用户名: 密码: 验证码:
纳米材料电化学传感界面的构建及农药残留检测应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个农业大国,也是农药生产和使用的大国。随着农业的发展,农药残留所引发的环境污染和食品安全问题逐渐引起了人们的重视。发展农药残留检测技术,尤其是快速检测技术,对及时监控环境和食品中的农药残留具有重要意义。
     电化学传感技术是农药残留快速检测技术中的一种重要方法。根据检测原理的不同,又可分为化学传感器、酶生物传感器和免疫传感器等。近年来随着纳米科技的发展,利用纳米材料的特性来构建快速、高效、灵敏以及适合现场检测的电化学传感器已成为农药残留快速检测技术的研究发展方向。本文通过对石墨烯、碳纳米管、贵金属纳米粒子、磁性纳米粒子等新型纳米材料电化学催化活性的考察,针对不同的传感器,选择合适的纳米材料来构建传感器界面,以期制得灵敏度高、选择性好、响应快、稳定性好的电化学传感器。主要研究内容包括:
     (1)以石墨烯-Nafion复合物作为固相吸附剂,修饰玻碳电极(Graphene-Nafion/GCE),制备用于检测有机磷农药的溶出伏安电化学传感器。采用改进的Hummers化学法制备氧化石墨和石墨烯,并且利用X射线光电子能谱对其进行了表征。分别采用扫描电子显微镜和循环伏安法、方波伏安法考察了修饰电极的表面形貌特征和电化学特性。在优化实验条件下,考察该传感器对甲基对硫磷检测的线性范围和检出限,并进一步将其应用于实际样品的测定。
     (2)以丝素蛋白(SF)为载体,通过非共价吸附将乙酰胆碱酯酶(AChE)固定在修饰了多壁碳纳米管(MWNTs)的玻碳电极上,制备用于检测有机磷和氨基甲酸酯类农药的酶生物传感器AChE-SF/MWCNTs/GCE。通过原子力显微镜考察了修饰电极表面的形貌特征。采用安培法研究了乙酰硫代胆碱在该生物传感器上的电化学行为。在优化的实验条件下,建立了响应的分析方法,并将该酶传感器应用于蔬菜样品中甲基对硫磷的检测。
     (3)采用层层自组装技术制备了快速检测有机磷农药的生物传感器,利用带正电荷的高分子聚电解质聚二烯丙基二甲基氯化铵(PDDA)将AChE和金纳米粒子(AuNPs)通过静电力逐层固定到玻碳电极表面,利用扫描电子显微镜、交流阻抗和微分脉冲伏安法分别考察了修饰电极的形貌特征以及电化学特性。考察酶传感器对甲基对硫磷检测的线性范围和检测限,并将其进一步应用于实际样品的测定。
     (4)采用化学共沉淀技术制备磁性纳米粒子复合物Fe3O4-AuNPs,并以此磁性纳米复合物构建用于快速检测有机磷农药的酶生物传感器。通过磁力作用将Fe3O4-AuNPs纳米粒子固定在自制的磁性玻碳电极(MGCE)上,并以此作为AChE的载体。分别通过X射线衍射、振动样品磁强和透射电镜表征了磁性纳米粒子复合物Fe3O4-AuNPs的成分、磁性及其形貌特征。利用电化学阻抗、循环伏安法和差分脉冲伏安法表征了自制磁性玻碳电极以及修饰好的酶传感器(AChE/Fe3O4-AuNPs/CNTs/MGCE)的电化学特征。考察了该酶传感器对于对氧磷检测的线性范围和检测限,并将其进一步应用于实际样品的测定。
     (5)采用竞争免疫分析法,基于半抗原对抗体的反应原性,建立了快速检测除草剂2,4-二氯苯氧基乙酸(2,4-D)的电化学免疫分析方法。将半抗原自组装在烷基化的玻碳电极上,与分析物竞争吸附酶标抗体。优化免疫传感器的实验条件。将免疫传感器应用于实际水样的测定。
China is a large country for agricultural, and it is also a large country for pesticideproduction and use. With the development of agriculture, people pay more attention tothe environmental pollution and food safety problems caused by pesticide residues. Ithas important significance to develop the detection technology, especially the rapiddetection technology for monitoring pesticide residues in environment and foodtimely.
     Electrochemical sensing technology is an important method for rapid detection ofpesticide residues. According to different detection principle, electrochemical sensorcan be divided into chemical sensor, biosensor and immunosensor, etc. In recent years,with the development of nanoscience and nanotechnology, it has become the directionof research to construct the electrochemical sensor interface with the characteristics offast, efficient, sensitive and suitable for field detection pesticide residues by nanomaterials. In this paper, the electrochemical sensors with the character of highsensitivity, selective, fast response, good stability were constructed by selecting theappropriate nano materials. The sensor interface was fabricated through theinvestigation of the electrochemical catalytic of graphene, carbon nanotubes, noblemetal nanoparticles and magnetic nanoparticles. The main research contents are asfollows:
     (1) A graphene-Nafion matrix which was used as solid-phase adsorbents modifiedglassy carbon electrode (Graphene-Nafion/GCE) was developed for the determinationof organophosphorus pesticides. Graphene nanosheets was synthesized chemically byHummers method, and characterized by X-ray photoelectron spectroscopy. Thesurface morphology and electrochemical properties of the Graphene-Nafion/GCEwere investigated by means of scanning electron microscopy, cyclic voltammetry, andsquare-wave voltammetry, respectively. Under the optimized experimental conditions,took methyl parathion as a model compound, the linear range and the detection limitof the electrochemical sensor were investigated. Furthermore, theGraphene-Nafion/GCE was applied in the determination of real samples.
     (2) An amperometric biosensor for the determination of organophosphate andcarbamate pesticides was developed based on the immobilization ofacetylcholinesterase(AChE) on regenerated silk fibroin(SF) matrix by non-covalentadsorption. The obtained biosensor was denoted as AChE-SF/MWNTs/GCE. Thesurface morphology of biosensor was characterized by the atomic force microscopyimages. The electrochemical behavior of acetylthiocholine was investigated byamperometry. Under the optimized experimental conditions, a new method was established and applied in the determination of methyl parathion in vegetable samples.
     (3) An amperometric biosensor for the rapid determination of organophosphoruspesticide was developed based on layer by layer self-assembly both AChE and goldnanoparticles(AuNPs) on GCE in the presence of poly(diallyldimethylammoniumchloride)(PDDA). The morphological characteristics and electrochemical propertiesof the biosensor were investigated by scanning electron microscope, electrochemicalimpedance spectroscopy and differential pulse voltammetry. Took methyl parathion asa model compound, the linear range and the detection limit of the biosensor wereinvestigated. The biosensor was applied in the determination of real samples.
     (4) An amperometric biosensor for the rapid detection of organophosphoruspesticide was developed based on magnetic nanoparticle complexes Fe3O4-AuNPsprepared by chemical co-precipitation. These magnetic nanoparticle complexes wereimmobilized on a homemade magnetic glassy carbon electrode and served as matrixfor immobilizing AChE. The chemical composition of magnetic properties andmorphology of magnetic nanoparticles composite Fe3O4-AuNPs were characterizedby X-ray diffraction, vibrating sample magnetometry and transmission electronmicroscopy. The electrochemical characteristics of home-made magnetic glassycarbon electrode and enzyme biosensor were characterized by electrochemicalimpedance spectroscopy and cyclic voltammetery, differential pulse voltammetry. Byparaoxon as an example, the detection linear range and detection limit of the pesticideon enzyme biosensor were investigated. This biosensor was also applied to thedetermination of the pesticide in real samples.
     (5) A fast, simple and sensitive electrochemical competitive immunosensingmethod was developed to monitor herbicide,2,4-dichlorophenoxyacetic acid(2,4-D)based on the specific recognition between hapten and labeled antibody. The hapten2,4-D self-assembled on the alkylation GCE competed with analyte forenzyme-labeled antibody binding. The analyte concentration was dependent on theelectrochemical signal of enzyme-labeled antibody adsorbed on the GCE by hapten.The performance of the immunosensor was evaluated on river water samples spikedwith2,4-D.
引文
[1]中国环境与发展国际合作委员会.给中国政府的环境与发展政策建议[M].北京:中国环境科学出版社,2005:159.
    [2]刘士奇.监测农药残留发展优质果蔬[J].福建农业,2000(8):28.
    [3] VAN D J S,PLETSCHKE B.Review on the use of enzymes for the detection oforganochlorine, organophosphate and carbamate pesticides in theenvironment[J].Chemosphere,2011,82(3):291-307.
    [4] ASLAN S, CAKI Z, EMET M. Acute abdomen associated with organophosphatepoisoning[J].Journal of Emergency Medicine,2010,41(5):507-512.
    [5] CECCHI A, ROVEDATTI M G, SABINO G, et al. Environmental exposure toorganophosphate pesticides:Assessment of endocrine disruption and hepato toxicityinpregnant women[J].Ecotoxicology and Environmental Safety,2012,80:280-287.
    [6] WANG P,TIAN Y,WANG X,et al.Organophosphate pesticide exposure and perinataloutcomes in Shanghai,China[J].Environment International,2012,42:100-104.
    [7]戴延灿,倪永年,卢普滨,等.我国农药残留检测技术现状[J].农药,2004,43(9):389-393.
    [8]赵为武.农产品农药残留问题及治理对策[J].植物医生,2001,3(14):10-13.
    [9]郑国,王淑贤,李学军,等.谈化学农药污染及其引发的生物效应[J].辽宁农业科学,2004,4:26-27.
    [10]郝征红,王怀友.农药残留-影响食物安全的一大关键问题[J].中国食物与营养,2006,9:12-15.
    [11]刘涛.基于酶生物传感器对有机磷和氨基甲酸酯类农药检测的研究[D].泰安:山东农业大学,2012.
    [12]高桂枝,王圣巍,王俏.残留农药污染危害及防治[J].延安大学学报(自然科学版),2002,1(21):52-55.
    [13]张静,王蕾,王趱.气相色谱法测定蔬菜中有机磷农药残留量[J].当代化工,2007,36(2):206-208.
    [14] FARAJZADEH M A,MOGADDAM M R A,AGHDAM A A.Comparison of air-agitatedliquid-liquid microextraction technique and conventional dispersive liquid-liquidmicro-extraction for determination of triazole pesticides in aqueous samples by gaschromatography with flame ionization detection[J].Journal of Chromatography A,2013,http://dx.doi.org/10.1016/j.chroma.2013.02.033.
    [15]谢洪学,何丽君,吴秀玲,等.分散液液微萃取-气相色谱法测定水样中甲拌磷农药[J].分析化学,2008,36(11):1543-1546.
    [16] ZACHARIS C K,ROTSIAS I,ZACHARIADIS P G,et al.Dispersive liquid-iquidmicroextraction for the determination of organochlorine pesticides residues in honey by gaschromatography-electron capture and ion trap mass spectrometric detection[J]. FoodChemistry,2012,134:1665-1672.
    [17]周欣,臧晓欢,王东跃,等.分散液相微萃取-气相色谱联用测定葡萄中百菌清、克菌丹和灭菌丹残留[J].分析化学,2009,37(1):41-45.
    [18]赵文婷,杨中华,魏朝俊,等.分散液相微萃取测定苹果中灭线磷马拉硫磷和毒死蜱残留[J].农业环境科学学报,2010,9(29):1840-1844.
    [19]秦珑,杨梦祺,王建营,等.毛细管气相色谱法测定果蔬食品中21种有机磷类农药残留量[J].中国卫生检验杂志,2010,20(1):88-91.
    [20] HE L,LUO X,JIANG X,et al.A new1,3-dibutylimidazolium hexafluorophosphate ionicliquid-based dispersive liquid-liquid microextraction to determine organophosphoruspesticides in water and fruit samples by high-performance liquid chromatography[J].Journalof Chromatography A,2010,1217(31):5013-5020.
    [21] WU Q,CHANG Q,WU C,et al.Ultrasound-assisted surfactant-enhanced emulsificationmicroextraction for the determination of carbamate pesticides in water samples by highperformance liquid chromatography[J].Journal of Chromatography A,2010,1217(11):1773-1778.
    [22] XU Z,FANG G,WANG S.Molecularly imprinted solid phase extraction coupled tohigh-performance liquid chromatography for determination of trace dichlorvos residues invegetables[J].Food Chemistry,2010,119(2):845-850.
    [23] MA H,FENG W,TIAN M,et al.Determination of N-methylcarbamate pesticides invegetables by poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolithmicroextraction coupled with high performance liquid chromatography[J]. Journal ofChromatography B,2013,http://dx.doi.org/doi:10.1016/j.jchromb.2013.01.036.
    [24]沈英,孙福生,董杰.分散液相微萃取-高效液相色谱法测定水中丙溴磷农药[J].分析化学,2010,38(4):551-554.
    [25]杜亚辉,胡乐乾,周丹.高效液相色谱结合二阶校正方法分析水中氨基甲酸酯类农药残留[J].井冈山大学学报,2013,34(1):47-51.
    [26] WONG J W,HENNESSY M K,HAYWARD D G,et al.Analysis of organophosphoruspesticides in dried ground ginseng root by capillary gas chromatography-mass spectrometryand-flame photometric detection[J].Journal of Agricultural and Food Chemistry,2007,55(4):1117-1128.
    [27] FONTANA A R,CAMARGO A B,ALTAMIRANO J C.Coacervative microextractionultrasound-assisted back-extraction technique for determination of organophosphatespesticides in honey samples by gas chromatography-mass spectrometry[J].Journal ofChromatography A,2010,1214(41):6334-6341.
    [28] VAN P M,BAUER C,POPP P.High performance liquid chromatography-tandem massspectrometry for the analysis of10pesticides in water: A comparison betweenmembrane-assisted solvent extraction and solid phase extraction[J]. Journal ofChromatography A,2009,1216(31):5800-5806.
    [29] XU Z,DENG H,DENG X,et al.Monitoring of organophosphorus pesticides in vegetablesusing monoclonal antibody-based direct competitive ELISA followed byHPLC-MS/MS[J].Food Chemistry,2012,131(4):1569-1576.
    [30] HASSAN J. Rapid and simple low density miniaturized homogeneous liquid-liquidextraction and gas chromatography/mass spectrometric determination of pesticide residues insediment[J].Journal of Hazardous Materials,2010,184(1-3):869-871.
    [31] WANG Y,JIN H,MA S.Determination of195pesticide residues in Chinese herbs by gaschromatography-mass spectrometry using analyte protectants[J].Journal of ChromatographyA,2011,1218(2):334-342.
    [32] OSMAN K A,AL-HUMAID A I,Al-Rehiayani S M,et al.Estimated daily intake ofpesticide residues exposure by vegetables grown in greenhouses in al-qassim Region,SaudiArabia[J].Food Control,2011,22(6):947-953.
    [33] KUJAWSKI.Levels of13multi-class pesticide residues in Polish honeys determined byLC-ESI-MS/MS[J].Food Control,2011,22(6):914-919.
    [34]葛世玫.高效薄层色谱法(HPTLC)分析农药残留[D].合肥:安徽农业大学,2003.
    [35]尉志文,克明,王玉瑾,等.薄层色谱扫描法和气相色谱/质谱法快速诊断有机磷农药中毒[J].中国药物与临床,2006,6(8):594-596.
    [36]郑东,王用岭,张洪秀,等.薄层色谱法检测有机磷农药及监测洗胃效果的临床观察[J].内科急危重症,2005,11(1):44-45.
    [37]吴赛苏,丁小交.薄层色谱法检测久效磷农药的残留量[J].广东化工,2009,36(7):228-230.
    [38]李新社.超临界流体萃取蔬菜中的残留农药[J].食品科学,2003,24(6):124-125.
    [39]万绍晖,赵春杰,徐玫.超临界流体萃取法去除当归中有机氯农药[J].沈阳药科大学学报,2003,20(3):188-190.
    [40]李欢欣,赵春杰,沈艳霞.超临界流体萃取法净化黄芪中有机氯农药的研究[J].中国药学杂志,2005,40(17):1335-1338.
    [41]林振宇,黄露,陈国南.毛细管电泳和毛细管电色谱技术在农药残留检测中的应用[J].色谱,2009,27(1):9-18.
    [42] JUAN-GARCíA A,FONT G,JUAN C,et al.Pressurised liquid extraction and capillaryelectrophoresis-mass spectrometry for the analysis of pesticide residues in fruits fromValencian markets,Spain[J].Food Chemistry,2010,120(4):1242-1249.
    [43] GARCíA-RUIZ C,áLVAREZ-LLAMAS G,PUERTA á,et al.Enantiomeric separationof organophosphorus pesticides by capillary electrophoresis application to the determinationof malathion in water samples after preconcentration by off-line solid-phaseextraction[J].Analytica Chimica Acta,2005,543(1-2):77-83.
    [44]李顺,纪淑娟,孙焕.酶抑制法快速检测蔬菜中有机磷和氨基甲酸酯类农药残留的研究现状及展望[J].食品与药品,2006,8(7):29-30.
    [45]杨若明,赵新颖,崔香花,等.酶抑制法快速检定果蔬中的农药残留[J].中央民族大学学报(自然科学版),2009,18(1):11-14.
    [46]邱朝坤,刘晓宇,任红敏,等.酶抑制法检测蔬菜中有机磷农药残留[J].食品与机械,2010,26(2):40-43.
    [47] NAGATANI N,TAKEUCHI A,HOSSAIN M A,et al.Rapid and sensitive visual detectionof residual pesticides in food using acetylcholinesterase-based disposable membranechips[J].Food Control,2007,18(8):914-920.
    [48]顾黄辉,樊聪明,陆明珠,等.几种常用农药残留速测方法对甲胺磷残留检测效果简述[J].现代农药,2004,3(5):15-17.
    [49]尚艳芬,赵海香,史文礼,等.蔬菜中农药残留快速检测与色谱法检测结果的比较分析[J].农药,2009,48(1):39-42.
    [50]桑园园,柴丽娜,魏朝俊,等.酶抑制法检测4种辛辣蔬菜农药残留假阳性消除的研究[J].中国农学通报,2009,25(11):60-64.
    [51]邱静.我国主要农药残留快速检测方法及产品现状分析[J].检验检测技术,2011(5):41-47.
    [52]凌云,赵渝,徐亚同,等.发光细菌法在食品安全性检测中的应用[J].食品与生物技术学报,2005,24(6):106-120.
    [53]朱华,宋航,边阔.活体生物在农药残留快速检测中的研究应用[J].上海化工,2012,37(4):26-28.
    [54] ZHANG H,WANG S,FANG G.Applications and recent developments of multi-analytesimultaneous analysis by enzyme-linked immunosorbent assays[J].Journal of ImmunologicalMethods,2011,368(1-2):1-23.
    [55] WANG Y,XU Z,XIE Y,et al.Development of polyclonal antibody-based indirectcompetitive enzyme-linked immunosorbent assay for sodium saccharin residue in foodsamples[J].Food Chemistry,2011,126(2):815-820.
    [56] XIA Y,LI Q X,GONG S,et al.Development of a monoclonal antibody-basedenzyme-linked immunosorbent assay for the analysis of the new fungicide2-allylphenol instrawberry fruits[J].Food Chemistry,2010,120(4):1178-1184.
    [57] JIANG X,SHI H,WU N,et al.Development of an enzyme-linked immunosorbent assayfor diniconazole in agricultural samples[J].Food Chemistry,2011,125(4):1385-1389.
    [58] LEI W,LI J Z,WEI L,et al.Determination of organophosphorus pesticides based onbiotin-avidin enzyme-linked immunosorbent assay[J]. Chinese Journal of AnalyticalChemistry,2011,39(3):346-350.
    [59] QIAN G,WANG L,WU Y,et al.A monoclonal antibody-based sensitive enzyme-linkedimmunosorbent assay (ELISA) for the analysis of the organophosphorous pesticideschlorpyrifos-methyl in real samples[J].Food Chemistry,2009,117(2):364-370.
    [60] LEE W Y,LEE E K,KIM Y J,et al.Monoclonal antibody-based enzyme-linkedimmunosorbent assays for the detection of the organophosphorus insecticideisofenphos[J].Analytica Chimica Acta,2006,557(1-2):169-178.
    [61] KIM Y J,KIM Y A,LEE Y T,et al.Enzyme-linked immunosorbent assays for theinsecticide fenitrothion Influence of hapten conformation and sample matrix on assayperformance[J].Analytica Chimica Acta,2007,591(2):183-190.
    [62]桂文君.农药残留检测新技术研究进展[J].北京工商大学学报(自然科学版),2012,30(3):13-18.
    [63]刘召娜.新型纳米结构材料在电化学传感器中的研究与应用[D].济南:山东大学,2012.
    [64] LI C,WANG Z,ZHAN G.Electrochemical investigation of methyl parathion at gold-sodiumdodecylbenzene sulfonate nanoparticles modified glassy carbon electrode[J].Colloids andSurfaces B: Biointerfaces,2011,82(1):40-45.
    [65] DU D,YE X,ZHANG J,et al.Stripping voltammetric analysis of organophosphatepesticides based on solid-phase extraction at zirconia nanoparticles modifiedelectrode[J].Electrochemistry Communications,2008,10(5):686-690.
    [66] PARHAM H,RAHBAR N.Square wave voltammetric determination of methyl parathionusing ZrO2-nanoparticles modified carbon paste electrode[J]. Journal of HazardousMaterials,2010,177(1-3):1077-1084.
    [67] LIU G,LIN Y.Electrochemical sensor for organophosphate pesticides and nerve agentsusing zirconia nanoparticles as selective sorbents[J].Analytical Chemistry,2005,77(18):5894-5901.
    [68] TSIAFOULIS C G,NANOS C G.Determination of azinphos-methyl and parathion-methy inhoney by stripping voltammetry[J].Electrochimica Acta,2010,56:566-574.
    [69] GONG J,MIAO X,ZHOU T,et al.An enzymeless organophosphate pesticide sensor usingAu nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction[J].Talanta,2011,85(3):1344-1349.
    [70] GONG J,MIAO X,WAN H,et al.Facile synthesis of zirconia nanoparticles-decoratedgraphene hybrid nanosheets for an enzymeless methyl parathion sensor[J].Sensors andActuators B: Chemical,2012,162(1):341-347.
    [71] YAZHEN W,HONGXIN Q,Siqian H,et al.A novel methyl parathion electrochemicalsensor based on acetylene black-chitosan composite film modified electrode[J].Sensors andActuators B: Chemical,2010,147(2):587-592.
    [72] KUMARAVEL A, CHANDRASEKARAN M. A novel nanosilver/nafion compositeelectrode for electrochemical sensing of methyl parathion and parathion[J].Journal ofElectroanalytical Chemistry,2010,638(2):231-235.
    [73] KUMARAVEL A,CHANDRASEKARAN M.A biocompatible nano TiO2/nafion compositemodified glassy carbon electrode for the detection of fenitrothion[J]. Journal ofElectroanalytical Chemistry,2011,650(2):163-170.
    [74] SVORC L,RIEVAJ M,Bustin D.Green electrochemical sensor for environmentalmonitoring of pesticides: Determination of atrazine in river waters using a boron-dopeddiamond electrode[J].Sensors and Actuators B: Chemical,2013,181:294-300.
    [75] AMINE A,MOHAMMADI H,BOURAIS I,et al.Enzyme inhibition-based biosensors forfood safety and environmental monitoring[J].Biosensors and Bioelectronics,2006,21(8):1405-1423.
    [76] TROJANOWICZ M. Determination of pesticides using electrochemical enzymaticbiosensors[J].Electroanalysis,2002,14:1311-1328.
    [77] GUO J,WU J J Q,WRIGHT J B,et al.Mechanistic insight into acetylcholinesteraseinhibition and acute toxicity of organophosphorus compounds: a molecular modelingstudy[J].Chemical Research in Toxicology,2006,19(2):209-216.
    [78] CASIDA J E, QUISTAD G B. Serine hydrolase targets of organophosphorustoxicants[J].Chemico-Biological Interactions,2005,157:277-283.
    [79] ANDREESCU S,MARTY J L.Twenty years research in cholinesterase biosensors: Frombasic research to practical applications[J].Biomolecular Engineering,2006,23(1):1-15.
    [80] YAN J,GUAN H,YU J,et al.Acetylcholinesterase biosensor based on assembly ofmultiwall carbon nanotubes on to liposome bioreactors for detection of organophosphatespesticides[J].Pesticide Biochemistry and Physiology,2013,105(3):197-202.
    [81] DU D,YE X,CAI J,et al.Acetylcholinesterase biosensor design based on carbonnanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection oforganophosphates[J].Biosensors and Bioelectronics,2010,25(11):2503-2508.
    [82] ION A C,ION I,CULETU A,et al.Acetylcholinesterase voltammetric biosensors based oncarbon nanostructurechitosan composite material for organophosphatepesticides[J].Materials Science and Engineering C,2010,30(6):817-821.
    [83] VISWANATHAN S,RADECKA H,RADECKI J.Electrochemical biosensor for pesticidesbased on acetylcholinesterase immobilized on polyaniline deposited on vertically assembledcarbon nanotubes wrapped with ssDNA[J].Biosensors and Bioelectronics,2009,24(9):2772-2777.
    [84] RAVI S,MALLIKARJUNARAO G,SILVANA A,et al.AChE biosensor based on zincoxide sol-gel for the detection of pesticides[J].Analytica Chimica Acta,2010,661(2):195-199.
    [85] IVANOV A N,YOUNUSOV R R,EVTUGYN G A,et al.Acetylcholinesterase biosensorbased on single-walled carbon nanotubes-Co phtalocyanine for organophosphorus pesticidesdetection[J].Talanta,2011,85(1):216-221.
    [86] DUTTA K,BHATTACHARYAY D,MUKHERJEE A,et al.Detection of pesticide bypolymeric enzyme electrodes[J].Ecotoxicology and Environmental Safety,2008,69(3):556-561.
    [87] LASCHI S,OGONCZYK D,PALCHETTI I,et al.Evaluation of pesticide-inducedacetylcholinesterase inhibition by means of disposable carbon-modified electrochemicalbiosensors[J].Enzyme and Microbial Technology,2007,40(3):485-489.
    [88] ARDUINI F,RICCI F,TUTA C S,et al.Detection of carbamic and organophosphorouspesticides in water samples using a cholinesterase biosensor based on PrussianBlue-modified screen-printed electrode[J].Analytica Chimica Acta,2006,580(2):155-162.
    [89] HILDEBRANDT A,BRAGOS R,LACORTE S,et al.Performance of a portable biosensorfor the analysis of organophosphorus and carbamate insecticides in water andfood[J].Sensors and Actuators B: Chemical,2008,133(1):195-201.
    [90] LLOPIS X,IBANEZ-GARCIA N,ALEGRET S,et al.Pesticide determination by enzymaticinhibition and amperometric detection in a low-temperature cofired ceramicsmicrosystem[J].Analytical Chemistry,2007,79(10):3662-3666.
    [91] WANG J,TIMCHALK C,LIN Y.Carbon nanotube-based electrochemical sensor for assayof salivary cholinesterase enzyme activity: an exposure biomarker of organophosphatepesticides and nerve agents[J].Environmental Science&Technology,2008,42(7):2688-2693.
    [92] WEI Y Y,LI Y,QU Y H,et al.A novel biosensor based on photoelectro-synergistic catalysisfor flow-injection analysis system/amperometric detection of organophosphorouspesticides[J].Analytica Chimica Acta,2009,643(1-2):13-18.
    [93] CUARTERO M,ORTU O J A,GARCíA M S,et al.Assay of acetylcholinesterase activityby potentiometric monitoring of acetylcholine[J].Analytical Biochemistry,2012,142(1):208-212.
    [94] ZHANG J Z,LUO A M,LIU P,et al.Detection of organophosphorus pesticides usingpotentiometric enzymatic membrane biosensor based on methylcelluloseimmobilization[J].Analytical Sciences,2009,25(4):511-515.
    [95] RISTORI C,CARLO C D,MARTINI M,et al.Potentiometric detection of pesticides inwater samples[J].Analytica Chimica Acta,1996,325(3):151-160.
    [96] LIU B,YANG Y H,WU Z Y,et al.A potentiometric acetylcholinesterase biosensor basedon plasma-polymerized film[J].Sensors and Actuators B: Chemical,2005,104(2):186-190.
    [97] SHANG Z J,XU Y L,GU Y,et al.A rapid detection of pesticide residue based onpiezoelectric biosensor[J].Procedia Engineering,2011,15:4480-4485.
    [98] CHOUTEAU C,DZYADEVYCH S,DURRIEU C,et al.A bi-enzymatic whole cellconductometric biosensor for heavy metal ions and pesticides detection in watersamples[J].Biosensors and Bioelectronics,2005,21(5):273-281.
    [99] WANG K,WANG L,JIANG W,et al.A sensitive enzymatic method for paraoxon detectionbased on enzyme inhibition and fluorescence quenching[J].Talanta,2011,84(2):400-405.
    [100] DOUNIN V,Constantinof A,Schulze H,et al.Electrochemical detection of interactionbetween Thioflavin T and acetylcholinesterase[J].Analyst,2011,136:1234-1238.
    [101] KIM N,PARK I,KIM D.High-sensitivity detection for model organophosphorus andcarbamate pesticide with quartz crystal microbalance-precipitation sensor[J].Biosensorsand Bioelectronics,2007,22(8):1593-1599.
    [102] BUONASERA K,PEZZOTTI G,SCOGNAMIGLIO V,et al.New platform of biosensorsfor prescreening of pesticide residues to support laboratory analyses[J]. Journal ofAgricultural and Food Chemistry,2010,58:5982-5990.
    [103] SHIMOMURA T,ITOH T,SUMIYA T,et al.Amperometric biosensor based on enzymesimmobilized in hybrid mesoporous membranes for the determination ofacetylcholine[J].Enzyme and Microbial Technology,2009,45(6-7):443-448.
    [104] UPADHYAY S, RAO G R, SHARMA M K, et al. Immobilization ofacetylcholineesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modifiedglassy carbon electrode for the sensitive detection of organophosphate pesticides,carbamates and nerve agents[J].Biosensors and Bioelectronics,2009,25(4):832-838.
    [105] HOU S,OU Z,CHEN Q,et al.Amperometric acetylcholine biosensor based onself-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multi-walledcarbon nanotubes/choline oxidase composite-modified platinum electrode[J].Biosensorsand Bioelectronics,2012,33(1):44-49.
    [106] MIAO Y,HE N,ZHU J.History and new developments of assays for cholinesterase activityand inhibition[J].Chemical Reviews,2010,110(9):5216-5234.
    [107] LEE J H,HAN Y D,SONG S Y,et al.Biosensor for organophosphorus pesticides basedon the acetylcholine esterase inhibition mediated by choline oxidasebioelectrocatalysis[J].Biochip Journal,2010,3(4):223-229.
    [108] VAN DYK J S,PLETSCHKE B.Review on the use of enzymes for the detection oforganochlorine, organophosphate and carbamate pesticides in theenvironment[J].Chemosphere,2011,82(3):291-307.
    [109] LEE J H,PARK J Y,MIN K,et al.A novel organophosphorus hydrolase-based biosensorusing mesoporous carbons and carbon black for the detection of organophosphate nerveagents[J].Biosensors and Bioelectronics,2010,25(7):1566-1570.
    [110] DU D,CHEN W,ZHANG W,et al.Covalent coupling of organophosphorus hydrolaseloaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection ofmethyl parathion[J].Biosensors and Bioelectronics,2010,25(6):1370-1375.
    [111] CHOI B G,PARK H,PARK T J,et al.Development of the electrochemical biosensor fororganophosphate chemicals using CNT/ionic liquid bucky gelelectrode[J].Electrochemistry Communications,2009,11:672-675.
    [112] WALKER J P,KIMBLE K W,ASHER S A.Photonic crystal sensor for organophosphatenerve agents utilizing the organophosphorus hydrolase enzyme[J]. Analytical andBioanalytical Chemistry,2007,389:2115-2124.
    [113] KIM G,KANG M,SHIM J,et al.Substrate-bound tyrosinase electrode using goldnanoparticles anchored to pyrroloquinoline quinone for a pesticide biosensor[J].Sensorsand Actuators B: Chemical,2008,133(1):1-4.
    [114] DE ALBUQUERQUE Y D T,FERREIRA L F.Amperometric biosensing of carbamate andelectrodes[J].Analytica Chimica Acta,2007,596(2):210-221.
    [115] OLIVEIRA T M,BARROSO M F,SIMONE M,et al.Biosensor based on multi-walledcarbon nanotubes paste electrode modified with laccase for pirimicarb pesticidequantification[J].Talanta,2013,106:137-143.
    [116] ZHENG Y,HUA T,SUN D,et al.Detection of dichlorvos residue by flow injectioncalorimetric biosensor based on immobilized chicken liver esterase[J].Journal of FoodEngineering,2006,74(1):24-29.
    [117]汤琳,曾光明,黄国和,等.免疫传感器用于环境中痕量有害物质检测的研究进展[J].环境科学,2004,25(4):170-176.
    [118]吴健民.临床化学自动化免疫分析[M].北京:科学出版社,2000:120-149.
    [119]韦明元,郭良宏.环境污染物的免疫传感检测方法进展[J].化学进展,2009,21(2/3):492-502.
    [120] TILOVA I N,DAL P S.The immunosensors for measurement of2,4-dichlorophenoxyaceticacid based on electrochemical impedance spectroscopy[J].Bioelectrochemistry,2004,62(1):11-18.
    [121]钟菲菲,章建辉,李乐,等.纳米金修饰的免疫传感器直接测定2,4-D的研究[J].湖南农业科学,2011,1:145-147.
    [122] LIU G,DAN D S,FENG J C.Towards the fabrication of a label-free amperometricimmunosensor using SWNTs for direct detection of paraoxon[J].Talanta,2013,104:103-108.
    [123] HU S,XIE J,XU Q,et al.A label-free electrochemical immunosensor based on goldnanoparticles for detection of paraoxon[J].Talanta,2003,61:769-777.
    [124] GOBI K V,KIM S J,TANAK H,et al.Novel surface plasmon resonance(SPR)immunosensor based on monomolecular layer of physically-adsorbed ovalbumin conjugatefor detection of2,4-dichlorophenoxyacetic acid and atomic force microscopystudy[J].Sensors and Actuators B: Chemical,2007,123(1):583-593.
    [125] KIM S J,GOBI K V,TANAKA H,et al.A simple and versatile self-assembled monolayerbased surface plasmon resonance immunosensor for highly sensitive detection of2,4-Dfrom natural water resources[J].Sensors and Actuators B: Chemical,2008,130(1):281-289.
    [126] MAURIZ E,CALLE A,MONTOYA A,et al.Determination of environmental organicpollutants with a portable optical immunosensor[J].Talanta,2006,69(2):359-364.
    [127] MAURIZ E,CALLE A,ABADB A,et al.Determination of carbaryl in natural watersamples by a surface plasmon resonance flow-through immunosensor[J].Biosensors andBioelectronics,2006,21(11):2129-2136.
    [128] P IBYL J,HEPEL M,HALáMEK J,et al.Development of piezoelectric immunosensorsfor competitive and direct determination of atrazine[J].Sensors and Actuators B: Chemical,2003,91(1-3):333-341.
    [129] TANG J,TANG D,SU B,et al.Silver nanowire-graphene hybrid nanocomposites as labelfor sensitive electrochemical immunoassay of alpha-fetoprotein[J].Electrochimica Acta,2011,56(24):8168-8175.
    [130] YANG X,YUAN R,CHAI Y,et al.Ru(bpy)2+3-doped silica nanoparticles labeling for asandwich-type electrochemiluminescence immunosensor[J]. Biosensors andBioelectronics,2010,25(7):1851-1855.
    [131] RODRIGUEZ-Mozaz S,REDER S,DE ALDA M L,et al.Simultaneous multi-analytedetermination of estrone,isoproturon and atrazine in natural waters by the river analyser(RIANA),an optical immunosensor[J].Biosensors and Bioelectronics,2004,19(7):633-640.
    [132] DEQUAIRE M,DEGRAND C,LIMOGES B.An immunomagnetic electrochemical sensorbased on a perfluorosulfonate-coated screen-printed electrode for the determination of2,4-dichlorophenoxyacetic acid[J].Analytical Chemistry,1999,71(13):2571-2577.
    [133] LIU G, TIMCHALK C, LIN Y. Bioelectrochemical magnetic immunosensing oftrichloropyridinol: a potential insecticide biomarker[J].Electroanalysis,2006,18(16):1605-1613.
    [134] ZHANG X,WANG H B,YANG C M,et al.Preparation,characterization of Fe3O4at TiO2magnetic nanoparticles and their application for immunoassay of biomarker of exposure toorganophosphorus pesticides[J].Biosensors and Bioelectronics,2013,41:669-674.
    [135]时巧翠,侯海祥.基于电聚合作用的脂质体免疫传感器检测血液中2,4-二氯苯氧乙酸[J].分析试验室,2011,30:59-61.
    [136] LIU S,YUAN L,YUE X,et al.Recent advances in nanosensors for organophosphatepesticide detection[J].Advanced Powder Technology,2008,19(5):419-441.
    [137] DE LA ESCOSURA-MUNIZ A,AMBROSI A,MERKOCI A.Electrochemical analysiswith nanoparticle-based biosystems[J].Trends in Analytical Chemistry,2008,27(7):568-584.
    [138] LI L,WANG Y,WANG Y,et al.Mesoporous nano-Co3O4: A potential negative electrodematerial for alkaline secondary battery[J].Journal of Power Sources,2011,196(24):10758-10761.
    [139] DASTJERDI R,MONTAZER M.A review on the application of inorganic nano-structuredmaterials in the modification of textiles: Focus on anti-microbial properties[J].Colloids andSurfaces B: Biointerfaces,2010,79(1):5-18.
    [140]朱世东,周根树,蔡锐,等.纳米材料国内外研究进展-纳米材料的结构、特异效应与性能[J].热处理技术与装备,2010,31(3):1-6.
    [141]杨海朋,陈仕国,李春,等.纳米电化学生物传感器[J].化学进展,2009,21(1):210-216.
    [142] DAS SARMA S,GEIM A K,KIM P, et al.The2010Nobel Prize in Physics[J].Solid StateCommunications,2010,150(45-46):2207-2208.
    [143] SARMA S D,GEIM A K,KIM P,et al.Recent research advances in the exploration ofgraphene[J].Solid State Communications,2007,143(27-28):1-2.
    [144] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
    [145] ZHANG Y,TAN Y,STORMER H L,et al.Experimental observation of the quantum halleffect and Berry’s phase in graphene[J].Nature,2005,438:201-204.
    [146] BOLOTINA K I,SIKESB K J,JIANGA Z,et al.Ultrahigh electron mobility in suspendedgraphene[J].Solid State Communications,2008,146(9-10):351-355.
    [147] BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layergraphene[J].Nano Letters,2008,8(3):902-907.
    [148]魏德英,国术坤,赵永男.石墨烯的制备与应用研究进展[J].化工新型材料,2011,39(6):11-15.
    [149] CHAE H K,REZ D Y S,KIM J,et al.A route to high surface area,porosity and inclusionof large molecules in crystals[J].Nature,2004,427:523-527.
    [150] VAN den Brink J.Graphene-from strength to strength[J].Nature Nanotechnology,2007,2(4):199-201.
    [151] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomicallythin carbon films[J].Science,2004,306(5696):666-669.
    [152] LIU C,HU G,GAO H.Preparation of few-layer and single-layer graphene by exfoliationof expandable graphite in supercritical N,N-dimethylformamide[J].Journal of SupercriticalFluids,2012,63:99-104.
    [153] ZHU L,ZHAO X,LI Y,et al.High-quality production of graphene by liquid-phaseexfoliation of expanded graphite[J].Materials Chemistry and Physics,2013,137:984-990.
    [154] TASIS D,KostasPapagelis,PanagiotisSpiliopoulos,et al.Efficient exfoliation of graphenesheets in binary solvents[J].Materials Letters,2013,94:47-50.
    [155] FU C,YANG X.Molecular simulation of interfacial mechanics for solvent exfoliation ofgraphene from graphite[J].Carbon,2013,55:350-360.
    [156] PU N,WANG C,SUNG Y,et al.Production of few-layer graphene by supercritical CO2exfoliation of graphite[J].Materials Letters,2009,63:1987-1989.
    [157] KNIEKE C,BERGER A,VOIGT M,et al.Scalable production of graphene sheets bymechanical delamination[J].Carbon,2010,48:3196-3204.
    [158] VANNANG L,EUI-TAEKIM.Low-temperature synthesis of graphene on Fe2O3usinginductively coupled plasma chemical vapor deposition[J].Materials Letters,2013,92:437-439.
    [159] SI F T,ZHANG X W,LIU X,et al.Effects of ambient conditions on the quality ofgraphene synthesized by chemical vapor deposition[J].Vacuum,2012,86(12):1867-1870.
    [160]袁小亚.石墨烯的制备研究进展[J].无机材料学报,2011,26(6):561-570.
    [161] YANG H,HERNANDEZ Y,SCHLIERF A,et al.A simple method for grapheneproduction based on exfoliation of graphite in water using1-pyrenesulfonic acid sodiumsalt[J].Carbon,2013,53:357-365.
    [162] BRODIE B C.Sur le poids atomique du graphite[J].Annales de Chimie et de Physique,1860,59:466-472.
    [163] STAUDENMAIER L.Verfahren zur darstellung der graphits ure[J].Berichte der DeutschenChemischen Gesellschaft,1898,31(2):1481-1487.
    [164] HUMMERS W S,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of theAmerican Chemical Society,1958,80(6):1339.
    [165] WU T, TING J. Preparation and characteristics of graphene oxide and its thinfilms[J].Surface&Coatings Technology,2012,doi:10.1016/j.surfcoat.2012.05.066.
    [166] LIM H N,HUANG N M,LOO C H.Facile preparation of graphene-based chitosan films:Enhanced thermal,mechanical and antibacterial properties[J].Journal of Non-CrystallineSolids,2012,358:525-530.
    [167] LIU J,QIAO Y,GUO C X,et al.Graphene/carbon cloth anode for high-performancemediatorless microbial fuel cells[J].Bioresource Technology,2012,114:275-280.
    [168] DU H,WANG C,HSU H,et al.Graphene nanosheet-CNT hybrid nanostructure electrodefor a proton exchange membrane fuel cell[J].International Journal of Hydrogen Energy,2012,37:18989-18995.
    [169] WANG D,LI F,ZHAO J,et al.Fabrication of graphene/polyaniline composite paper viain situ anodic electropolymerization for high-performance flexible electrode[J].AmericanChemical Society,2009,3(7):1745-1752.
    [170] CHEN Y,ZHANG X,ZHANG D,et al.High performance supercapacitors based onreduced graphene oxide in aqueous and ionic liquid electrolytes[J].Carbon,2011,49:573-580.
    [171] LI Y,YU Y,WANG J,et al.CO oxidation over graphene supported palladiumcatalyst[J].Applied Catalysis B: Environmental,2012,125:189-196.
    [172] YANG S,LUO S,LIU C,et al.Direct synthesis of grapheme-chitosan composite and itsapplication as an enzymeless methyl parathion sensor[J]. Colloids and Surfaces B:Biointerfaces,2012,96:75-79.
    [173] LIU Y,YANG S,NIU W,et al.Simple, rapid and green one-step strategy to synthesis ofgraphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wavevoltammetric detection of methyl parathion[J].Colloids and Surfaces B: Biointerfaces,2013,108:266-270.
    [174] WU S,LAN X,CUI L,et al.Application of graphene for preconcentration and highlysensitive stripping voltammetric analysis of organophosphate pesticide[J]. AnalyticaChimica Acta,2011,699:170-176.
    [175] GONG J,MIAO X,WAN H,et al.Facile synthesis of zirconia nanoparticles-decoratedgraphene hybrid nanosheets for an enzymeless methyl parathion sensor[J].Sensors andActuators B: Chemical,2012,162:341-347.
    [176] LIU T,XU M,YIN H,et al.A glassy carbon electrode modified with graphene andtyrosinase immobilized on platinum nanoparticles for sensing organophosphoruspesticides[J].Microchim Acta,2011,175(1-2):129-135.
    [177] LIU T, SU H, QU X, et al. Acetylcholinesterase biosensor based on3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modifiedelectrode for amperometric detection of organophosphorus and carbamatepesticides[J].Sensors and Actuators B: Chemical,2011,160:1255-1261.
    [178] YANG L,WANG G,LIU Y.An acetylcholinesterase biosensor based on platinumnanoparticles-carboxylic graphene-nafion modified electrode for detection ofpesticides[J].Analytical Biochemistry,2013,437(2):144-149.
    [179] WANG Y,ZHANG S,DU D,et al.Self assembly of acetylcholinesterase on a goldnanoparticles-graphene nanosheet hybrid for organophosphate pesticide detection usingpolyelectrolyte as a linker[J].Journal of Materials Chemistry,2011,21:5319-5325.
    [180] WANG K,LIU Q,DAI L,et al.A highly sensitive and rapid organophosphate biosensorbased on enhancement of CdS-decorated graphene nanocomposite[J].Analytica ChimicaActa,2011,695:84-88.
    [181]张雁.纳米材料修饰电极及在环境分析中的应用研究[D].北京:北京工业大学,2009.
    [182] DU D,HUANG X,CAI J,et al.An amperometric acetylthiocholine sensor based onimmobilization of acetylcholinesterase on a multiwall carbon nanotube-cross-linkedchitosan composite[J].Analytical and Bioanalytical Chemistry,2007,387(3):1059-1065.
    [183] IVANOV Y,MARINOV I,GABROVSKA K,et al.Amperometric biosensor based on asite-specific immobilization of acetylcholinesterase via affinity bonds on a nanostructuredpolymer membrane with integrated multiwall carbon nanotubes[J].Journal of MolecularCatalysis B-Enzymatic,2010,63(3-4):141-148.
    [184] CESARINO I,MORAES F C,LANZA M R V,et al.Electrochemical detection ofcarbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesteraseimmobilized on a composite of polyaniline-carbon nanotubes[J].Food Chemistry,2012,135(3):873-876.
    [185] LIU G D,LIN Y H.Biosensor based on self-assembling acetylcholinesterase on carbonnanotubes for flow injection/amperometric detection of organophosphate pesticides andnerve agents[J].Analytical Chemistry,2006,78(3):835-843.
    [186] DU D,WANG M H,CAI J,et al.Sensitive acetylcholinesterase biosensor based onassembly of beta-cyclodextrins onto multiwall carbon nanotubes for detection oforganophosphates pesticide[J].Sensors and Actuators B: Chemical,2010,146(1):337-341.
    [187] MORAES F C,MASCARO L H,MACHADO S A S,et al.Direct electrochemicaldetermination of carbaryl using a multi-walled carbon nanotube/cobalt phthalocyaninemodified electrode[J].Talanta,2009,79:1406-1411.
    [188]刘松锋.多壁碳纳米管的处理及其与氧化硼的相互作用[D].哈尔滨工业大学,2006.
    [189] DU D,WANG M H,CAI J,et al.One-step synthesis of multiwalled carbon nanotubes-goldnanocomposites for fabricating amperometric acetylcholinesterase biosensor[J].Sensorsand Actuators B: Chemical,2010,143(2):524-529.
    [190]姚娇艳.碳纳米管的表面改性及在吸波领域的应用研究[D].西安电子科技大学,2008.
    [191]郑静,程圭芳,冯婉娟,等.纳米金和磁性纳米颗粒在生物传感器中的应用[J].化学世界,2010,5:310-313.
    [192] SHULGA O, KIRCHHOFF J R.An acetylcholinesterase enzyme electrode stabilized byan electrodeposited gold nanoparticle layer[J].Electrochemistry Communications,2007,9(5):935-940.
    [193] GONG J M,WANG L Y,ZHANG L Z.Electrochemical biosensing of methyl parathionpesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlacednetwork-like nanocomposite[J].Biosensors and Bioelectronics,2009,24(7):2285-2288.
    [194] ZHONG X,YUAN R,CHAI Y,et al.Glucose biosensor based on self-assembled goldnanoparticles and double-layer2D-network(3-mercaptopropyl)-trimethoxysilane polymeronto gold substrate[J].Sensors and Actuators B: Chemical,2005,104:191-198.
    [195]朱宇萍,袁若,柴雅琴,等.基于碳纳米管/L-半胱氨酸/Fe3O4@Au纳米复合材料的电流型甲胎蛋白免疫传感器的研究[J].分析化学,2012,40(3):359-364.
    [196] DU D, CHEN S, CAI J, et al. Electrochemical pesticide sensitivity test usingacetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gelinterface[J].Talanta,2008,74:766-772.
    [197] CHAUHAN N,NARANG J,PUNDIR C S.Immobilization of rat brain acetylcholinesteraseon porous gold-nanoparticle-CaCO3hybrid material modified Au electrode for detection oforganophosphorous insecticides [J].International Journal of Biological Macromolecules,2011,49:923-929.
    [198] MARINOV I,IVANOV Y,GABROVSKA K,et al.Amperometric acetylthiocholine sensorbased on acetylcholinesterase immobilized on nanostructured polymer membranecontaining gold nanoparticles[J].Journal of Molecular Catalysis B:Enzymatic,2010,62:67-75.
    [199] QU Y, SUN Q, XIAO F, et al. Layer-by-Layer self-assembledacetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensingpesticides[J].Bioelectrochemistry,2010,77:139-144.
    [200] KUHARA M,TAKEYAMA H,MATSUNAGA T.Magnetic cell separation using antibodybinding with protein a expressed on bacterial magnetic particles[J].Analytical Chemistry,2004,76:6207-6213.
    [201] MIAO W J,BARD A J.Electrogenerated chemiluminescence.77. DNA hybridizationdetection at high amplification with [Ru(bpy)3]2+-containing microspheres[J].AnalyticalChemistry,2004,76(18):5379-5386.
    [202] LUND-OLESEN T,DUFVA M,HANSEN M F.Capture of DNA in microfluidic channelusing magnetic beads: increasing capture efficiency with integrated microfluidicmixer[J].Journal of Magnetism and Magnetic Materials,2007,311:396-400.
    [203]龚福春,李定中,杨荣,等.矢车菊甙-辣根过氧化物酶-过氧化氢新体系及其在酶联免疫传感分析中的应用[J].中国科学B辑:化学,2009,39(2):153-158.
    [204] FAN A,LAU C,LU J.Magnetic bead-based chemiluminescent metal immunoassay witha colloidal gold label[J].Analytical Chemistry,2005,77:3238-3242.
    [205] FUENTES M,MATEO C,GUISáN J M,et al.Preparation of inert magnetic nano-particlesfor the directed immobilization of antibodies[J].Biosensors and Bioelectronics,2005,20:1380-1387.
    [206] ROCHER V,SIAUGUE J,CABUI V,et al.Removal of organic dyes by magnetic alginatebeads [J].Water Research,2008,42:1290-1298.
    [207]袁永海,李建平.磁性纳米粒子固定辣根过氧化物酶的生物传感器[J].分析化学,2007,35(7):1078-1082.
    [208]高会玲,李建平.磁性无机-生物复合粒子敏感膜新型电流型免疫传感器的研究[J].分析化学,2008,36(12):1614-1618.
    [209] YANG H H,ZHANG S Q,CHEN X L,et al.Magnetite-containing spherical silicananoparticles for biocatalysis and bioseparations[J].Analytical Chemistry,2004,76(1):1316-1321.
    [210] OSAKA T,MATSUNAGA T,NAKANISHI T,et al.Synthesis of magnetic nanoparticlesand their application to bioassays[J].Analytical and Bioanalytical Chemistry,2006,384:593-600.
    [211] NOMURA A,SHIN S,MEHDI O O,et al.Preparation,characterization,and applicationof an enzyme-immobilized magnetic microreactor for flow injection analysis[J].AnalyticalChemistry,2004,76:5498-5502.
    [212] YU D,BLANKERT B,BODOKI E,et al.Amperometric biosensor based on horseradishperoxidase-immobilised magnetic microparticles[J].Sensors and Actuators B: Chemical,2006,113:749-754.
    [213] BAYRAMOGLU G,ARICA M Y.Enzymatic removal of phenol and p-chlorophenol inenzyme reactor: Horseradish peroxidase immobilized on magnetic beads[J].Journal ofHazardous Materials,2008,156:148-155.
    [214] ROSSI L M,QUACH A D,ROSENZWEIG Z.Glucose oxidase-magnetite nanoparticlebioconjugate for glucose sensing[J].Analytical and Bioanaltical Chemistry,2004,380:606-613.
    [215] YANG X, GUO Y, MEI Z. Chemiluminescent determination of H2O2using4-(1,2,4-triazol-1-yl)phenol as an enhancer based on the immobilization of horseradishperoxidase onto magnetic beads[J].Analytical Biochemistry,2009,393:56-61.
    [216] ZHANG H,SUN Y,WANG J,et al.Preparation and application of novel nanocompositesof magnetic-Au nanorod in SPR biosensor[J].Biosensors and Bioelectronics,2012,34:137-143.
    [217]魏小平,刘涛,屈太原,等.磁性量子点电致化学发光测定李氏禾提取液中的过氧化氢[J].分析测试学报,2012,31(3):332-336.
    [218]郭海昌,刘诗咏.钯纳米粒子@超顺磁性Fe3O4催化的Heck偶联反应[J].浙江大学学报(理学版),2012,39(3):317-321.
    [219] ZHANG H,LIU D L,ZENG L L,et al.β-Cyclodextrin assisted one-pot synthesis ofmesoporous magnetic Fe3O4@C and their excellent performance for the removal of Cr(VI)from aqueous solutions[J].Chinese Chemical Letters,2013,24(4):341-343.
    [220] CHANG Y,REN C,QU J,et al.Preparation and characterization of Fe3O4/graphenenanocomposite and investigation of its adsorption performance for aniline andp-chloroaniline[J].Applied Surface Science,2012,261:504-509.
    [221] BADIHI-MOSSBERG M,BUCHNER V,RISHPON J.Electrochemical biosensors forpollutants in the environment[J].Electroanalysis,2007,19(19-20):2015-2028.
    [222] STANKOVICH S,DIKIN D A,DOMMETT G H B,et al.Graphene-based compositematerials[J].Nature,2006,442:282-286.
    [223] NIYOGI S,BEKYAROVA E,ITKIS M E,et al.Solution properties of graphite andgraphene[J].Journal of the American Chemical Society,2006,128(24):7720-7721.
    [224] CHOI B G,IM J,KIM H S,et al.Flow-injection amperometric glucose biosensors basedon graphene/Nafion hybrid electrodes[J].Electrochimica Acta,2011,56(27):9721-9726.
    [225] SHAN C,YANG H,SONG J,et al.Direct electrochemistry of glucose oxidase andbiosensing for glucose based on graphene[J].Analytical Chemistry,2009,81(6):2378-2382.
    [226] KANG T,WANG F,LU L,et al.Methyl parathion sensors based on gold nanoparticles andNafion film modified glassy carbon electrodes[J].Sensors and Actuators B: Chemical,2010,145(1):104-109.
    [227] BABY T T,ARAVIND S S J,AROCKIADOSS T,et al.Metal decorated graphenenanosheets as immobilization matrix for amperometric glucose biosensor[J].Sensors andActuators B: Chemical,2010,145(1):71-77.
    [228] WU S,LAN X,CUI L,et al.Application of graphene for preconcentration and highlysensitive stripping voltammetric analysis of organophosphate pesticide[J]. AnalyticaChimica Acta,2011,699(2):170-176.
    [229] ZHOU Y,CHEN W X,ITOH H,et al.Preparation of a novel core-shell nanostructured goldcolloid silk-fibroin bioconjugate by the protein in situ redox technique at roomtemperature[J].Chemical Communications,2001,23:2518-2519.
    [230] YIN H,ZHOU Y,XUA J,et al.Amperometric biosensor based on tyrosinase immobilizedonto multiwalled carbon nanotubes-cobalt phthalocyanine-silk fibroin film and itsapplication to determine bisphenol A[J].Analytica Chimica Acta,2010,649:144-150.
    [231] LIU H,LIU Y,QIAN J,et al.Fabrication and features of a methylene green-mediatingsensor for hydrogen peroxide based on regenerated silk fibroin as immobilization matrix forperoxidase[J].Talanta,1996,43:111-118.
    [232] YIN H,AI S,SHI W,et al.A novel hydrogen peroxide biosensor based on horseradishperoxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrodeand direct electrochemistry of horseradish peroxidase[J]. Sensors and Actuators B:Chemical,2009,137:747-753.
    [233] YIN H, AI S, XU J, et al. Amperometric biosensor based on immobilizedacetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode fordetection of methyl paraoxon,carbofuran and phoxim[J].Journal of ElectroanalyticalChemistry,2009,637:21-27.
    [234]康天放,刘润,鲁理平,等.再生丝素固定乙酰胆碱酯酶生物传感器,应用化学,2006,23(10):1099-1103.
    [235] WANG J,LIN Y H.Functionalized carbon nanotubes and nanofibers for biosensingapplications[J].Trends in Analytical Chemistry,2008,27(7):619-626.
    [236] GAO X,ZHANG Y,CHEN H,et al.Amperometric immunosensor for carcinoembryonicantigen detection with carbon nanotube-based film decorated with goldnanoclusters[J].Analytical Biochemistry,2011,414(1):70-76.
    [237] DU D,CHEN S,CAI J,et al.Immobilization of acetylcholinesterase on gold nanoparticlesembedded in sol-gel film for amperometric detection of organophosphorousinsecticide[J].Biosensors and Bioelectronics,2007,23(1):130-134.
    [238] VAKUROV A,SIMPSON C E,DALY C L,et al.Acetylcholinesterase-based biosensorelectrodes for organophosphate pesticide detection I. Modification of carbon surface forimmobilization of acetylcholinesterase[J].Biosensors and Bioelectronics,2004,20(6):1118-1125.
    [239] DU D,HUANG X,CAI J,et al.Amperometric detection of triazophos pesticide usingacetylcholinesterase biosensor based on multiwall carbon nanotube-chitosanmatrix[J].Sensors and Actuators B: Chemical,2007,127(2):531-535.
    [240] PINGARRIN J M, YANEZ-SEDENO P, GONZALEZ-CORTES A. Goldnanoparticle-based electrochemical biosensors[J].Electrochimica Acta,2008,53(19):5848-5866.
    [241] DU D,CHEN S,CAI J,et al.Immobilization of acetylcholinesterase on gold nanoparticlesembedded in sol-gel film for amperometric detection of organophosphorousinsecticide[J].Biosensors and Bioelectronics,2007,23(1):130-134.
    [242]周忠亮,郭秀锐,鲁理平,等.DNA-纳米金修饰玻碳电极用于水中甲醛的测定[J].分析测试学报,2009,28(6):697-700.
    [243] ZHAO X,CAI Y,WANG T,et al.Preparation of alkanethiolate-functionalized core/shellFe3O4@Au nanoparticles and its interaction with several typical targetmolecules[J].Analytical Chemistry,2008,80:9091-9096.
    [244] CHEN S,YIN Z,LUO S,et al.Preparation of magnetic Fe3O4/SiO2/Bi2WO6microspheresand their application in photocatalysis[J].Materials Research Bulletin,2013,48:725-729.
    [245] LIU H,JIA Z,JI S,et al.Synthesis of TiO2/SiO2@Fe3O4magnetic microspheres and theirproperties of photocatalytic degradation dyestuff[J].Catalysis Today,2011,175:293-298.
    [246] CUI Y,HONG C,ZHOU Y,et al.Synthesis of orientedly bioconjugated core/shellFe3O4@Au magnetic nanoparticles for cell separation[J].Talanta,2011,85:1246-1252.
    [247] BURNS C J,SWAEN G M H.Review of2,4-dichlorophenoxyacetic acid(2,4-D)epidemiology and toxicology[J].Critical Reviews in Toxicology,2012,42(9):768-786.
    [248] SURI C R,BORO R,NANGIA Y,et al.Immunoanalytical techniques for analyzingpesticides in the environment[J].Trends in Analytical Chemistry,2009,28(1):29-39.
    [249] HOREEK J,SKLIDAL P.Improved direct piezoelectric biosensors operating in liquidsolution for the competitive label-free immunoassay of2,4-dichlorophenoxyaceticacid[J].Analytica Chimica Acta,1997,347:43-50.
    [250] KALDB T, DAL P S. Disposable multichannel immunosensors for2,4-dichlorophenoxyacetic acid using acetylcholinesterase as an enzymelabel[J].Electroanalysis,1997,9(4):293-297.
    [251] DTANTIEV B B,ZHERDEV A V.Electrochemical immunosensors for determination ofthe pesticides2,4-dichlorophenoxyatietic and2,4,5-trichlorophenoxyaceticacids[J].Biosensors and Bioelectronics,1996,11(1-2):179-185.
    [252]汤琳,曾光明,黄国和,等.辣根过氧化物酶生物传感器催化与抑制动力学研究[J].中国生物工程杂志,2004,24(11):70-75.
    [253] YANG Y,YANG M,WANG H,et al.An amperometric horseradish peroxidase inhibitionbiosensor based on a cysteamine self-assembled monolayer for the determination ofsulfides[J].Sensors and Actuators B: Chemical,2004,102(1):162-168.
    [254] LI J H,DONG S J.The electrochemical study of oxidation-reduction properties ofhorseradish peroxidase[J].Journal of Electroanalytical Chemistry,1997,431(1):19-22.
    [255] ZHENG Y,LIN X Q.Modified electrode based on immobilizing horseradish peroxidase onnano-gold with choline covalently modified glassy carbon electrode as a base[J].ChineseJournal of Analytical Chemistry,2008,36(5):604-608.
    [256] LIU X J,HUANG Y X,SHANG L B,et al.Electron transfer reactivity and the catalyticactivity of horseradish peroxidase incorporated in dipalmitoylphosphatidic acidfilms[J].Bioelectrochemistry,2006,68(1):98-104.
    [257] Liu S,Ju H.Renewable reagentless hydrogen peroxide sensor based on direct electrontransfer of horseradish peroxidase immobilized on colloidal gold modifiedelectrode[J].Analytical Biochemistry,2002,307(1):110-116.
    [258] CHEN X,RUAN C,KONG J,et al.Characterization of the direct electron transfer andbioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphiteelectrode[J].Analytica Chimica Acta,2000,412(1-2):89-98.
    [259]时巧翠,侯海祥.基于电聚合作用的脂质体免疫传感器检测血液中2,4-二氯苯氧乙酸[J].分析试验室,2011,30(9):59-61.
    [260]余若祯,何苗,施汉昌,等.2,4-D完全抗原的合成及其免疫性能评价[J].环境科学,2006,27(1):146-150.
    [261]世界卫生组织.《饮用水水质准则》,第三版[S].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700