al. TG-FTIR and Py-GC-MS analysis of a model compound of cellulose-glyceraldehyde[J]. Journal of Analytical and Applied Pyrolysis,2013,101:79-85.
    [160] Zhou S, Ning M, Xu Y, et al. Thermal degradation and combustion behavior of reconstituted tobaccosheet treated with ammonium polyphosphate[J]. Journal of Analytical and Applied Pyrolysis,2013,100:223-229.
    [161] Babiński P, Abojko G, Kotyczka-Morańska M, et al. Kinetics of coal and char oxycombustionstudied by TG–FTIR[J]. Journal of Thermal Analysis and Calorimetry,2013,113(1):371-378.
    [162] Han L, Wang Q, Ma Q, et al. Influence of CaO additives on wheat-straw pyrolysis as determined byTG-FTIR analysis[J]. Journal of Analytical And Applied Pyrolysis,2010(88):199-206.
    [163] Zhou S, Xu Y, Wang C, et al. Pyrolysis behavior of pectin under the conditions that simulatecigarette smoking [J]. Journal of Analytical and Applied Pyrolysis,2011(91):232-240.
    [164] Fu P, Hu S, Xiang J, et al. FTIR study of pyrolysis products evolving from typical agriculturalresidues[J]. Journal of Analytical and Applied Pyrolysis,2010,88(2):117-123.
    [165] Browne C L, Keith C H, Allen R E. The Effect of Filter Ventilation on the Yield and Composition ofMainstream and Sidestream Smokes [J]. Beitrage zur Tabakforschung International,1980,10(2):81-90.
    [166] Keith C H, Tesh P G. Measurement of the total smoke issuing from a buring cigarette[J]. TobaccoScience,1965,9:61-64.
    [167] Waymack B E, Belote J L, Baliga V L, et al. Effects of metal salts on char oxidation in pectins/uronicacids and other acid derivative carbohydrates[J]. Fuel,2004,83(11–12):1505-1518.
    [168] Wang G, Shi S, Wang P, et al. Analysis of diamondoids in crude oils using comprehensivetwo-dimensional gas chromatography/time-of-flight mass spectrometry[J]. Fuel,2013,107:706-714.
    [169] Villière A, Arvisenet G, Lethuaut L, et al. Selection of a representative extraction method for theanalysis of odourant volatile composition of French cider by GC-MS-O and GC×GC-TOF-MS[J]. FoodChemistry,2012,131(4):1561-1568.
    [170] Weldegergis B T, de Villiers A, Mcneish C, et al. Characterisation of volatile components ofPinotage wines using comprehensive two-dimensional gas chramatography coupled to time-of-flight massspectrometry(GC×GC-TOFMS)[J]. Food Chemistry,2011(129):188-199.
    [171] Pena-Abaurrea M, Ye F, Blasco J, et al. Evaluation of comprehensive two-dimensional gaschromatography-time-of-flight-mass spectrometry for the analysis of polycyclic aromatic hydrocarbons insediments[J]. Journal of Chromatography A,2012,1256:222-231.
    [172] Baker R R. A review of pyrolysis studies to unravel reaction steps in burning tobacco[J]. Journal ofAnalytical and Applied Pyrolysis,1987,11:555-573.
    [173] Wang W, Wang Y, Yang L, et al. Studies on thermal behavior of reconstituted tobacco sheet[J].Thermochimica Acta,2005,437:7-11.
    [174] Nowakowshi D J, Jones J M, Brydson R M D, et al. Potassium catalysis in the pyrolysis behaviour ofshort rotation willow coppice[J]. Fuel,2007,86:2389-2402.
    [175] Nowakowski D J, Jones J M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wallconstituents of biomass and their model compounds[J]. Journal of Analytical and Applied Pyrolysis,2008,83(1):12-25.
    [176] Horler J W. Organic potassium: its role in controlling the rate of burn and tar content of tobaccoproducts [C]:47th Tobacco Chemists Research Conference,1993.
    [177] Green C R, Griest W H, Guerin M R, et al. Recent Advances in Tobacco Science: Tobacco Smoke:itsformation and composition[C]: The31st Tobacco Chemists' Research Conference, Greensboro, NorthCarolina,1977.
    [178] Patwardhan P R, Satrio J A, Brown R C, et al. Product distribution from fast pyrolysis ofglucose-based carbohydrates[J]. Journal of Analytical and Applied Pyrolysis,2009,86(2):323-330.
    [179] Nishimura M, Iwasaki S, Horio M. The role of potassium carbonate on cellulose pyrolysis[J]. Journalof the Taiwan Institute of Chemical Engineers,2009,40(6):630-637.
    [180] Vinu R, Broadbelt L J. A mechanistic model of fast pyrolysis of glucose-based carbohydrates topredict bio-oil composition[J]. Energy Environ. Sci.,2012,5:9808-9826.
    [181] Feng J W, Zheng S K, Maciel G E. EPR Investigations of Charring and Char/Air Interaction ofCellulose,Pectin,and Tobacco [J]. Engergy&Fuels,2004,18:560-568.
    [182] Ren Q, Zhao C, Wu X, et al. Effect of mineral matter on the formation of NOX precursors duringbiomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):447-453.
    [183] Lv G, Wu S. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS andPy-GC/MS[J]. Journal of Analytical and Applied Pyrolysis,2012,97:11-18.
    [184] Mcgrath T E, Wooten J B, Geoffrey Chan W, et al. Formation of polycyclic aromatic hydrocarbonsfrom tobacco: The link between low temperature residual solid (char) and PAH formation[J]. Food andChemical Toxicology,2007,45(6):1039-1050.
    [185] Cardoso C R, Ataíde C H. Analytical pyrolysis of tobacco residue: Effect of temperature andinorganic additives[J]. Journal of Analytical and Applied Pyrolysis,2013,99:49-57.
    [186] Zhou S, Wang C, Xu Y, et al. The pyrolysis of cigarette paper under the conditions that simulatecigarette smouldering and puffing[J]. Journal of Thermal Analysis and Calorimetry,2011,104(3):1097.
    [187]舒俊生,徐志强,瞿先中,等.不同类型烟草热裂解形成羰基化合物的影响因素[J].安徽农业科学,2009,37(36):18250-18253.
    [188]许建营.烟草工艺与调香技术[M].北京:中国纺织出版社,2007.
    [189]孙凯,杨燕,侯英,等.卷烟主流烟气气相水分检测与感官分析[J].云南化工,2012,39(4):22-24.
    [190] Seehofer F, Hanssen D, Rabitz H, et al. The escape of water during smoking.Part2.[J]. Beitrage zurTabakforschung,1966,3(7):491-503.
    [191] Liu Q, Wang S, Zheng Y, et al. Mechanism study of wood lignin pyrolysis by using TG-FTIRanalysis[J]. Journal of Analytical and Applied Pyrolysis,2008(82):170-177.
    [192] Mcgrath T E, Brown A P, Meruva N K, et al. Phenolic compound formation from the lowtemperature pyrolysis of tobacco[J]. Journal of Analytical and Applied Pyrolysis,2009,84(2):170-178.
    [193] Patterson J M, Haider N F, Chen S P, et al. An investigation of some factors affecting phenolproduction in tobacco pyrolysis[J]. Tobacco Science,1976,20:114-116.
    [194] Thomas S, Wornat M J. The effects of oxygen on the yields of polycyclic aromatic hydrocarbonsformed during the pyrolysis and fuel-rich oxidation of catechol[J]. Fuel,2008,87(6):768-781.
    [195] Thomas S, Ledesma E B, Wornat M J. The effects of oxygen on the yields of the thermaldecomposition products of catechol under pyrolysis and fuel-rich oxidation conditions[J]. Fuel,2007,86(16):2581-2595.
    [196] Burton H R, Childs G. Thermal decomposition of tobaccos VII: Influence of atmosphere on theformation of gas phase constituents[J]. Beitrage zur Tabakforschung,1977,9:45-52.
    [197] Moldoveanu S C. Analytical Pyrolysis of Natural Organic Polymers[M]. New York: Elsevier,1998.
    [198] Burton H R. Thermal decomposition and gas phase analysis of carbohydrates found in tobacco[EB/OL]. http://legacy.library.ucsf.edu/tid/sou36a99.1976.
    [199] Baliga V, Sharma R, Miser D, et al. Physical characterization of pyrolyzed tobacco and tobaccocomponents[J]. Journal of Analytical and Applied Pyrolysis,2003,66(1-2):191-215.
    [200] Squire K R, Wanmack B E. Thermal decomposition of pectin[EB/OL]. http://tobaccodocuments.org/pm/1000804070.html.1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700