用户名: 密码: 验证码:
鄱阳湖区蚌湖重金属及氮的生物地球化学与同位素示踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚌湖是鄱阳湖边缘的一个自然小湖泊,蚌湖紧邻赣江、修河和鄱阳湖西北部水域,枯水期水位低落蚌湖因天然堤坝与它们隔离成为独立封闭湖泊;丰水期赣江、修河、鄱阳湖水位上涨,水体逐渐越过堤坝进入蚌湖并逐渐连成一片水域。正是这种河流-湖泊系统的水文连通性控制着湖泊的水位变化,使得蚌湖水源在不同水位期存在差异,随之运移而来的营养盐、阴阳离子、微量元素等也存在差异,表现在湖泊水体、沉积物、水生植物的元素和同位素对环境变化产生响应。
     本研究以蚌湖为主线,通过阴阳离子浓度、氢氧稳定同位素、无机氮稳定同位素分析蚌湖与赣江、修河水体交换情况;探讨水位变化对蚌湖水体理化参数的影响,并利用碳氮稳定同位素技术判断无机氮和颗粒有机质的来源以及对水位变化产生的响应;揭示蚌湖在不同水位条件下污染物扩散残留机制;并对比研究不同生态类型湖泊蚌湖(自然湖泊)及象湖(城市湖泊)的沉积物重金属元素的污染特征及潜在危害、无机氮及有机质碳氮稳定同位素特征与来源分析。
     (1)不同生态类型湖泊重金属污染及其潜在危害存在差异:蚌湖表层沉积物5种重金属的平均浓度顺序为Cu>Zn>Pb>Cr>Cd,污染程度较低,Cd污染平均值达到土壤环境质量三级标准;Cu的含量随年代的分布情况与沿湖的工业发展有较密切的联系。象湖表层沉积物污染最严重的是Cd;各点重金属的平均浓度顺序为Zn>Pb>Cu>Cr>As>Cd,城市湖泊Pb的污染不容忽视。两湖泊重金属浓度在深度上分布呈锯齿状,蚌湖重金属随深度增加浓度降低,而象湖不如蚌湖明显。
     (2)蚌湖、赣江、修河存在水体交换:蚌湖在水位上涨时期和赣江、修河的阴阳离子浓度、氢氧同位素差别不大,且蚌湖范围更宽,这是由于水位上涨时期蚌湖受纳了赣江、修河的水体,可能还有其它水源输入如鄱阳湖。而枯水期蚌湖与赣江、修河的阴阳离子浓度、氢氧稳定同位素差异很大,表明蚌湖枯水期是个独立湖泊。
     蚌湖、赣江、修河无机氮稳定同位素的分析也可以反映蚌湖与两条河流水体交换情况。枯水期蚌湖无机氮稳定同位素均为负值,而赣江修河无机氮稳定同位素均为正值,表明枯水期蚌湖与赣江、修河没有水体交换。平水期(水位上涨阶段)蚌湖无机氮稳定同位素与两条河流无机氮稳定同位素相近,同为正值,表明蚌湖水与两河流水体有交换。丰水期蚌湖、赣江、修河的氨氮稳定同位素都较负,主要来源于流域较多的雨水氨氮源,硝氮主要来源于雨水径流带入的农业氮源。平水期(水位退落阶段)蚌湖硝氮稳定同位素为负值与两河流相反,表明蚌湖水体是丰水期的滞留水体,两河流水可能没有进入蚌湖交换,而且蚌湖的硝化作用较强。
     (3)水位变化对蚌湖水样δ15N-NH4+、δ15N-NO3-有较大影响:蚌湖水样δ15N-NH4+、δ15N-NO3-在不同月份不同水位变化较大,不同水位条件下蚌湖无机氮稳定同位素都存在显著性差异,反映不同水位水体来源不同,丰水期和平水期(水位上涨)的水源是河流水和雨水,平水期(水位退落)和枯水期是丰水期的滞留水,同时湖泊内部的氨化硝化作用也很强。
     (4)有机质C和N同位素组成及C/N指示不同水位和季节有机质的来源和迁移:蚌湖季节性水位变化是影响C和N循环的主控因素,从而影响湖体有机质C和N稳定同位素组成及C/N,反映不同水位有机质来源不同。
     1)悬浮颗粒有机质(SPM):SPM的13C丰水期相对富集(δ13C=-27.5‰~-23.1‰),平水期(水位退落阶段)13C相对亏损(δ13C=-29.7‰~-26.8‰),枯水期δ13C=-31.7‰~-27.3‰,平水期(水位上涨阶段)13C最亏损(δ13C=-35.4‰~-30.8‰)与各水位有显著性差异。SPM的C/N随水位升高而有轻微的上升趋势,大部分样品C/N大于7。丰水期SPM主要来源于外源土壤有机质和水生植物碎屑;平水期(水位退落)湖泊的水生生物碎屑是SPM主要组成。枯水期风浪引起的沉积物再悬浮是SPM重要组成。
     2)表层沉积物(SOM):SOM的δ13C随水位和季节不同而显著变化。SOM的δ13C在冬春季枯水期(δ13C=-30‰~-25.5‰)与夏秋季(δ13C=-26.5‰~-24‰)有显著差异。SOM的C/N变化很大,丰水期和平水期(水位退落阶段)C/N为2~3.5之间,比枯水期C/N为6.5~10.2和平水期(水位上涨阶段)C/N为5.7~9.2低很多,它们之间有显著性差异。丰水期SOM可能以自身矿化分解为主,SPM对SOM有一定贡献;平水期(水位退落阶段)和枯水期SOM主要由衰败的水生植物贡献并且在沉降过程中降解;平水期(水位上涨阶段)可能是外来水源对表层沉积有冲刷作用而使δ13C比枯水期升高很多,外来土壤有机质和水生植物碎屑对SOM没有贡献。
     3)水生植物的δ13C的变化主要是季节变化:在夏季13C相对富集(δ13C=-29.2‰~-23.2‰),而在秋冬春季δ13C范围在-29.5‰~-27‰之间。水生植物的C/N在春夏季高(9.6~16.4),而秋冬季C/N是8~10。水生植物C和N循环主要受季节性的湖泊内部生物地球化学过程控制,在不同季节由于光照、温度不同,植物的光合作用、呼吸作用占主导地位的不同而引起同位素分馏。有机质颗粒(POM)的δ15N随水位变化不大,主要是季节变化。
     (5)不同生态类型湖泊无机氮和有机质碳氮稳定同位素差异及来源分析:根据水体无机氮δ15N和有机质δ13C、δ15N及有机C/N可以大致识别两湖泊无机氮和有机质来源。蚌湖水体无机氮(DIN)含量低,象湖DIN含量高。蚌湖水体无机氮的δ15N偏负,表现为雨水和农业肥料氮污染。象湖水体δ15N-NH4+分布范围大,两污染点δ15N-NH4+值分别为+13.5‰和+25.4‰,表现为污水输入特征,δ15N-NO3-变化主要是湖泊内部的生物地球化学过程分馏所致。蚌湖表层沉积物、大型浮叶植物δ15N差别不大,结合δ13C、有机C/N可以推断水生植物是蚌湖有机质的主要来源。象湖表层沉积物δ15N、有机C/N分布范围大,δ15N在+3.6‰~+8.3‰之间,有机C/N在2.6~10.8之间,表明城市湖泊污染有机质来源广泛,两污染点表现为废水污物有机质输入特征。
Bang Lake is a natural lake on the edge of Poyang Lake, annually seasonal highfluctuation water levels of Poyang Lake also has a great influence on Bang Lakewater levels. Bang Lake is near Gan River, Xiu River and Poyang Lake, and BangLake is separated from them as an independent closed lake because of natural levee indry season. In wet season,with the rise of water level of Gan River, Xiu River andPoyang Lake, water enters into Bang Lake over the dam and gradually comestogether. The water source of Bang Lake is different in different water levels, whichmakes the nutritive salt, anion, cation and trace elements differences. And theelements and isotopes of lake water body, sediment, aquatic plants respond toenvironment changes. Bang Lake is the research subject. The exchange informationof water body among Bang Lake,Gan River and Xiu River were analysed by studyingthe ion concentration of anion and cation, hydrogen and oxygen stable isotope ratiosand inorganic nitrogen stable isotope ratios. The influence of inorganic nitrogenstable isotopes and particle organic matter C and N stable isotopes of Bang Lake fromwater level changes were discussed, judging their origins and response on water levelchanges. Furthermore the characteristics of heavy metal and the isotope, and sourcesof inorganic nitrogen and organic matter between Bang Lake (nature lake) andElephant Lake(urban lake) were comparatively analyzed.
     (1) The differences of heavy metal pollution between different ecological typelakes: The mean concentrations of heavy metals of surface sediment were Cu> Zn>Pb> Cr> Cd in Bang Lake. The pollution degree was low. The average value of Cdwas at the Grade3of Soil environmental quality.Based on RSP value, Pb was belongto light pollution in Bang lake, the biological potential harm of other elements wasnot great. It had a close connection between the Cu content distribution yearly and theindustrial development of Poyang lake.
     The average concentrations of heavy metal of surface sediment in Elephant Lakewere Zn> Pb> Cu> Cr> As> Cd. The most severe pollution in Elephant Lake wasCd. It should be payed more attention for Pb pollution in city lake. The depth distribution of heavy metal concentrations was serrated in the two Lakes, andconcentration was lower with depth increases in Bang Lake but not obvious inElephant Lake.
     (2) The exchange information of water body of Bang Lake,Gan River andXiu River: In the water level rising period there were not obvious differences on theion concentrations of anion and cation, hydrogen and oxygen stable isotope ratiosamong Bang Lake,Gan River and Xiu River because Bang Lake received the waterbody from Gan River, Xiu River,and more from Poyang Lake. However in dryseason, there were obvious differences on those ion concentration or stable istopicratios among them,which showed that Bang Lake is a independent lake.
     Inorganic nitrogen stable isotope analysis also reflected the water exchangeinformation among Bang Lake and Gan River and Xiu River. The inorganic nitrogenstable isotopes in dry season were negative,but positive in Gan river and XiuRiver,which suggested that no water exchange happended among them. However inthe water level rising period isotopes were very close with positive amongthem,which indicated water exchange among Bang Lake and the two rivers.
     The ammonia nitrogen stable isotope of Bang Lake,Gan River and Xiu River inflooding period was negative, mainly came from the ammonia nitrogen source of rainwater of drainage basin.Nitrate nitrogen mainly came from the agricultural nitrogensource by rain runoff. In lowering period,nitrate nitrogen stable isotope of Bang Lakewas negative,which was opposite to the two rivers, showing that the water body ofBang Lake was the retention water of flooding period, the two rivers’ water may notenter the Bang lake, and the nitrification of Bang Lake was stronger.
     (3) Great influence on δ15N-NH4+、δ15N-NO3-from the water level changes ofBang Lake: There were significant differences for inorganic nitrogen stable isotopesof Bang Lake in the flooding, lowering, lentic and flowing periods, which reflectedthe different water sources in different water levels. The water sources of flowing andflooding periods were river water and rain water. The water sources of lowering andlentic periods were the retention water of flooding period.
     (4) C and N stable isotopic compositions of organic matter and C/Nindicating organic matter source and migration: Seasonal water level changes of Bang Lake were the main control factor of the C and N cycle, also affected C and Nstable isotopic compositions of organic matter.
     1) Suspended particulate organic matter (SPM): δ13C of SPM in flooding periodwas relative increase(-27.5‰~-23.1‰), relative decrease in lowering period (-29.7‰~-26.8‰) and lentic period (-31.7‰~-27.3‰). δ13C (35.4‰~30.8‰) inflowing period had significant difference with the other water levels. C/N of SPM hada slight upward trend when water level rose. C/N of most of the samples was greaterthan7. SPM in flooding period was from foreign soil organic matter and the debris ofaquatic plants. The detritus of aquatic plants of the lake in lowering period was themajor composition of SPM. Sediment OM resuspended caused by wind and wavewas important composition of SPM in lentic period.
     2) Surface sediment organic matter (SOM): The δ13C of SOM significantlychanged with the water levels and seasons, with-30‰~-25.5‰in winter andspring and-26.5‰~-24‰in summer and fall. δ13C was very high in May after thewater level rose. The C/N of SOM in flooding and lowering period was2~3.5,which was much lower than that of dry period (6.5~10.2) and flowing period (5.7~9.2). SOM in flooding period may be from foreign soil organic matter and selfbiogeochemical. degredation. In flowing period, foreign water source had flushingaction on surface of sediment, which made the δ13C increase than that in dryperiod,.and no contribution on SOM from soil organic matter and aquatic plantdebris.
     3) δ13C change of aquatic plant was mainly seasonal variation. δ13C ofaquatic plants increase in summer (-29.2‰~-23.2‰), while that of other seasonswas-29.5‰~-27‰. C/N of aquatic plants in spring and summer was high (9.6~16.4) but C/N was8~10in the fall and winter. The C and N cycing of aquatic plantswere mainly controlled by biogeochemical processes in lake. In different seasons,isotope fractionation happened due to the differences of light, temperature, plantphotosynthesis and respiration. The δ15N change of particulate organic matter (POM)was not big, mainly by seasonal changes.
     (5) The analysis of isotope differences and source of inorganic nitrogen andorganic matter between different ecological type lakes: According to δ15N of water, δ13C and δ15N and organic C/N of organic matter, sources of inorganic nitrogen andorganic matter of two lakes can be identified approximately. The water N content inBang Lake was low while high in Elephant Lake. δ15N of DIN in Bang Lake wasnegative, showed nitrogen pollutions from rain water and agricultural fertilizer.δ15N-NH4+in Elephant Lake had a big distribution range. δ15N-NH4+of twopollution sample points were+13.5‰and+25.4‰,showing input characteristics ofsewage.The change of δ15N-NO3-was mainly caused by fractionation of lakeinternally biogeochemical processes in Elephant Lake. That aquatic plant was themain source of organic matter of Bang Lake can be concluded by combined the δ13Cwith organic C/N. The distribution ranges of δ15N of surface sediment of ElephantLake and organic C/N were big, δ15N with+3.6‰~+8.3‰, organic C/N with2.6~10.8, which suggested that the sources of organic matter for urban lake were wide.
引文
[1]傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究:回顾与展望[J].地球科学进展,2005(20):556-560.
    [2] Luo M.B., Li J.Q, Cao W.P.,et al.. Study of heavy metal speciation in branch sediments ofPoyang Lake[J]. Journal of Environmental Sciencesm,2008,20:161–166
    [3] Wu S., Zhoua S., Li X.. Determining the anthropogenic contribution of heavy metalaccumulations around a typical industrial town: Xushe, China[J].Journal of GeochemicalExploration,2011,110:92–97.
    [4] Burton G.A.. Assessing contaminated aquatic sediment[J]. Environmental Science andTechnology,1992,26:1862–1863.
    [5]秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,348(17):1822-1831.
    [6]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮,可交换态氮和固定铵赋存特征[J].湖泊科学,2002,14(4):301-309.
    [7]吴敬禄,林琳,刘建军,等.太湖沉积物碳氮同位素组成特征与环境意义[J].海洋地质与第四纪地质,2005,25(2):25-30.
    [8] Parker S.R., Gammons C.H., Poulson S.R., et al.. Diel behavior of stable isotopes of dissolvedoxygen and dissolved inorganic carbon in rivers over a range of trophic conditions, and in amesocosm experiment[J]. Chemical Geology,2010,269:22–32.
    [9] Eriksson P. G., Weisner S E. B..Nitrogen removal in a wastewater reservoir: The importanceof denitrification by epiphytic biofilms on submersed vegetation[J]. Journal of EnvironmentalQuality,1997,26:905-910.
    [10]杨清心.东太湖水生植被的生态功能及调节机制[J].湖泊科学,1995.1:67-72.
    [11] Hodell D.A., schelske C.L.. Production, sedimentation, and isotopic composition of organicmatter in Lake Ontario[J]. Limnology and Oceanography,1998,43(2):200-214.
    [12] Lehmann M. F., Bernasconi S. M., Mckenzie J.A., et al.. Seasonal variation of the δ13C andδ15N of particulate and dissolved carbon and nitrogen in Lake Lugano: Constraints onbiogeochemical cycling in a eutrophic lake[J]. Limnology and Oceanography.2004,49:415–429.
    [13] Terranes J. L., Bernasconi S M. The record of nitrate utilization and productivity limitationprovided by δ15N values in lake organic matter—a study of sediment trap and coresediments from Baldeggersee, Switzerland[J]. Limnology and Oceanography,2000,45:801-813.
    [14] Drysdale R., Lucas S., Carthew K.. The influence of diurnal temperatures on thehydrochemistry of a tufa-depositing stream[J]. Hydrological Processes,2003,17:3421–3441.
    [15] Shope C.L., Xie Y., Gammons C.H.. The influence of hydrous Mn–Zn oxides on diel cyclingof Zn in an alkaline stream draining abandoned mine lands[J]. AppliedGeochemistry,2006,21:476–491.
    [16] Johnstone H.C., Rahel F.J.. Assessing temperature tolerance of Bonneville cutthroat troutbased on constant and cycling thermal regimes[J]. Trans. Am. Fish. Soc.2003,32:92–99.
    [17] Shrimpton J.M., Zydlewski J.D., Heath J.W.. Effect of daily oscillation in temperature andincreased suspended sediment on growth and smolting in juvenile chinook salmon,Oncorhynchus tshawytscha[J]. Aquaculture,2007,273:269–276.
    [18] Lundquist J.D., Cayan D.. Seasonal and spatial patterns in diurnal cycles in streamflow in theWestern United States[J]. Journal of Hydrometeorology,2002,3:591–603.
    [19] Radke M., Ulrich H., Wurm C., et al.. Dynamics and attenuation of acidic pharmaceuticalsalong a river stretch[J]. Environ. Sci. Technol.,2010,44:2968–2974.
    [20] Forget M.H., Carignan R., Hudon C.. Influence of diel cycles of respiration, chlorophyll, andphotosynthetic parameters on the summer metabolic balance of temperate lakes and rivers[J].Can, J. Fish. Aquat. Sci.,2009,66:1048–1058.
    [21] Loperfido J.V., Just C.L., Schnoor J.L.. High-frequency diel dissolved oxygen stream datamodeled for variable temperature and scale[J]. J. Environ. Eng.2009,135:1250–1256.
    [22] Raymond P.A., Caraco N.F., Cole J.J.. Carbon dioxide concentration and atmospheric flux inthe Hudson River[J]. Estuaries,1997,20:381–390.
    [23] George D.G., Maberly S.C. and Hewitt D.P. The influence of the North Atlantic Oscillationon the physical, chemical and biological characteristics of four lakes in the English Lake[J]District, Freshwater Biology,2004,49:760–774.
    [24]Ocampo-Duque W., Ferre-Huguet N., Domingo J. L., et al. Assessing water quality in riverswith fuzzy inference systems: A case study[J]. Environment International,2006,32(6):733-742.
    [25] Arheimer B., Brandt M.. Watershed modelling of nonpoint nitrogen losses from arable landto the Swedish coast in1985and1994[J]. Ecological Engineering,2000,14(4):389-404.
    [26] Andersson L., Arheimer B.. Modelling of human and climatic impact on nitrogen load in aSwedish river1885-1994[J]. Hydrobiologia,2003,497(1):63-77.
    [27] Hooda P. S,. Rendell A.R., Edwards A.C., et al.. Relating soil phosphorus indices to potentialphosphorus release to water[J]. Journal of Environmental Quality,2000,29(4):1166-1171.
    [28] Elser J. J., Urabe J.. The stoichiometry of consumer-driven nutrient recycling: theory,observations, and consequences[J]. Ecology,1999,80(3):735-751.
    [29] Kent R., Belitz K., Burton, C.A.. Algal productivity and nitrate assimilation in an effluentdominated concrete lined stream[J]. J. Am. Water Resour. Assoc.,2005(41):1109–1128.
    [30] Johnson C.A., Leinz R.W., Grimes D.J., et al.. Photochemical changes in cyanide speciationin drainage from a precious metal ore heap. Environ[J]. Sci. Technol.,2002,36:840–845.
    [31] Harris S.H., Smith R.L.. In site measurements of microbially-catalyzed nitrification andnitrate reduction rates in an ephemeral drainage channel receiving water from coalbednatural gas discharge, Powder River basin, Wyoming, USA[J]. Chem. Geol.,2009,267:77–84.
    [32] Smith R.L., Repert D.A., Hart C.P.. Geochemistry of inorganic nitrogen in waters releasedfrom coal-bed natural gas production wells in the Powder River basin,Wyoming[J]. Environ.Sci. Technol.,2009,43:2348–2354.
    [33] Ekblad A, Nyberg G., H gberg P.13C-discrimination during microbial respiration of addedC3-, C4-and13C-labelled sugars to a C3-forest soil[J]. Oecologia,2002,131(2):245-249
    [34]张东,杨伟,赵建立.氮同位素控制下黄河及其主要支流硝酸盐来源分析[J].生态与农村环境学报,2012,28:622-627.
    [35] Vesper D.J., Smilley M.J.. Attenuation and diel cycling of coal-mine drainage constituents ina passive treatment wetland: a case study from Lambert Run, West Virginia, USA[J]. Appl.Geochem.,2010,25:795–808.
    [36] Nagorski S.A., Moore J.J., McKinnon T.E., et al.. Scale-dependent temporal variations instream water geochemistry[J]. Environ. Sci. Technol.,2003(37):859–864.
    [37] Reynolds C.S.. The ecology of phytoplankton (ecology, biodiversity and conservation), andphytoplankton composition in a large shallow temperate lake[J].Hydrobiologia,2006(506–509):257–263.
    [38] Weyhenmeyer G.A..Warmer winters-are planktonic algal populations in Sweden’s largestlakes affected [J] Ambio.,2001,30:565–571.
    [39] J rvinen M., Lehtinen S. Arvola L.. Variations in phytoplankton assemblage in relation toenvironmental and climatic variation in a boreal lake[J]. Verhandlungen der InternationalenVereinigung der Limnologie,2006,29:1841–1844.
    [40] George D.G., Hurley M.A. Hewitt D.P.. The impact of climate change on the physicalcharacteristics of the larger lakes in the English Lake[J]. District, Freshwater Biology,2007,52:1647–1666.
    [41] N ges, T.. Reflection of the changes of the North Atlantic Oscillation Index and the GulfStream Position Index in the hydrology and phytoplankton of V rtsj rv, a large, shallowlake in Estonia[J]. Boreal Environ. Res.,2004,9:401.407.
    [42] Bird G., Brewer P.A., Macklin M.G., et al.. Heavy metal contamination in the Aries rivercatchment, western Romania: implications for development of the Rosia Montana golddeposit[J]. Journal of Geochemical Exploration,2005,86:26–48.
    [43] Segura R., Arancibia M., Zú iga M.C., et al.. Distribution of copper, zinc, lead and cadmiumconcentrations in stream sediments from the Mapocho River in Santiago, Chile[J]. Journalof Geochemical Exploration,2006,91:71–80.
    [44] Sjobakk T.E., Almli B., Steinnes E.. Heavy metal monitoring in contaminated river systemsusing Mayfly larvae[J]. Journal of Geochemical Exploration,1997,58:203–207.
    [45] Cahill R.A., Unger M.T.. Evaluation of the extent of contaminated sediments in west branchof the Grand Calumet River, Indiana-Illinois, USA [J]. Water Science&Technology,1993,28(8-9):53-58.
    [46]张文强,黄益宗,招礼军.底泥重金属污染及其对水生生态系统的影响[J].现代农业科学,2009,16(4):155-158.
    [47] Mohammad A.H., Bhuiyan M.A., Islam S.B.,et al. Evaluation of hazardous metal pollution inirrigation and drinking water systems in the vicinity of a coal mine area of northwesternBangladesh[J]. Journal of Hazardous Materials,2010,179(1-3):1065-1077.
    [48] Javed I., Munir H.,Shah G.A.. Characterization, source apportionment and health riskassessment of trace metals in freshwater Rawal Lake, Pakistan[J]. Journal of GeochemicalExploration,2013,125:94-101.
    [49] Luis F.O., Silva S.F, Irantzu M.A.,et al. Study of environmental pollution and mineralogicalcharacterization of sediment rivers from Brazilian coal mining acid drainage[J]. Science ofThe Total Environment,2013,447:169-178.
    [50]张溪,周爱国,甘义群,等.金属矿山土壤重金属污染生物修复研究进展[J].环境科学与技术,2010,33(3):106-112.
    [51] Hu K.L., Zhang F.R., Li H., et al. Spatial patterns of soil heavy metals in urban-ruraltransition zone of Beijing[J]. Pedosphere,2006,16(6):690-698.
    [52]翁焕新.河流重金属污染对两侧浅部含水系统影响的作用途径[J].浙江大学学报,1993,27(3):414-421.
    [53] Luo X., Yu S., Zhu Y., et al. Trace metal contamination in urban soils of China[J]. Science ofthe Total Environment,2012,421:17-30.
    [54] Yang Z., Wang Y., Shen Z., et al.. Distribution and speciation of heavy metals in sedimentsfrom the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan,China[J]. Journal of Hazardous Materials,2009,166(2):1186-1194.
    [55]吴学丽,杨永亮,徐清,等.沈阳地区河流灌渠沿岸农田表层土壤中重金属的污染现状评价[J].农业环境科学学报,2011,30(2):282-288.
    [56]王广华,陈海生,刘进宝.生态沟渠中盘培牧草去除养猪场废水中重金属Cu、Zn和Cd效果的研究[J].江西农业学报,2012,22(6):141-142.
    [57]钱建平,江文莹,牛云飞.矿山-河流系统中重金属污染的地球化学研究[J].矿物岩石地球化学通报,2010,29(1):74-82.
    [58] Jackson L.. Paradigms of metal accumulation in rooted aquatic vascular plants[J]. Sci.TotalEnviron.,1998,219:223–231.
    [59] Cardwell A., Hawker D.W., Greenway M., Metal accumulation in aquaticmacrophytes fromsoutheast Queensland, Australia[J].Chemosphere,2002,48:653–663.
    [60] Fritioff A., Greger M.. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plantPotamogeton natans[J]. Chemosphere,2006,63:220–227.
    [61] Sawidis T., Chettri M., Zachariadis G., et al.. Heavy metals in aquatic plants and sedimentsfrom water systems in Macedonia, Greece[J]. Ecotoxicol. Environ. Saf.,1995,32:73–80.
    [62] Peng K., Luo C., Lou L., et al.. Bioaccumulation of heavy metals by the aquatic plantsPotamogeton pectinatus L. and Potamogetonmalaianus Miq. and their potential use forcontamination indicators and in wastewater treatment[J].Sci. Total Environ.,2008,392:22–29.
    [63] Szymanowska A., Samecka-Cymerman A., Kempers A.. Heavy metals in three lakes in WestPoland, Ecotoxicol[J]. Environ. Saf.,1999,43:21–29.
    [64]简敏菲,鲁顺保,朱笃.鄱阳湖典型湿地表土沉积物中重金属污染的分布特征[J].土壤通报,2010,41(4):981-984.
    [65]弓晓峰,黄志中,张静,等.鄱阳湖湿地土壤中Cu Zn Pb和Cd的形态研究[J].农业环境科学学报,2006,25(2):388-392.
    [66]弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J].环境科学,2006,27(4):732-736.
    [67]孙嘉龙,肖唐付,邹晓,等.黔西南滥木厂铊矿化区铊污染的微生物效应[J].地球与环境,2009,37(1):62-66.
    [68]杨清伟,肖飞,潘瑾,等.重庆市城镇河流沉积物重金属污染的潜在生物毒性评价[J].环境与健康杂志,2009,6(5):439-441.
    [69]简敏菲,宋玉斌,倪才英,等.鄱阳湖湿地水生生物重金属污染的特性分析[J].江西师范大学学报(自然科学版),2006,30(5):504-508.
    [70]简敏菲,游海,弓晓峰,等.鄱阳湖典型区域重金属污染的水生植物监测与评价[J].土壤通报,2007,38(2):329-333.
    [71]布吉红,陈辉辉,许宜平,等.河流表层沉积物活体毒性甄别和毒性因子初探[J].环境科学学报,2013,33(10):2285-2291.
    [72] Hunt John,Anderson Brian,Phillips Bryn,et al..Use of toxicity identification evaluations todetermine the pesticide mitigation effectiveness of on-farm vegetated treatment systems[J].Environmental Pollution,2008,156:348-358.
    [73] Araujo Rosalina P.A., Botta-Paschoal Clarice M.R,Silverio P.F.,et al.. Application oftoxicity identification evaluation to sediment in a highly contaminated water reservoir insoutheastern Brazil[J].Environmental Toxicology and Chemistry,2006,25(2):581-588.
    [74] Komarek M., Ettler V., Chrasny V., et al.. Lead isotopes in environmental sciences: areview[J]. Environmental International,2008,34:562–577.
    [75] Anugrah R.W., Aaron K.O., Kentaro T., et al.. Evaluation of heavy metal contents and Pbisotopic compositions in the Chao Phraya River sediments: Implication for anthropogenicinputs from urbanized areas, Bangkok[J].Journal of Geochemical Exploration,2013,126–127:45–54.
    [76] Hirao Y., Matsumoto E., Todoroki H., et al..Lead isotope ratios in Tokyo Bay sediments andtheir implications in the lead consumption of Japanese industries[J]. Geochemical Journal,1986,20:1–15.
    [77] Hosono T., Su C., Okamura K., et al.. Historical record of heavy metal pollution deduced bylead isotope ratios in core sediments from the Osaka Bay,Japan[J]. Journal of GeochemicalExploration,2010,107:1–8.
    [78] Swennen R., Van der Sluys J.. Anthropogenic impact on sediment composition andgeochemistry in vertical over bank profiles of river alluvium from Belgium andLuxembourg[J]. Journal of Geochemical Exploration,2002,75:93–105.
    [79] Wijaya A.R., Ouchi A.J., Tanaka K., et al..Metal contents and Pb isotopes in road-side dustand sediment of Japan[J]. Journal of Geochemical Exploration,2012,118:68–76.
    [80]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370.
    [81]陈桂荣,曾向东,黎巍,等.金属矿山土壤重金属污染现状及修复技术展望[J].矿产保护与利用,2010,2:41-44.
    [82]谢景千,雷梅,陈同斌,等.蜈蚣草对污染土壤中As、Pb、Zn、Cu的原位去除效果[J].环境科学学报,2010,30(1):165-170.
    [83]孙黎,余李新,王思麒,等.湿地植物对去除重金属污染的研究[J].北方园艺,2009,12:125-129.
    [84]袁华茂,李学刚,李宁,等.碱蓬对胶州湾滨海湿地重金属的富集与迁移作用[J].海洋与湖沼,2011,42(5):676-683.
    [85]李梦婕,江韬,魏世强.兰州银滩湿地5种植物对重金属吸附能力的分析[J].环境科学与技术,2011,34(8):109-114.
    [86]董萌,赵运林,库文珍,等.洞庭湖湿地8种优势植物对镉的富集特征[J].生态学杂志,2011,30(12):2783-2789.
    [87]李鸣,吴结春,李丽琴.鄱阳湖湿地22种植物重金属富集能力分析[J].农业环境科学学报,2008,27(6):2413-2418.
    [88]李瑞玲,李倦生,姚运先.3种挺水湿地植物对重金属的抗性及吸收累积研究[J].湖南农业科学,2010(17):60-63.
    [89]杨歌,周跃,贝荣塔,等.滇东南矿区河流底泥重金属污染潜在生态风险评价[J].环境科学导刊,2007,26(1):80-82.
    [90]刘晖,张昭,李伟.梁子湖水体和底泥中微量元素及重金属的空间分布格局及污染评价[J].长江流域资源与环境,2011,20:105-111.
    [91]李鸣,刘琪璟.鄱阳湖水体和底泥重金属污染特征与评价[J].南昌大学学报(理科版),2010,34(5):486-490.
    [92]区铭亮,周文斌,胡春华.鄱阳湖水系重金属出入湖通量估算[J].广东农业科学2012(4):114-117.
    [93]陈翠华,倪师军,何彬彬,等.江西德兴矿集区水系沉积物重金属污染分析[J].长江流域资源与环境,2008,17(5):766-770.
    [94]胡春华,李鸣,夏颖.鄱阳湖表层沉积物重金属污染特征及潜在生态风险评价[J].江西师范大学学报(自然科学版),2011,35(4):427-430.
    [95]刘小真.鄱阳湖流域底质重金属及杀虫剂类POPs垂直污染分布特征[D].南昌:南昌大学博士论文,2008.
    [96]胡利娜,刘小真,周文斌,等.鄱阳湖水域DW采样点底泥重金属垂直污染分析[J].环境科学与技术,2009,32(6):108-111
    [97]刘小真,周文斌,胡利娜,等.抚河南昌段底泥重金属污染特征研究[J].环境科学与技术,2008,31(5):30-34.
    [98]李鸣,吴结春,李丽琴.鄱阳湖湿地22种植物重金属富集能力分析[J].农业环境科学学报,2008,27(6):2413-2418.
    [99]汪月华,李青,李秀峰.重金属污染与儿童发中微量元素的关系研究[J].环境与开发,1999,14(4):2-25.
    [100]Peterson B.J, Fry B.. Stable isotopes in ecosystem studies[J]. Annual review of ecology andsystematics,1987:293-320.
    [101]Ehleringer J.R, Cerling T.E.. C3and C4photosynthesis. In Mooney H.A. environmentalsignificance [J]. Lakes Science,2007,19(1):63-69.
    [102]Costanzo, S.D., Donohue, M.J., Dennison, W.C., et al.. A new approach for detecting andmapping sewage impacts[J]. Marine Pollution Bulletin,2001,42:149–156.
    [103]孙志高,刘景双,于君宝,等.15N示踪技术在湿地氮素生物地球化学过程研究中的应用进展[J].地理科学,2005,25(2):762-768.
    [104]Davidson E.A., Hart S.C., Shanks C.A, et al.. Measuring gross nitrogen mineralization,immobilization and nitrification by15N isotopic pool dilution in intact soil cores[J].Journalof Soil Science,1991,42:335-349.
    [105]Lund L.J., Horne A.J., Williams A..E.. Estimating denitrification in a large constructedwetland using stable nitrogen isotope ratios[J].Ecological Engineering,2000,14:67-76.
    [106]Karsten Kalbitz, Stefan Geyer. Different effect of peat degradation on dissolved organiccarbon and nitrogen[J]. Organic Geochemistry,2000,33:319-326.
    [107]肖化云,刘丛强.水样硝酸盐氮同位素分析预处理方法探讨[J].岩矿测试,2002,21(2):105-108.
    [108]Yoneyama T., Muraoka T., Murakami T., et al,Natural abundance of15N in tropical plantswith emphasis on tree legumes[J]. PlantSoil,1993,153(2):296-304.
    [109]Heaton T.H.E.. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: Areview[J]. Chemical Geology (Isotope Geochemistry Section),1986,59:87-102.
    [110]Mariotti A., Germon J.C., Hubert P., et al..Experimental determination of nitrogen kineticisotope fractionation:Some principles; illustration for the denitrification and nitrificationprocesses[J]. Plant and Soil,1981,62:413-430.
    [111]吴莹,张经,张再峰,等.长江悬浮颗粒物中稳定碳、氮同位素的季节变化[J].海洋与湖沼,2002,33(5):546-552.
    [112]Graham M.C., Eaves M.A., Farmer J.G., et a.l A study of carbon and nitrogen stable isotopeand elemental ratios as potential in dicators of source and fate of organic matter in sedimentsof the Forth Estuary, Scotland[J]. Estrarine, Coastal and Shelf Science,2001,52:375-380.
    [113]Patoine A.,Graham M.D.,Leavitt P.R.. Spatial variation of nitrogen fixation in lakes of thenorthern Great Plains[J]. Limnology and Oceanography,2006,51:1665-1677.
    [114]Delong M.D.,Thorp J.H..Significance of instream autotrophs in trophic dynamics of theUpper Mississippi River[J].Oecologia,2006,147:76-85.
    [115]朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学,2001,13(3):272-279.
    [116]Angelo E.M., Reddy K.R.. Diagenesis of organic matter in a wetland receiving hypereutrophic lake water: I. Distribution of dissolved nutrients in the soil and water column[J]. JEnviron Qual.,1994,23(5):928-936.
    [117]Kendall C..Tracing sources and cycling of nitrate in catchments//Kendall C.,Mcdonnell J.J.Eds.,Isotope tracers in catchment hydrology[M],Amsterdam Elsevier,1998:519-576.
    [118]刘丛强.生物地球化学过程与地表物质循环—西南哈斯特流域侵蚀与生源要素循环[M].北京:科学出版社,2007.
    [119]McConnaughey T.A.,Labaugh J.W.,Rosenberry D.O.,et.al..Carbon budget for agroundwater-fed lake: Calcification supports summer photosynthesis[J]. Limnology andOceanography,1994,39:1319-1332.
    [120]Kling G.W.,Kipphut G.W.,Miller M.C..Arctic lakes and streams as gas conduits to theatmosphere: Implications for tundra carbon budgets[J].Science,1991,251:298-301.
    [121]李秧秧.碳同位素技术在C3作物水分利用效率研究中的应用[J].核农学报,2000,14(2):115-121.
    [122]O’Leary M.B..Carbon isotopic photosynthesis[J].BioScience,1988,38(5):328-336.
    [123]Palmer J.R., Totterdell I.J.. Production and export in a global ecosystem model[J]. Deep-SeaRes.,2001,48:1169–1198
    [124]邢光熹,曹亚澄,施书莲,等.太湖地区水体氮的污染源和反硝化[J].中国科学(B辑),2001,31(2):130-137.
    [125]Meyers P.A., Ishiwatari R.. Lacustrine organic geochemistry—an overview of indicators oforganic matter sources and diagenesis in lake sediments[J]. Org. Geochem.,1993,20:867–900.
    [126]吴丰昌,万国江,蔡玉蓉,等.沉积物一水界面的生物地球化学作用[J].地球科学进展,1996,11(2):191-197.
    [127]Cameron E.M., Hall G..E.M, Veizer J.,et al.. Isotopic and elemental hydrogeochemistry of amajor river system: Fraser River[J]. British Columbia, Canada. Chem.Geol.,1995,122:149–169.
    [128]Gu B.,Schelske C.L.,Waters M.N..Patterns and controls of seasonal variability of carbonstable isotopes of particulate organic matter in lakes[J].Oecologia.2011,165:1083-1094.
    [129]Kortelainen N.M.,Karhu J.A.. Tracing the decomposition of dissolved organic carbon inartificial groundwater recharge using carbon isotope ratios[J].Applied Geochemistry,2006,21:547-562.
    [130]Fisk A.T., Moisey J., Hobson K.A.,et al.. Chlordane components and metabolites in sevenspecies of arctic seabirds from the Northwater Polynya: relationships with stable isotopes ofnitrogen and enantiomeric fractions of chiral components[J].Environ. Pollut.,2001,113:225–238.
    [131]Evenset A.,Christensen G.N,,Skotvold T.,et al. Christensen. A comparison of organiccontaminants in two high Arctic Lake ecosystems,Bjφrnφya(Bear Island),Norway[J].The Science of the Total Environment,2004,318(1-3):125-141.
    [132]Post D.M.. Using stable isotopes to estimate trophic position: models, methods, andassumptions[J]. Ecology,2002,83(3):703-718.
    [133]Hobson K.A., Ambrose W.G.,Renaud P.E.. Sources of primary production, benthic-pelagiccoupling and trophic relationships within the Northeast Water Polynya: Insights from δ13Cand analysis[J]. Mar. Ecol. Prog. Ser.,1995,128(123):1-10.
    [134]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
    [135]范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J].中国科学: D辑,2003,33(8):760-768.
    [136]Ekholm P., Malve O., Kirkkala T.. Internal and external loading as regulators of nutrientconcentrations in the agriculturally loaded Lake Pyh j rvi (southwest Finland)[J].Hydrobiologia,1997,345(1):3-14.
    [137]黄漪平.太湖水环境及其污染控制[M].北京:科学出版社,2001.
    [138]秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学,2002,22(2):150-153.
    [139]秦伯强,胡维平,高光,等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,348(17):1822-1831.
    [140]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [141]Le ra M.,Cantonati M...Effects of water-level fluctuations on lakes:an annotated bibliography [J]. Hydrobiologia,2008,613:171-184.
    [142]Wantzen K.M., Rothhaupt K.O., M rtl M., et al..Ecological effects of water levelfluctuations in lakes:an urgent issue [J]. Hydrobiologia,2008,613:1-4.
    [143]Dearing, J.A..Sedimentary indicators of lake-level changes in the humid temperate zone: acritical review[J]. Journal of Paleolimnology,1997,18:1-14.
    [144]Tockner K., Malard F., Ward J.V.. An extension of the flood pulse concept[J].HydrologicalProcesses,2000,14:2861–2883.
    [145]Arvola L., R ike A., Kortelainen P., et al.. The effect of climate and landuse on TOCconcentrations in Finnish rivers, Boreal[J].Environment Research,2004,9:381–387.
    [146]Worrall F., Burt T.P., Jaeben R.Y.,et al.. The release of dissolved organic carbon fromupland peat[J],Hydrological Processes,2002,16:3487–3504.
    [147]N ges P., K gu M., N ges T.. Role of climate and agricultural practice in determining thematter discharge into large shallow Lake V rtsj rv, Estonia[M]//Eutrophication of ShallowLakes with Special Reference to Lake Taihu, China. Springer Netherlands,2007:125-134.
    [148]Schiemer F., Hein T., Peduzzi P.. Hydrological control of system characteristics offloodplain lakes[J]. Ecohydrology&Hydrobiology,2006,6(1):7-18.
    [149]周文斌,万金保,姜加虎.鄱阳湖江湖水位变化对其生态系统影响[M].北京:科学出版社,2011.
    [150]胡茂林,吴志强,刘引兰.鄱阳湖湖口水位特性及其对水环境的影响[J].水生态学杂志,2010.3(1):1-6.
    [151]Liao M.X., Deng T.L.,Environmental geochemistry of arsenic in sediment-water interfaceof Poyang Lake, China[J]. Chinese Journal of Geochemistry,2006,25(1):142-143.
    [152]姜加虎,黄群.蚌湖与鄱阳湖水量交换关系的分析[J].湖泊科学,1996,8(3):208-214.
    [153]胡春华,姜加虎,朱海虹.蚌湖与都阳湖水位关系及滩地淹露分析[J].海洋与湖沼,1997,28(6):617-623.
    [154]Xiao H.Y., Liu C.Q..Sources of Nitrogen and sulfur in wet deposition at Guiyang, southwestChina[J]. Atmospheris Environment.2002,36:5121-5130.
    [155]Kazi T.G., Jamali M.K., Kazi G.H., et al.. Evaluating the mobility of toxic metals inuntreated industrial wastewater sludge using a BCR sequential extraction procedure and aleaching test[J]. Analytical and bioanalytical chemistry,2005,383(2):297-304.
    [156]高彦鑫,冯金国,唐磊,等.密云水库上游金属矿区土壤中重金属形态分布及风险评价[J].环境科学,2012,33(5):1707-1717.
    [157]彭晶倩,李琳,曹雯,等.城市湖泊水环境安全评价研究[J].环境保护科学,2010,36(5):62-64.
    [158]Yuan H., Shen J., Liu E., et al.. Assessment of nutrients and heavy metals enrichment insurface sediments from Taihu Lake, a eutrophic shallow lake in China[J].Environmentalgeochemistry and health,2011,33(1):67-81.
    [159]毛欣,陈旭,李长安,等.大冶市城市湖泊表层水体中重金属的分布特征及其来源[J].安全与环境工程,2013,20(5):33-87.
    [160]Lu X., Wang L., Lei K., et al.. Contamination assessment of copper, lead, zinc, manganeseand nickel in street dust of Baoji, NW China[J]. Journal of Hazardous Materials,2009,161(2):1058-1062.
    [161]Zhou G.H., QIN X.W., Dong Y.X..Soil environmental quality standards Principles andMethods [J]. Geological Bulletin,2005,24(8):721-727.
    [162]朱海虹,张本.鄱阳湖水文·生物·沉积·湿地·开发整治[M].合肥:中国科技大学出版社,1997:125-246
    [163]Zhang L., Yuan X.Y., Deng X.. Nanjing Xuanwu Lake of heavy metals and theirenvironmental significance [J]. Lakes Science,2007,19(1):63-69.
    [164]王鸣宇,张雷,秦延文,等.湘江表层沉积物重金属的赋存形态及环境影响因子分析[J].环境科学学报,2011,31(11):2447-2458.
    [165]Fang W.P., Zou L.W., Wang C.D.. Xuanwu vertical distribution of heavy metals in sediment[J]. Yangtze River Resources and Environment,2010,19(5):547-552.
    [166]Ccan Car J., Mila Cic R., Strazar M.,et al. Total metal concentrations and partitioning of Cd,Cr, Cu, Fe, Ni and Zn in sewage sludge[J]. Science of the Total Environment,2000,250:9-19.
    [167]刘峰,胡继伟,吴迪,等.基于形态学分析红枫湖沉积物中重金属的分布特征及污染评价[J].环境化学,2011,30(2):440-446.
    [168]赵胜男,李畅游,史小红,等.乌梁素海沉积物重金属生物活性及环境污染评估[J].生态环境学报,2013,23(3):481-489.
    [169]郭平,谢忠晋,李军.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108-112.
    [170]檀满枝,陈杰,徐方明,等.基于模糊集理论的土壤重金属污染空间预测[J].土壤学报,2006,43(3):389-396.
    [171]何纪力,徐光炎.江西省环境背景值研究[M].北京:中国环境科学出版社,2006:35-45.
    [172]Lars Hakanson. An ecological rish index for aquatic pollution control a sediment ologicalapproach[J].Water Research,1980,14:975-1001.
    [173]Agnieszka Kolada.The effect of lake morphology on aquatic vegetation development andchanges under the influence of eutrophication[J]. Ecological Indicators,2014,38:282-293.
    [174]Mvungi Esther F., Lyimo Thomas J., Bj rk Mats. When Zostera marina is intermixed withUlva, its photosynthesis is reduced by increased pH and lower light, but not by changes inlight quality[J]. Aquatic Botany,2012,102:44-49.
    [175]Zhou Z.Y.,Zhang X.J.,Dong W.Y..Fuzzy comprehensive evaluation for safety guaranteesystem of reclaimed water quality[J]. Procedia Environmental Sciences,2013,18:227-235.
    [176]Liou Yiting, Lo Shanglien. A fuzzy index model for trophic status evaluation of reservoirwaters[J]. Water Research,2005(39):1415–1423
    [177]Liou Shiowmey, Lo Shanglien, Hu Chingyao. Application of two-stage fuzzyset theorytoriver qualityevaluation in Taiwan[J]. Water Research,2003,37:1406–1416.
    [178]Zhang B., Song X.F., Zhang Y.H., et al.. Hydrochemical characteristics and water qualityassessment of surface water and groundwater in Songnen plain,Northeast China[J]. WaterResearch,2012,46:2737-2748
    [179]Wu H.Y., Chen K.L., Chen Z.H., et al.. Evaluation for the ecological quality status of coastalwaters in East China Sea using fuzzy integrated assessment method[J]. Marine PollutionBulletin,2012,64:546–555.
    [180]William O.D., Carolina O., Christian P., et al..Water quality analysis in rivers withnon-parametric probability distributions and fuzzy inference systems: Application to theCauca River, Colombia[J]. Environment International,2013,52:17–28.
    [181]胡春华,周文斌,肖化云,等.鄱阳湖富营养化现状及其正态分布特征分析[J].人民长江,2010,41(19):64-68.
    [182]肖红伟,肖化云,王燕丽.贵阳大气降水化学特征及来源分析[J].中国环境科学,2010,30(12):1590–1596.
    [183]刘进达,刘恩凯,赵迎昌,等.影响中国大气降水稳定同位素组成的主要因素分析[J].勘察科学技术,1997,4:14-18.
    [184]丁悌平.氢氧同位素地球化学[M].北京:地质出版社,1980:61-65.
    [185]Craig H.. Isotopic variation in meteoric waters[J]. Science,1961,133:1702-1703.
    [186]章光新,何岩,邓伟.同位素D与18O在水环境中的应用研究进展[J].干旱区研究,2004,21:225-229.
    [187]刘萍.江西省酸雨的氢、氧、硫同位素特征及成因探讨[D].2012,硕士论文.东华理工大学
    [188]石辉,刘世荣,赵晓广.稳定性氢氧同位素在水分循环中的应用[J].水土保持学报,2003,17(2):163-166.
    [189]Freyer H D.. Preliminary.15N studies on atmospheric nitrogenous trace gases[J]. Pure andApplied Geophysics,1978,116(2):393-404.
    [190]Heaton T..15N/14N ratios of nitrate and ammonium in rain at pretoria, south africa[J].Atmospheric Environment (1967),1987,21(4):843-852.
    [191]Chang Ccy., McCormick P.V., Newman S., et al.. Isotopic indicators of environmentalchange in a subtropical wetland[J]. Ecological Indicators,2009,9:825-836.
    [192]Costanzo S.D., O’Donohue M.J., Dennison W.C.,et al.. A new approach for detecting andmapping sewage impacts[J].Marine Pollution Bulletin,2001,42:149-156.
    [193]Ostrom N.E., Long D.T., Bell E.M., et al.. The origin and cycling of particulate andsedimentary organic matter and nitrate in Lake Superior[J]. Chemical Geology,1998,152(1):13-28.
    [194]Wang J., Wu F., Li W., et al. Seasonal variation and vertical characteristics of the δ15N ofparticulate organic matter in Lake Hongfeng and Lake Baihua, Guizhou Province[J]. J. LakeSci.,2008,20:571-578.
    [195]Xiao H.Y.,Liu C.Q.. Identifying organic matter provenance in sediments using isotopicratios in an urban river[J].Geochemical Journal,2010,44:181-187.
    [196]Kendall C., Elliott E.M., Wankel S.D.. Tracing anthropogenic inputs of nitrogen toecosystems. In: Lajtha RMaK, editor. Stable isotopes in ecology and environmentalscience[J]. Blackwell Publishing,2007:375–449.
    [197]Jones R.I., King L., Dent M.M., et al.. Nitrogen stable isotope ratios in surface sediments,epilithon and macrophytes from upland lakes with differing nutrient status[J]. FreshwBiol.,2004,49:382–391.
    [198]Hein T., Baranyi C., Gerhard J.,et al.. Allochthonous and autochthonous particulate organicmatter in floodplains of the River Danube: the importance of hydrological connectivity[J].Freshwater Biology,2003,48:220–232.
    [199]Gu B.,Chapman A.D.,Schelske C.L..Factors controlling seasonal variations in stable isotopecomposition of particulate organic matter in a soft water eutrophic lake[J].Limnology andOceanography,2006,51:2837-2848.
    [200]Gu.B.. Variations and controls of nitrogen stable isotopes in particulate organic matter oflakes[J]. Oecolgia.,2009,160:421-431.
    [201]Hein T., Heiler G., Pennetzdorfer D., et al..The Danube restoration project: functionalaspects and planktonic productivity in the floodplain system. Regulated Rivers[J].Research&Management,1999,15:259-270.
    [202]Eckard R.S., Hernes P.J., Bergamaschi B.A., et al..Landscape scale controls on the vascularplant component of dissolved organic carbon across a freshwater delta[J]. Geochimica etCosmochimica Acta,2007,71:5968-5984.
    [203]Xie Y.X., Xiong Z.Q., Xing G.X., et al.. Assessment of nitrogen pollutant sources in surfacewaters of Taihu Lake region[J]. Pedosphere,2007,17:200-208.
    [204]Hadas O., Altabet M.A., Agnihotri R... Seasonally varying nitrogen isotope biogeochemistryof Harbour Hongkong[J].Marine Pollution Bulletin,2009,40:174-180.
    [205]Bernasconi,S.M.,Barbiri A.,Simona M..Carbon and nitrogen isotope variations insedimenting organic matter in Lake Lugano[J]. Limnol. Oceanogr.,1997,42:1755-1765
    [206] Baldwin D.S., Mitchell A.M.. The effects of drying and re‐flooding on the sediment andsoil nutrient dynamics of lowland river–floodplain systems: a synthesis[J]. RegulatedRivers: Research&Management,2000,16(5):457-467.
    [207]Besemer K., Luef B., Preiner S.,et al...Sources and composition of organic matter forbacterial growth in a large European river floodplain system (Danube, Austria)[J]. OrganicGeochemistry,2009,40:321-331.
    [208]Ostrom N.E., Macko S.A., Deibel D., et al.. Seasonal variation in the stable carbon andnitrogen isotope biogeochemistry of a coastal cold ocean environment[J]. Geochimica etCosmochimica Acta.1997,61:2929-2942..
    [209]Helie J.F., Hillaire-Marcel C.. Sources of particulate and dissolved organic carbon in the StLawrence River: isotopic approach[J]. Hydrolog. Process.,2006,20:1945-1959.
    [210]Prahl F.G., Lange G.J., Scholten S., et al.. A case of post-depositional aerobic degradation ofterrestrial OM in turbidite deposits from the Maderia Abyssal Plain[J]. Org. Geochem.,1997,27:141-152.
    [211]Meyers P.A..Perseveration of e1ementa1and isotope source identification of sedimentaryorganic matter[J]..Chem. Geol.,1994,114:289-302.
    [212]Hellings L.,Dehairs F.,Tackx M.,et al..Origin and fate of organic carbon in the freshwaterpart of the Scheldt Estuary as traced by stable carbon isotope composition[J].Biogeochemistry,1999,47:167-186.
    [213]Middelburg J.,Nieuwenhuize.Carbon and nitrogen stable isotopes in suspended matter andsediments from the Schelde estuary[J].Marine Chemistry,1998,60:217-225.
    [214]Andrews J. E., Greenaway A. M., Dennis P. F.. Combined carbon isotope and C/N ratios asindicators of source and fate of organic matter in a poorly flushed, tropical estuary: HuntsBay, Kingston Harbour, Jamaica[J]. Estuar. Coast. Shelf Sci.,1998,46:743-756.
    [215]Kanduc T.,. Characterisation of suspended matter in river systems: River Sava in Sloveniacase study[J]. Geologija,2011,54:55-66.
    [216]Torres I.C.,Inglett P.W.,Bremer M.,et al.. Stable isotope (δ13C and δ15N) values of sedimentorganic matter in subtropical lakes of different trophic status[J]. Journal of Paleolimnol,2012,47:693-706.
    [217]Cristian R., Teodoru Paul A., del Giorgio Yves T.. Depositional fluxes and sources ofparticulate carbon and nitrogen in natural lakes and a young boreal reservoir in NorthernQuébec[J].Biogeochemistry,2013,113:323-339.
    [218]Sigleo A.C.,Macko S.A.. Carbon and nitrogen isotopes in suspended particles and colloids,Chesapeake and San Francisco estuaries, USA[J]. Estuar. Coast. Shelf Sci.,2002,54:701–711.
    [219]Kendall C., Silva S.R., Kelly V.J.. Carbon and nitrogen isotopic compositions of particulateorganic matter in four large river systems across the United States[J]. Hydrologicalprocesses,2001,15(7):1301-1346..
    [220]Dean W.E..The carbon cycle and biogeochemical dynamics in lake sediments[J] Journal ofpaleolimnology,1999,21(4):375~393
    [221]Onstad, G.D., Canfield, D.E., Quay, P.D.,et al.. Sources of particulate organic matter inrivers from the continental USA: lignin phenol and stable carbon isotope compositions[J].Geochimica et Cosmochimica Acta,2000,64:3539-3546.
    [222]Owens, N.J. P.,Law, C.S.. Natural variations in15N content of riverine and estuarinesediments[J]. Estuar. CoastShelf Sci.,1989,128:407–416.
    [223]Tcherkez G., Nogus S., Bleton J., et al.. Metabolic origian of carbon isotope composition ofleaf dark-respired CO2in Phaseolus vulgaris[J]. Plant Physiology,2002,131:237-244.
    [224]Ocheltree T.W., Marshall J.D.. Apparent respiratory discrimination is correlated with growthrate in the shoot apex of sunfl ower (Helianthus annuus).[J]. Journal of Experimental Botany,2004,55:2599-2605.
    [225]Hobbie E.A., Macko S.A. Shugart H.H.. Patterns in N dynamics and N isotopes duringprimary succession in Glacier Bay, Alaska[J]. Chemical Geology,1998,152:3-11.
    [226]H gberg P..Tansley Review No.95:15N natural abundance in soil–plant systems[J]. NewPhytologist,1997,137:179–203.
    [227] Delwiche C.C., Steyn P.L Nitrogen isotope fractionation in soils and microbial reactions[J].Environmental Science and Technology,1970,4:929–935.
    [228]Meyers P.A.,Tenzeer G.E.,Lebo M.E.,et al...Sedimentary record of sources andaccumulation of organic matter in Pyramid Lake,Nevada,over the past1,000years[J].Limnology and Oceanography,1998,43:160-169.
    [229]Kling H.J.,Mugidde R., Hecky R.E.. Recent changes in the phytoplankton community ofLake Victoria in response to eutrophication. In: Munawar M., Becky R., editors. The greatlakes of the world (GLOW): food-web, health and integrity. Leiden, The etherlands[J].Backhuys Publishers,2001:47–65.
    [230]Nyenje P.M., Foppe J.W.,Uhlenbrook S., et al. Eutrophication and nutrient release in urbanareas of sub-Saharan Africa—A review[J]..Science of the Total Environment,2010,408(3):447-455.
    [231]王圣瑞.湖泊沉积物-水界面过程-氮磷生物地球化学[M].北京:科学出版社,2013.
    [232]Lv J., Wu H.J., Chen M.Q..Effects of nitrogen and phosphoruson phytoplankton compositionand biomass in15subtropical, urban shallow lakes in Wuhan, China [J]. Limnologica,2011,41:48–56.
    [233]熊丽黎,裴智超,温祖标,等.城市湖泊水质污染状况研究-以南昌市西湖水质为例[J].复旦学报(自然科学版),2013,52(2):215-219.
    [234]荆红卫,华蕾,孙成华,等.北京城市湖泊富营养化评价与分析[J].,湖泊科学,2008,20(3):357-363.
    [235]张振克,吴瑞金,王苏民,等.全新世大暖期云南洱海环境演化的湖泊沉积记录[J].海洋与湖沼,2000,31(2):210-214.
    [236]赵艳霞,侯青,徐晓斌.2005年中国酸雨时空分布特征[J].气候变化研究进展,2006,9(5):242-245.
    [237]丁国安,徐晓斌,房秀梅,等.中国酸雨现状及发展趋势[J].科学通报,1997,42(2):169-173.
    [238]Quir6s R.. The relationship between nitrate and ammonia concentrations in the Pelagie zoneof lakes[J].Limnetica,2003,22(1-2):7-50.
    [239]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990
    [240]于忠华,黄文钰,舒金华.南京市主要湖库水环境现状与演变趋势分析[J]..国土与自然资源研究,2005(4):37-39.
    [241]李勇,王超.城市浅水型湖泊底泥磷释放特性实验研究[J].环境科学与技术,2003,26(1):26-28.
    [242]Kellman. L.M., Hillaire-Marcel. C.. Evaluation of nitrogen isotopes as indicators of nitratecontamination sources in an agricultural watershed[J].Agriculture,Ecosystems andEnvironrnent,2003,95:87-102.
    [243]Russow R.,Bohme F., Neue H.. A new approach to determine the total airborne N-input intothe soil-plant system using15N isotope dilution (I'I'N1): Results for agricultural used areasof central Germany[J]. The Scientific world.2001,1(S2):255-260.
    [244]秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16):1857-1866.
    [245]姜庆虎,刘艳芳,黄浦江,等.城市湖泊流域面源污染的源-汇效应研究—以武汉市东湖为例[J].生态环境学报,2013,22(3):469-474.
    [246]Kulabako N.R., Nalubega M., Thunvik R.. Study of the impact of land use andhydrogeological settings on the shallow groundwater quality in a peri-urban area ofKampala, Uganda[J]. Sci. Total Environ.,2007,381(1–3):180–199.
    [247]彭俊杰,李传红,黄细花.城市湖泊富营养化成因和特征[J].生态科学,2004,23(4):370-373
    [248]尤平,任辉.底栖动物及其在水质评价和监测上的应用[J].淮北煤师院报,2001,22(4):44-48.
    [249]Xu J., Zhang M.. Primary consumers as bioindicator of nitrogen pollution in lake planktonicand benthic food webs[J]. Ecological Indicators,2012,14:189–196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700