用户名: 密码: 验证码:
淮南潘谢采煤沉陷积水区沉积物磷迁移转化过程与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮南矿区煤炭开采导致了广泛的土地沉陷和积水,形成了大量的水塘、湖泊、湿地等不同的生态景观,水资源潜力巨大,生态环境效应突出,对矿区经济和环境可持续发展产生了重要影响。以淮南潘谢采煤沉陷积水区水环境的富营养化问题为研究中心,根据此类水生态区特殊的沉积物环境,提出两个关键科学问题:(1)沉陷区覆水农业土层中磷元素是否具有向表层或水体显著迁移的潜能;(2)相比沉陷区水域自然演化模式,较重的外源污染负荷输入是否会加速驱动土壤/沉积物中磷的迁移而对水域营养水平和结构造成重要影响。以科学问题为导向展开相应研究。
     在淮南潘谢矿区东部、中部和西部共选取3个代表性研究站点潘集(PJ)、顾桥(GQ)和谢桥(XQ)进行相关研究。主要内容包括五部分:(1)水环境特征调查与分析:每个站点设置7-9个水质采样点进行一年四个季度的水质调查,主要包括富营养化状态表征、营养盐含量及比例结构和水化学特征分析;(2)沉积物磷的赋存形态特征研究:采集柱状沉积物样品,对野外沉积物样品进行理化性质和磷赋存形态分析,以Psenner提取方法为基础,分别提取了NH4Cl-P、BD-P、NaOH-P和OP,并对磷的迁移转化基础和潜能进行了分析;(3)沉积物磷的吸附特征研究:以区域水化学为背景,研究实际水环境溶液中影响磷吸附特征的主控因子;(4)土柱覆水条件下磷迁移转化过程模拟研究:设计室内模拟实验,对其农业耕作层土壤初期覆水条件下的氧化还原过程进行了观察,研究了磷自农业土壤内部向“水-土”界面迁移转化过程和机制。(5)沉陷区水域水体磷的模拟研究:对沉陷积水区污染负荷方式进行了分析,区分了“封闭”水体、河湖常年连通、季节性连通3种不同水量调蓄和污染负荷模式,利用混合箱式模型分析了PJ、GQ和XQ水体磷元素水平对不同水量调蓄和污染负荷模式的响应特征。
     主要研究成果如下:
     (1)区分了淮南潘谢采煤沉陷积水区两类富营养化状态:XQ站点可以代表整个矿区富营养化的起点,属于“中度-轻度富营养化”状态;而PJ和XQ由于受外源污染,属于负荷较高的两个水体,营养状态已经过渡至“中度富营养化”水平,总磷(TP)浓度和TN浓度分布达到0.1mg/L和2.0mg/L的范围。PJ、GQ和XQ三个研究站点氮磷比较大,PO4-P浓度很低,总体上体现出磷限制的特点。
     (2)发现沉积物理化指标和磷的赋存形态有明显的层次差异:自表层而下,OM、氮磷、铁各形态含量均呈现出下降的趋势。PJ、GQ和XQ的OM含量均值范围分别为0.7%~1.8%、0.8%~1.7%和0.6%~1.6%;TN均值范围分别为496.6mg/kg~1069.6mg/kg、689.1mg/kg~1437.6mg/kg和592.0mg/kg~1300.8mg/kg;TP均值范围分别为201.4mg/kg~348.2mg/kg、217.8mg/kg~401.2mg/kg和159.8mg/kg~351.0mg/kg。磷的赋存形态中,铁铝结合态磷所占据比率较大(表层BD-P和NaOH-P之和所占TP比率在50%左右)。
     (3)提出实际水环境溶液中水化学条件对“水-沉积物”界面磷元素释放控制中作用的重要性,发现区域水化学体系中影响磷吸附特征的主控因子:区域水化学条件对磷的吸附特征具有重要影响,体系中Ca2+能显著增强磷的吸附潜能,减小内源负荷,NaHCO3弱碱性环境则不利于磷的吸附,实际水化学条件下为二者作用的综合,但CaCl2的强化作用要大于NaHCO3的弱化作用。潘谢矿区的三个研究水域,由于受人为活动影响强弱不同、水体营养水平和底质的差异,PJ站点表层沉积物磷内源负荷要强于GQ和XQ站点,起源于淹水农业土壤的沉积环境使得本研究区域沉积物磷内源负荷低于富营养化湖泊。
     (4)揭示了永久覆水条件下农业土壤中铁氧化还原与营养元素磷迁移转化的耦合作用及相应的生态环境效应:土柱覆水模拟实验研究表明,现阶段沉陷区水体的“好氧”状态使得“泵吸”至沉积物表层的Fe2+重新氧化后形成非晶质氧化物而强烈影响磷的迁移,除外源负荷输入的原因外,区域农业土壤中铁氧化物的丰度和活性是控制区域水体磷相对缺乏状态的一个重要机制。OM、TN、TP以及磷各形态的含量由底层向表层增加的剖面形态特征主要是由于表层土壤或沉积物的理化指标和营养元素含量的空间不均匀性所造成。铁会发生由土柱内部向表层的迁移,而磷只是发生了相应的转化,在更长的时间尺度上,如土壤有机质中呈现较高的碳磷比,BD-P有极大可能向OP进行转化。
     (5)提出淮南采煤沉陷区水体磷浓度对不同水量调蓄和污染负荷方式的响应模式,为定量解释区域水体富营养状态和发展趋势提供了理论依据:模拟研究结果和塌陷湖泊的实际营养盐水平状态吻合良好,不同水量调蓄和污染负荷模式下塌陷湖泊TP浓度分别能够保持在III类(TP<=0.05mg/L)和V类(TP<=0.2mg/L)的范围,从而实现不同的水体功能目标。
     研究结果对科学问题回答如下:研究结果中,表层沉积物BD-P和NaOH-P所占TP比例超过了50%,具备了磷释放的基础条件之一,而区域铁氧化物的丰度和活性则束缚了磷的释放。另一方面,人为活动影响导致高外源OM污染的输入会导致磷内源负荷风险增加。因此,未来淮南沉陷区水体营养调控及管理的关键策略在于磷元素的控制。
Extensive coal mining in the Huainan Coal Mines has resulted in extensive landsubsidence and submergence around the mines with landscapes of pondsk, lakes andwetlands. As a result, it has produced vast water resource potencial with significantimpact on sustainability of local ecnomy and environment. This research focused onthe eutrophication in the aquatic zones around the Huainan “Panxie” coal minesubsidence areas. Two research scientific problems were proposed based on localunique sedimentary environments:Firstly, could phosphorus (P) migrate from theagricultural soil column to the surface sediment or water column? Secondly, could theheavy external pollution load impact the P behavior of transforms and transports inthe water-sediment interface, enhance P-releasing potential and changed the nutrientlevel and structure in the water bodies furthermore?
     Three representative sites, including PJ site in the east part, GQ site in the centralpart, and XQ site in the west part of the studied mining areas, were selected to addressrelated research work. The research included the following five parts:(1) Waterquality investigation and analysis: Annual investigations on water quality parameterswere conducted in one year period of four seasons for eutrofication status evaluation,analysis of nutrient contents and ratio, and characterization of regional waterchemistry.(2) Sediment P fractionation: P contents and fractions (NH4Cl-P, BD-P,NaOH-P and OP) in the sediments of three sites from subsided land were analyzed bythe Pesnner method for P extraction to obtain the database to determine P migrationpotential.(3) Sediment P adsorption characteristics in the sediments: P adsorptionbehavior was conducted in the sediments considering the impact of regional waterchemistry in order to clarify the role of surrounding environmental solutions on Preleasing.(4) Simulation of P transforms and transport processes after agriculturalsoils inundation: Simulated experiments were designed to observe the processes ofredox and P migration in inundated agricultural soils. The goal was to obtain theprocesses and mechanisms of P transform and transport from inside soils tosoil-overlying water interface.(5) Modelling P behavior in the aquatic zones: Differentrelationship between subsidence waters and local rivers were classified, in cases ofseparated collapse lakes, lakes of permanently and seasonal connecting to rivers,respectively. Accordingly the features for the regulation of lake storage capacity andpollution loading were characterized. The water quality model of completely mixed tanks was employed to simulate phosphorus response in the water column to differenttypes for water volume filling and pollution loading within the three sites of PJ, GQand XQ.
     The main results and fruits include the following five parts:
     (1) Eutrophication characterization: The aquatic zone at XQ site, showed “lighteutrophic” states, indicating a start point for local eutrophciton processed. Whereasthe waters at the other two sits of PJ and XQ, have been processed to“meso-eutrophic” level due to heavier pollution from external inputs, where TP andTN concentrations reached at the level of0.1mg/L and2.0mg/L, respectively. All testsamples of the two mining areas presented features of rather high nitrogen tophosphorus ration (N:P) and with low soluble P concentrations, presenting Plimitation potential in the studied aquatic zones.
     (2) It was found that the chemical properties and P fractionation showed theobvious difference between layers along the depth, and vertical profiles of OM, TN,TP and Feowere decreasing with the deeper layers of the sediments. The range of OMconsents was0.7%to1.8%at PJ site,0.8%to1.7%at GQ site,0.6%to1.6%at XQsite; it was496.6mg/kg to1069.6mg/kg at PJ site,689.6mg/kg to1437.6mg/kg atGQ site,592.0mg/kg to1300.8mg/kg at XQ site for TN contents; and it was201.4mg/kg to348.2mg/kg at PJ site,217.8mg/kg to401.2mg/kg at GQ site,159.8mg/kgto351.0mg/kg at XQ site, respectively. Fe/Al combined P (BD-P plus NaOH-P) hastaken the greatest proportion of TP in surface sediments.
     (3) It was found that regional water chemistry can impact P adsorption greatly.Usually, Ca2+can enhance P adsorption on sediment surfaces while weakly alkalineconditions caused by bicarbonates are unfavorable for its adsorption. As acomprehensive effect, the positive effect of the former is greater than the negativeeffect of the latter. The site of PJ presented greater P releasing potential than those inthe GQ and XQ sites, probably due to its higher nutrient level. Overall, P releasingrisks at present in the researched sediments are weaker than those in eutrophic lakes,while they are very similar to lakes with lower trophic levels, because of their uniquesedimentary environments from inundated agricultural soils with abundant Fe oxides.
     (4) Characterization of P transport and transforms processes in the sediments andevaluation of its eclogical and envrionmental effects: The research about simulationexperiment of agricultural soils inundation showed that enrichment of Fe-(hydr)oxidesin surface sediments was verified to be the main reason for limitations in regional P availability in water bodies. An increasing upward gradient in the contents of OM, TN,TP, and different P fractions was caused by spatial heterogeneity in soil properties. Fe,but not its bound P, moved upward from the submerged soil column to the surface. Pwas unable to migrate upwards towards the surface sediments as envisioned, becauseof complex secondary reactions within soil minerals. On decadal or longer time scales,BD-P has the highest likelihood of being transformed into OP, which originated froma high C:P ratio in soil organic matter.
     (5) Modelling P behavior and giving the theoritial explantion of P level andtrends in the aquatic zones: the simulated result matched well with the observedphosphorus levels in the studied lakes, which can be confined to different levelsmeeting national water criteria such as Class III of TP concentration less than0.05mg/L, Class IV of TP concentration less than0.10mg/L if the right or properwater reconstruction or management practices have been done.
     The answers to the scientific questions have been given as following: more than50%BD-P along with NaOH-P to TP presented great P releasing potential based onsediment chemical properties. However, reactive Fe oxides and their capacities for Padsorption could lead to P limitation in the aquatic zones. However, it has seriousinternal risks if given the right environments such as high organic matters loadingfrom external sources. Therefore, a key point for future ecological rehabilitation andconservation may depend on the control of P release rather than N.
引文
[1]张锦瑞,陈娟浓,岳志新,等.采煤塌陷引起的地质环境问题及其治理[J].中国水土保持,2007(4):37-39.
    [2]吴德富,王本敏.采煤塌陷区环境整治与矿区可持续发展[J].西部探矿工程,2004,96(5):177-178.
    [3]韦朝阳,张立城,何书金,等.我国煤矿区生态环境现状及综合整治对策[J].地理学报,1997,52(4):300-307.
    [4]淮南矿业(集团)责任有限公司.“淮河凤台蓄滞洪区塌陷水域水质评价及治理利用研究”项目研究报告[R].2010.
    [5]徐良骥,严家平,高永梅.煤矿塌陷水域水环境现状分析及综合利用-以淮南矿区潘一煤矿塌陷水域为例[J].煤炭学报,2009(7):933-937.
    [6]张辉,严家平等.淮南矿区塌陷水域水质理化特征分析[J].煤炭工程,2008(3).
    [7]王振红,桂和荣.采煤矿区不同塌陷塘水域生态环境特征分析[J].安徽农业科学,2006(16).
    [8]孟庆俊.采煤塌陷地氮磷流失规律研究[D].徐州:中国矿业大学,2010.
    [9]谢凯,张雁秋,易齐涛,等.淮南潘一矿塌陷水域沉积物中磷的赋存和迁移转化特征[J].中国环境科学,2012,32(10):1867-1874.
    [10]谢凯,易齐涛.采煤沉陷积水区土壤覆水初期氧化还原反应过程与磷迁移转化的耦合研究[J].环境科学学报(已采用,拟发表在2014年第1期).
    [11]曲喜杰,易齐涛,胡友彪,等.两淮采煤沉陷积水区水体营养盐时空分布[J].应用生态学报,2013,24(11):
    [12]易齐涛,孙鹏飞,谢凯,等.区域水化学条件对淮南采煤沉陷区水域沉积物磷吸附特征的影响研究[J].环境科学,2013,34(10):3894-3903.
    [13]王婷婷,易齐涛,胡友彪,等.两淮采煤沉陷区水域水体富营养化及氮磷限制模拟实验[J].湖泊科学,2013,25(6):
    [14]万国江.沉积物环境界面地球化学研究进展[M].重庆:科学文献出版社重庆分社,1990.
    [15] Bostrom, B., Anderson, J.M., Fleischer, S., et al. Exehange of phosphorus across thesediment-water interface[J]. Hydrobiologia,1988,170:229-244.
    [16] Carignan, R., Lean, D.R.S.. Regeneration of dissolved substances in a seasonally anoxiclake:the relative importance of processes occurring in the water column and in thesediments[J]. Limnol. Oceanogr.,1991,36(43):683-707.
    [17] Ruttenberg, K.C., Berner, R.A.. Authigenic apatite of formation and burial in sediments fromnon-upwelling, continental margin environments[J]. Geochim. Cosmochim. Acta,1993,57:991-1007.
    [18] Schinder, D.W., Hesslein, R.H., Turner, M.A.. Exchange of nutrients between sediments andwater after15years of experimental eutrophication[J]. J. Fish. Aquat. Sci.,1988,44:26-33.
    [19]范成新,张路.太湖-沉积物污染与修复机理[M].北京:科学出版社,2009.
    [20]谢平.翻阅巢湖的历史-蓝藻,富营养化及地质演化[M].北京:科学出版社,2009.
    [21]黄清辉,王子健,王东红,等.太湖表层沉积物的磷吸附容量及其释放风险评估[J].湖泊科学,2004,16(2):97-104.
    [22]张路,范成新,王建军,等.长江中下游湖泊沉积物氮磷形态与释放风险关系[J].湖泊科学,2008,20(3):263-270.
    [23]范成新,王春霞.长江中下游湖泊环境地球化学与富营养化[M].北京:科学出版社,2009.
    [24]谢平.论蓝藻水华发生的机制-从生物进化,生物地球化学和生态学视点[M].北京:科学出版社,2007:89-104.
    [25] Harper, D. Eutrophication of freshwaters: Principles, Problems, and Restoration[M].Chapman&Hall,1992.
    [26] Santschi, P., Hohener, P., Benoit, G., et al. Chemical process at the sediment-waterinterface[J]. Marine Chemistry,1990,30:269-315.
    [27]李铁,叶常明,雷志芳.沉积物与水间相互作用的研究进展[J].环境科学进展,1998,6(5):29-39.
    [28]刘敏,许世远,侯立军.长江口潮滩沉积物-水界面营养盐环境生物地球化学过程[M].北京:科学出版社,2007:5-6.
    [29]郑光膺.湖泊沉积学原理[M].北京:科学出版社,1992.
    [30]范成新,周易勇,吴庆龙,等.湖泊沉积物界面过程与效应[M].北京:科学出版社,2013:12-13.
    [31]张路.太湖水土界面过程与内源发生机制[D].北京:中国科学院研究生院,2004:97.
    [32]张敏.长江中下游浅水湖泊富营养化机制与重金属污染研究[D].武汉:中国科学院水生生物研究所,2005.
    [33]王超,邹丽敏,王沛芳,等.典型城市浅水湖泊沉积物中磷与铁的形态分布及相关关系[J].环境科学,2008,29(12):3400-3404.
    [34]袁和忠,沈吉,刘恩峰,等.太湖水体及表层沉积物磷空间分布特征及差异性分析[J].环境科学,2010,31(4):954-959.
    [35] Wang, S., Jin, X.C., Zhao, H.C., et al.. Phosphorus fractions and its release in the sedimentsfrom the shallow lakes in the middle and lower reaches of Yangtze River area in China[J].Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,273:109-116.
    [36] Kaiserli, A. Voutsa, D., Samara C.. Phosphorus fractionation in lake sediments-Lakes Volviand Koronia, N. Greece[J]. Chemosphere,2002,46:1147-1155.
    [37] Ribeiro, D.C., Martins, G., Nogueira, R., et al.. Phosphorus fractionation in volcanic lakesediments (Azores-Portugal)[J]. Chemosphere,2008,70:1256-1263.
    [38] Pettersson, K., Bostrom, B., Jacobsen O.. Phosphorus in sediments-speciation and analysis[J].Hydrobiologia,1988,170:91-101.
    [39]朱广伟,秦伯强,张路.长江中下游湖泊沉积物中磷的形态及藻类可利用量[J].中国科学D辑:地球科学,2005,35:24-32.
    [40] Pettersson, K.. Phosphorus characteristics of settling and suspended particles in LakeErken[J]. The Science of the Total Enviroment,2001,266:79-86.
    [41] Reitzel, K., Ahlgren, J., DeBrabandere, H., et al. Degradation rates of organic phosphorus inlake sediment[J]. Biogeochemistry,2007,82:15-28.
    [42]黄清辉.浅水湖泊内源磷释放及其生物有效性—以太湖、巢湖和龙感湖为例[D].北京:中国科学院研究生院,2005:110.
    [43] Chang, S.C., Jackson, M.L.. Fractionation of soil phosphorus[J]. Soil Sci.,1957,84:133-144.
    [44] Williams, J.D.H., Jaquet, J.M., Thomas, R.L.. Forms of phosphours in the surficial sedimentsof Lake Erie[J]. J. fish Res. Bd Can.,1976,33:430-439.
    [45] Williams, J.D.H., Shear, H., Thomas, R.L.. Availability to Scenedesmus quadricuada ofdifferent forms of phosphorus in sedimentary materials from the Great Lakes[J]. Limnol.Oceanogr.,1980,25:1-11.
    [46] Hieltjes, A.H.M., Lijklema, L.. Fractionation of inorganic phosphates in calcareoussediments[J]. J. Environ. Qual.,1980,9:405-407.
    [47] Bonzongo, J.C., Bertru, G., Martin, G.. Speciation phosphours techniques in the sedimentsdiscussion and propositions to evaluate inorganic and organic phosphorus[J]. Arch.Hydrobiol.,1989,116:61-69.
    [48] Kassila, J., Hasnaoui, M., Yahyaoui, A.. Sequential extractions of inorganic andorg-phosphate from fish pond sediments (Deroua station, Beni Mellal, Morocco) by differentfractionation methods[J]. Hydrobiologia,2000,431:51-58.
    [49] Ruttenberg, K.C., Development of a sequential extraction method of different forms ofphosphorus in marine sediments[J]. Limnol. Oceanogr.,1992,37:1460-1482.
    [50] Hupfer, M., Gachter, R., Giovanoli, R.. Transformation of phosphorus in settling seston andduring early diagenesis[J]. Aquatic Sciences,1995,57(4):305-324.
    [51] Psenner, R., Pucska, R., Sager, M.. Die fractionierung organischer und anorganischerphosphorverbindungen von sedimenten versuch einer De. nition okologisch wichtigertractionen[J]. Arch. Hydrobiol.,1984,(Suppl.10):115-155.
    [52] Psenner, R. Fractionation of phosphorus in suspended matter and sediment. Ergeb. Limnol.,1988,30:98-113.
    [53] Golterman, H.L., Booman, A.. Sequential extraction of iron-phosphate andcalcium-phosphate from sediments by chelating agents[J]. Verh. int. Ver. Limnol.,1988,23:904-909.
    [54] De Groot, C.J., Golterman, H.L.. Sequential fractionation of sediment phosphate[J].Hydrobiologia,1990,192:143-149.
    [55] Golterman, M.. Fractionation of sediment phosphate with chelating compounds: asimplification, and comparison with other methods[J]. Hydrobiologia,1996,335:87-95.
    [56] Ruban, V., Brigault, S., Demare, D., et al. An investigation of the origin and mobility ofphosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Journal ofEnvironmental Monitoring,1999,1(4):403-407.
    [57] Golterman, H.L.. Fractionation and bioavailability of phosphorus in lacustrine sediments:areviews[J]. Limnetica,2001,20(1):15-29.
    [58] Hupfer, M., Fischer, P., Friese, K.. Phosphorus retention mechanisms in the sediment of aneutrophic mining lake[J]. Water, Air,&Soil Pollution,1998,108:3-4.
    [59] Rydin, E.. Potentially mobile phosphorus in Lake Erken sediment[J]. Water Research,2000,34(7):2037-2042.
    [60] Borovec, J., Hejzlar, J.. Phosphorus fractions and phosphorus sorption characteristics offreshwater sediment and their relationship to sediment composition[J]. Archiv fuerHydrobiologie,2001,151(4):687-703.
    [61] Kaiserli, A., Voutsa, D., Samara, C.. Phosphorus fractionation in lake sediment-lakes Volviand Koronia, N. Greece[J]. Chemosphere,2002,46:1147-1155.
    [62] Selig, U., Hubener, T., Michalik, M.. Dissolved and particulate phosphorus forms in aeutrophic shallow lake[J]. Aquat. Sci.,2002,64:97-105.
    [63]鲁如坤等.土壤-植物营养学原理和施肥[M].北京:化学工业出版社,1998.
    [64] Xie, L.Q., Xie, P., Tang, H.J.. Enhancement of dissolved phosphorus release from sediment tolake water by Microcystis blooms-an enclosure experiment in a hyper-eutrophic, subtropicalChinese lake[J]. Environmental Pollution,2003,122:391-399.
    [65]张敏,谢平,徐军,等.大型浅水湖泊-巢湖内源磷负荷的时空变化特征及形成机制[J].中国科学D辑:地球科学(增刊),2005,35:63-72.
    [66] Liptzin, D., Silver, W.L.. Effects of carbon additions on iron reduction and phosphorusavailability in a humid tropical forest soil[J]. Soil Biology and Biochemistry,2009,41:1696-1702.
    [67] Kristensen. Organic matter diagenesis at the oxic/anoxic interface in coastal marinesediments, with emphasis on the role of burrowing animals[J]. Hydrobiologia,2000,426:1-24.
    [68] Mort, H.P., Slomp, C.P., Gustafsson, B.G., et al. Phosphorus recycling and burial in BalticSea sediments with contrasting redox conditions[J]. Geochemica et Cosmochimica Acta,2010,74:1350-1362.
    [69] Sah, R.N., Mikkelsen, D.S., Hafez, A.A.. Phosphorus behavior in flooded-drainedsoils.Ⅱ.Iron transformation and phosphorus sorption[J]. Soil. Sci. Soc. A. J.,1989a,53:1723-1729.
    [70] Spears, B.M., Carvalho, L., Perkins, R., et al. Effects of light on sediment nutrient flux andwater column nutrient stoichiometry in a shallow lake[J]. Water Research,2008,4:977-986.
    [71] Chacon, N., Dezzeo, N., Munoz, B., et al. Implications of soil organic carbon and thebiogeochemistry of iron and aluminum on soil phosphorus distribution in flooded forests ofthe lower Orinoco River, Venezuela[J]. Biogeochemistry,2005a,73:555-566.
    [72] Chacon, N., Silver, W.L., Dubinsky, E.A., et al. Iron Reduction and Soil PhosphorusSolubilization in Humid Tropical Forests Soils:The Roles of Labile Carbon Pools and anElectron Shuttle Compound[J]. Biogeochemistry,2005b,78:67-84.
    [73]苏玲.水稻土淹水过程中铁化学行为变化对磷有效性影响研究[D].杭州:浙江大学,2001.
    [74] Loeb, R., Lamers, L.P.M., Roelofs, J.G.M.. Prediction of phosphorus mobilization ininundated floodplain soils. Environmental Pollution[J],2008,156:325-331.
    [75]李孝良.土壤磷、硅吸附性能研究[J].安徽农业技术师范学院学报,1999,13(2):43-47.
    [76] Brinkman, A.G.. A double-layer model for ion adsorption onto metal oxides, applied toexperimental data and to natural sediments of Lake Veluwe, The Netherlands[J].Hydrobiologia,1993,253:31-45.
    [77]林荣根,吴景阳.黄河口沉积物中无机磷酸盐的存在形态[J].海洋与湖沼,1992,23(4):387-395.
    [78]刘敏,侯立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特征[J].地理学报,2002,57(4):397-406.
    [79]李敏,韦鹤平,王光谦,等.长江口、杭州湾水域沉积物对磷吸附行为的研究[J].海洋学报,2004,26(1):132-136.
    [80] Reddy, K.R., Fisher, M.M., Ivanoff, D.. Resuspensoin and diffusive flux of nitrogen andphosphorus in hypereurtrophic lake[J]. J. Envrion. Qual.,1996,25:363-371.
    [81] Evans, R.D.. Empirical evidence of the importance of sediment resuspension in lakes[J].Hydrobiologia,1994,284:5-12.
    [82]秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学,2002,22(2):150-153.
    [83]范成新,张路,秦伯强,等.风浪作用下太湖悬浮颗粒物中磷的动态释放估算[J].中国科学D辑,2003,33(8):760-768.
    [84]朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征[J].水科学进展,2004,15(6):775-780.
    [85]张雷,古小治,王兆德,等.水丝蚓扰动对磷在湖泊沉积物-水界面迁移的影响[J].湖泊科学,2010,22(5):666-674.
    [86]商景阁,张路,张波,等.中国长足摇蚊幼虫底栖扰动对沉积物溶解氧特征及反硝化的影响[J].湖泊科学,2010,22(5):708-713.
    [87]谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制[J].中国科学D辑:地球科学(增刊Ⅱ),2005,35:11-23.
    [88] Spears, B.M., Carvalho, L., Perkins R., et al. Effects of light on sediment nutrient flux andwater column nutrient stoichiometry in a shallow lake[J]. Water Research,2008,4:977-986.
    [89] Jiang, X., Jin, X., Yao, Y., et al.. Effects of biological activity, light, temperature and oxygenon phosphorus release processes at the sediment and water interface of Taihu Lake, China[J].Water Research,2008,42:2251-2259.
    [90]赵海超,王圣瑞,金相灿,等.黑藻对沉积物及土壤中不同形态磷的利用与转化[J].湖泊科学,2008,20(3):315-322.
    [91] Katsev, S., Tsandev, I., L'Heureux, I., et al. Factors controlling long-term phosphorus effluxfrom lake sediments: Exploratory reactive-transport modeling[J]. Chemical Geology,2006,234:127-147.
    [92] Kraal, P., Slomp, C.P., Forster, A., et al. Pyrite oxidation during sample storage determinesphosphorus fractionation in carbonate-poor anoxic sediments[J]. Geochimica etCosmochimica Acta,2009,11:3277-3290.
    [93] Weston, N.B., Porubsky, W.P., Samarkin, V.A, et al. Porewater Stoichiometry of TerminalMetabolic Products, Sulfate, and Dissolved Organic Carbon and Nitrogen in EstuarineIntertidal Creek-bank Sediments[J]. Biogeochemistry,2006,(77)3:375-408.
    [94] McGlathery, K. J., Berg, P., Marino, R.. Using Porewater Profiles to Assess NutrientAvailability in Seagrass-Vegetated Carbonate Sediments[J]. Biogeochemistry,2009,2:239-263.
    [95] Lukkari, K., Leivuori, M., Vallius, H., et al. The chemical character and burial of phosphorusin shallow coastal sediments in the northeastern Baltic Sea[J]. Biogeochemistry,2009,1-3:25-48.
    [96] Mort, H.P., Slomp C.P., Gustafsson B.G., et al. Phosphorus recycling and burial in Baltic Seasediments with contrasting redox conditions[J]. Geochemica et Cosmochimica Acta,2010,74:1350-1362.
    [97] Tunesi, S., Poggi, V., Gessa, C. Phosphate adsorption and precipitation in calcareous soils:the role of calcium ions in solution and carbonate minerals[J]. Nutrient Cycling inAgroecosystems,1999,53(3):219-227.
    [98] Dittrich, M., Gabriel, O., Rutzen, C., et al. Lake restoration by hypolimnetic Ca(OH)2treatment: Impact on phosphorus sedimentation and release from sediment[J]. Sci. TotalEnviron.,2011,409(8):1504-1505.
    [99] Lindmark, G.K. Acidified lakes: sediment treatment with sodium carbonate-a remedy?[J].Hydrobiologia,1982,91-92(1):537-547.
    [100]Dean, W.E.. The Carbon Cycle and Biogeochemical Dynamics in Lake Sediments[J]. Journalof Paleolimnology,1999,4:375-393.
    [101]Karberg, N.J., Pregitzer, K.S., King, J.S., et al. Soil carbon dioxide partial pressure anddissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone[J].Oecologia,2005,2:296-306.
    [102]Andersson, A.J., Bates, N.B., Mackenzie, F.T. Dissolution of Carbonate Sediments UnderRising pCO2and ocean acidification: observations from Devil’s Hole, Bermuda[J]. AquatGeochem,2007,13:237-264.
    [103]Tynan, S., Opdyke, B.N. Effects of lower surface ocean pH upon the stability of shallowwater carbonate sediments[J]. Sci. Total Environ.,2011,6:1082-1086.
    [104]桂和荣,宋晓梅,王振红,等.煤矿塌陷塘环境生态学研究[M].北京:地质出版社,2009.
    [105]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    [106]林雨霏,刘素美,纪雷,等.黄海春夏季降水中常量离子化学特征分析[J].海洋环境科学,2007,26(2):116-120.
    [107]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测,2002,18(5):47-49.
    [108]Carlson, RE.Atrophic state index for lakes[J].Limnology and Oceanography,1977,2:361-369.
    [109]侯昭华,徐海,安芷生.青海湖流域水化学主离子特征及控制因素初探[J].地球与环境,2009,37(1):11-19.
    [110]王玉珏,洪华生,王大志,等.台湾海峡上升流区浮游植物对营养盐添加的响应[J].生态学报,2008,28(3):1321-1327.
    [111]徐燕青,陈建芳,高生泉,等.太平洋中西部海域浮游植物营养盐的潜在限制[J].生态学报,2012,32(2):0394-0401.
    [112]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999.
    [113]刘友兆,丁瑞兴,黄瑞采.黄棕壤中铁锰氧化物的形态及发生学特征[J].南京农业大学学报,1990,13(2):86-91.
    [114]Dalal, R.C. Soil organic phosphorus[J]. Advances in Agronomy,1977,29:83-117.
    [115]Chacon, N., Flores, S., Gonzalez, A. Implications of iron solubilization on soil phosphorusrelease in seasonally flooded forests of the lower Orinoco River, Venezuela[J]. Soil Bio.Biochem.,2006,38:1494–1499.
    [116]Chacon, N., Silver, W.L., Dubinsky, E.A., et al. Iron reduction and soil phosphorussolubilization in humid tropical forests soils: the roles of labile carbon pools and an electronshuttle compound[J]. Biogeochemistry,2006,78:67-84.
    [117]Zhou, Q., Gibson, C.E., Zhu, Y. Evaluation of phosphorus bioavailability in sediments ofthree contrasting lakes in China and the UK[J]. Chemosphere,2001,42:221-225.
    [118]Spears, B.M., Carvalho, L., Perkins, R., et al. Effects of light on sediment nutrient flux andwater column nutrient stoichiometry in a shallow lake[J]. Water Res.,2008,4:977-986.
    [119]苏玲,林咸永,章永松,等.水稻土淹水过程中不同土层铁形态的变化及对磷吸附解吸特性的影响[J].浙江大学学报(农业与生命科学版),2001,27(2):124-128.
    [120]Jensen, H.S., Kristensen, P., Jeppesen, E., et al. Iron phosphorus ratio in surface sediment asan indicator of phosphate release from aerobic sediments in shallow lakes[J]. Hydrobiologia,1992,235:731-743.
    [121]王颖,沈珍瑶,呼丽娟,等.三峡水库主要支流沉积物的磷吸附/释放特性[J].环境科学学报,2008,28(8):1654-1661.
    [122]Jiang, X, Jin, X, Yao, Y, et al. Effects of biological activity, light, temperature and oxygen onphosphorus release processes at the sediment and water interface of Taihu Lake, China [J].Water Research,2008,42(8-9):2251-2259.
    [123]朱广伟,秦伯强,高光.浅水湖泊沉积物磷释放的重要因子-铁和水动力[J].农业环境科学学报,2003,22(6):762-764.
    [124]安文超,李小明.南四湖及主要入湖河流表层沉积物对磷酸盐的吸附特征[J].环境科学,2008,29(5):1295-1302.
    [125]姜霞,王秋娟,王书航,等.太湖沉积物氮磷吸附/解吸特征分析[J].环境科学,2011,32(5):1285-1291.
    [126]张利田,陈静生.我国河水主要离子组成与区域自然条件的关系[J].地理科学,2000,20(3):236-240.
    [127]叶宏萌,袁旭音,葛敏霞,等.太湖北部流域水化学特征及其控制因素[J].生态环境学报,2010,19(1):23-27.
    [128]刘冠男,董黎明.水体中Ca2+对湖泊沉积物磷吸附特征的影响[J].环境科学与技术,2011,34(2):36-41.
    [129]Xie, K., Zhang, Y.Q., Yi, Q.T., et al. Effects of various ion solutions on phosphorusadsorption in the sediments of a water body that originated from agricultural land subsidenceand submergence caused by coal mining activities[J]. Desalination and Water Treatment,2012,50(1-3):423-439.
    [130]曹琳,吉芳英,林茂,等.有机质对三峡库区消落区沉积物磷释放的影响[J].环境科学研究,2011,24(2):185-190.
    [131]陈芳,夏卓英,宋春雷,等.湖北省若干浅水湖泊沉积物有机质与富营养化的关系[J].水生生物学报,2007,31(4):467-472.
    [132]王圣瑞,金相灿,赵海超,等.长江中下游浅水湖泊沉积物对磷的吸附特征[J].环境科学,2005,26(3):38-43.
    [133]何宗健,刘文斌,王圣瑞,等.洱海表层沉积物吸附磷特征[J].环境科学研究,2011,24(11):1242-1248.
    [134]Lovley, D.R., Phillips, E.J.P. Organic matter mineralization with the reduction of ferric ironin anaerobic sediments[J]. Appl. Environ. Microbiol.1986a,51,683-689.
    [135]Roden, E.E., Wetzel, R.G. Competition between Fe(III)-Reducing and MethanogenicBacteria for Acetate in Iron-Rich Freshwater Sediments[J]. Microb. Ecol.2003,45:252–258.
    [136]秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学,2002,22(2):150-153.
    [137]田娟,刘凌,丁海山,等.淹水土壤土水界面磷素迁移转化研究[J].环境科学,2008,29(7):1818-1823.
    [138]Lovley, D.R., Phillips, E.J.P. Availability of Ferric Iron for Microbial Reduction in BottomSediments of the Freshwater Tidal Potomac River. Appl. Environ. Microbiol[J].1986b,52:751-757.
    [139]Urrutia, M.M., Roden, E.E., Zachara, J.M. Influence of aqueous and solid-phase Fe(II)complexants on microbial reduction of crystalline iron(III) oxides[J]. Environ. Sci. Technol.1999,33:4022–4028.
    [140]Peretyazhko, T., Sposito, G.. Iron (III) reduction and phosphorous solubilization in humidtropical forest soils. Geochim. Cosmochim[J]. Acta2005,69:3643–3652.
    [141]Xie, K., Zhang, Y.Q., Yi, Q.T., et al. Optimal resource utilization and ecological restorationof aquatic zones in the coal mining subsidence areas of the Huaibei Plain in Anhui Province,China[J]. Desalination and Water Treatment,2013,50(19-21):4019-4027.
    [142]李宗礼,李原园,王中根,等.河湖水系连通研究概念框架[J].自然资源学报,2011,26(3):513-522.
    [143]李宗礼,郝秀平,王中根,等.河湖水系连通分类体系探讨[J].自然资源学报,2011,26(11):1975-1982.
    [144]王中根,李宗礼,刘昌明,等.河湖连通的理论探讨[J].自然资源学报,2011,26(11):523-528.
    [145]崔国韬,左其亭,窦明.国内外河湖水系连通发展沿革与影响[J].南水北调与水利科技,2011,19(4):72-76.
    [146]Vollenweider, R.A. Input-Output Models with special Reference to the phosphorus loadingconcept in limnology[J]. Weizerische Zeitschrift Fur Hydrologie,1975,37:53-83.
    [147]乾爱国,任华堂,纪平,等译.地表水质模拟与控制[M].中国水利水电出版社,2008:93-101.
    [148]龚春生,姚琪,范成新,等.城市浅水型湖泊底泥释磷的通量估算-以南京玄武湖为例[J].湖泊科学,2006,18(2):179-183.
    [149]张路,范成新,王建军,等.太湖水土界面氮磷交换通量的时空差异[J].环境科学,2006,27(8):1537-1543.
    [150]牛凤霞,肖尚斌,王雨春,等.三峡库区沉积物秋末冬初的磷释放通量估算环境科学[J].2013,34(4):1308-1314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700