用户名: 密码: 验证码:
功能化长寿命发光材料在环境重金属和生物分子检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于荧光分析法具有良好的灵敏性和选择性等优点在环境监测和生命科学中的应用越来越广泛。在早期的荧光分析法中常用的有机荧光染料存在着激发光谱窄、发射光谱宽且不对称、荧光稳定性差等不足以及荧光探针激发发射区域与生物体系内源荧光重叠,背景干扰大,生物荧光探针灵敏性较低、信号易受环境影响等问题影响到有机荧光染料荧光法的应用。因此,通过合成新型长寿命发光材料,利用时间分辨的方法消除样品中荧光背景和固体基质背景光的干扰具有重要的理论与实际意义。本论文主要进行了一系列具有优异发光性能的长寿命发光染料的设计与合成,并将其应用于环境中重金属离子、生物分子和痕量水的检测。本论文提出的检测方法具有高灵敏性和良好的选择性等优点。
     主要完成内容如下:
     (1)提出了一种基于长寿命发光量子点(QDs)和金纳米颗粒(GNPs)的时间分辨荧光共振能量转移的水体中Hg2+含量的检测方法。该模型包含两条ssDNA探针、长寿命发光的Mn:CdS/ZnS (QDs)以及GNPs。两条富含T碱基的ssDNA探针用以捕获水体中的Hg2+,其中一条ssDNA(探针1)通过5端巯基修饰上QDs,另一条ssDNA (探针2)通过5端巯基修饰上GNPs。QDs用作能量转移供体,GNPs用作能量转移受体。在Hg2+存在的水溶液中,Hg2+促使T碱基对形成T-Hg2+-T结构而使探针1和探针2发生杂交。此时, QDs与GNPs彼此靠近,发生从QDs到GNPs的荧光共振能量转移,使得QDs的荧光显著降低。在浓度范围为1.0×10-8~1.0×10-9Inol/L时,QDs时间分辨荧光强度与Hg2+浓度呈现良好的线性关系,该方法的检测限为0.49nmol/L(缓冲液中)和0.87nmol/L(自来水中)。该方法在实际水样(自来水、江水和湖水)中的检测结果与原子荧光法一致。此外,该方法具有良好的选择性(第2章)。
     (2)发展了一种超灵敏的"turn-on"时间分辨荧光传感器用于Hg2+的检测。该方法主要是基于Hg2+引起的富含T碱基的ssDNA的结构变化。水溶性长寿命发光量子点(Mn:CdS/ZnS)作为荧光染料标记上一条富含T碱基的33个碱基的ssDNA(探针2),金纳米颗粒(GNPs)作为量子点荧光淬灭剂标记上一条10个碱基的ssDNA(探针2)。在没有Hg2+存在的样品溶液中,探针1和探针2能够形成杂交结构,使得Mn:CdS/ZnS荧光显著降低。在有Hg2+存在的样品溶液中,Hg2+能够促使探针2形成发夹结构,从而使GNPs标记的探针1从杂交结构中解离出来。此时量子点荧光信号显著升高。该方法的最低检测限为0.18nmol/L.选择性实验表明,该荧光传感器即使是在高浓度其它金属的离子的干扰下仍然对Hg2+具有良好的选择性。利用该传感器成功的对自来水和湖水样品中的Hg2+进行了检测研究(第3章)。
     (3)基于T-Hg2+-T结构和量子点(QDs)与氧化石墨烯(GO)之间的荧光共振能量转移,提出了一种对Hg2+进行检测的时间分辨荧光法。作者设计了两段富含T碱基的ssDNA作为Hg2+的捕获探针,其中一条修饰上Mn:CdS/ZnS QDs。在反应体系中Hg2+的加入能促使两段富含T碱基的ssDNA相互杂交形成稳定的T-Hg2+-T结构,使得QDs能够远离GO表面,此时,与没有加入Hg2+的体系相比,体系的荧光信号明显增强。在检测范围为0.2到10nmol/L时,时间分辨荧光强度与Hg2+浓度呈现良好的线性关系,检测限为0.11nmol/L。这个检测限远远低于美国环境保护署对于饮用水中Hg2+含量的限值。该检测方法即使是在有其它金属离子干扰时也能表现出对Hg2+的特异性。该检测方法已成功地应用于实际水样中Hg2+的检测研究(第4章)。
     (4)由于金纳米颗粒(GNPs)能够吸附没有与目标物质结合的核酸适配体,而且能够淬灭铽配合物的荧光,因此作者利用非标记的核酸适配体、铽配合物和GNPs提出了一种灵敏性高的蛋白质检测方法。在有凝血酶蛋白存在时,核酸适配体更倾向于与凝血酶结合形成特异性的G-四分体结构而使其不能被吸附于GNPs表面,此时,加入0.5mol/L盐溶液时,GNPs将发生聚集。在低速条件下离心去除聚集的GNPs后,上清液对铽配合物荧光的淬灭性能降低,因此,铽配合物的荧光强度随着凝血酶浓度的增加而增强。由于核酸适配体对凝血酶的特异性识别能力以及GNPs对于铽配合物荧光的强淬灭性,本章中提出的方法对于凝血酶的检测具有良好的选择性和高的灵敏性。在最优化实验条件下,凝血酶浓度在1.0×10-81.0×10-9mol/L时,铽配合物的时间分辨荧光强度与凝血酶浓度呈现良好的线性关系,检测限为0.14nmol/L,该检测限低于很多比色法传感器和一些荧光传感器。该方法成功地应用于复杂生物样品中的凝血酶检测(第5章)。
     (5)基于凝血酶的两段不同的核酸适配体提出了一种对凝血酶进行检测的时间分辨荧光传感体系。凝血酶的15个碱基的核酸适配体作为捕获探针共价固定在玻璃片表面,29个碱基的核酸适配体作为检测探针与荧光物质结合。在本章中,作者使用铕配合物作为荧光标记物。凝血酶的加入能够使得其两段核酸适配体与其形成三明治结构。本章中铕配合物的时间分辨荧光强度与凝血酶浓度呈现良好的线性关系。本传感体系具有较宽的线性范围和较低的检测限,而且具有良好的选择性(第6章)。
     (6)利用自制的铕配合物提出了一种对小分子腺苷进行高灵敏性检测的时间分辨荧光传感器。铕配合物的荧光信号可以用时间分辨的方法检测到,通过时间分辨荧光法可以有效地消除非特异性背景信号的干扰。氨基修饰的腺苷的核酸适配体能够与醛基化的玻片进行共价结合。铕配合物标记的ssDNA能够与腺苷的核酸适配体杂交而结合在玻片表面。当加入腺苷时,腺苷的核酸适配体与腺苷结合从而使得核酸适配体与ssDNA的杂交体系转变为核酸适配体与腺苷的体系,从而解离出铕配合物结合的ssDNA,使得玻片表面的时间分辨荧光信号降低。在最优化条件下,时间分辨荧光强度与腺苷浓度在1.0×10-8-1.0×10-7mol/L之间时呈现良好的线性关系,检测限为5.61mol/L。此传感器还具有优异的选择性,能够作为腺苷检测的潜在方法之一(第7章)。
     (7)提出了一种对有机溶剂中水含量进行检测的时间分辨荧光传感器。铕配合物(ETC)由本实验室合成并作为荧光水传感器中的荧光指示剂。为了防止染料泄露,ETC与丙烯酰胺、甲基丙烯酸羟乙酯、交联剂和光敏剂一起光共价聚合在硅烷化的玻片表面。随着有机溶剂中水含量的增加,ETC的时间分辨荧光强度逐渐降低。在水含量在0.0-8.0%(v/v)时,ETC的时间分辨荧光强度与水含量呈现良好的线性关系。在乙醇、四氢呋喃和1,4-二氧六环中的检测限分别为0.056%、0.042%和0.033%。该传感器具有重现性好、可逆性好和响应时间短的优点。传感膜的使用寿命超过一个月(第8章)。
The fluorescence assay is used in environmental monitoring and life science more and more widely due to their excellent sensitivity and good selectivity. In the early days of the fluorescence assay, the organic fluorescent dyes used have the disadvantages of narrow excitation spectra, broad and asymmetry emission spectra, and poor photostability. In addition, the fluorescence spectra of the organic fluorescent dyes probes are usually overlapped with the intrinsic fluorescence of biological systems, resulting high background signal, low sensitivity, and vulnerable to environmental impacts. These weaknesses affect the application of the organic fluorescent dyes based fluorescence assays. Hence, it is important to synthesis novel long life-time fluorescent materials, and eliminate the background signal of samples and solid substrate using time-gated methods. This paper mainly synthesis a series of long life-time dyes with excellent luminescent properties, and then use the synthesized dyes for the detection of heavy metal ions in the environment, biomolecules, and trace water in the organic solvents. The detection methods proposed in the paper have the advantages of high sensitivity and good selectivity.
     This paper has completed the following work:
     (1) The authors herein described a time-gated fluorescence resonance energy transfer sensing strategy employing water-soluble long lifetime fluorescence quantum dots and gold nanoparticles to detect trace Hg2+ions in aqueous solution. The water-soluble long lifetime fluorescence quantum dots and gold nanoparticles were functionalized by two complementary ssDNA except for four deliberately designed T-T mismatches.The quantum dot was acted as the energy transfer donor, and the gold nanoparticle was acted as the energy transfer acceptor. When Hg2+ions were present in the aqueous solution, DNA hybridization will occur due to the formation of T-Hg2+-T complexes. As a result, the quantum dots and gold nanoparticles are brought into close proximity, which made the energy transfer occurred from quantum dots to gold nanoparticles, leading to the fluorescence intensity of quantum dots decreased obviously. The decrement fluorescence intensity is proportional to the concentration of Hg2+ions. Under the optimum conditions, the sensing system exhibits a same liner range from1×10-9mol/L to1×10-8mol/L for Hg2+ions with the detection limits of0.49nmol/L in buffer and0.87nmol/L in tap water samples. This sensor was also used to detect Hg2+ions from samples of tap water, river water and lake water spiked with Hg2+ions, and the results shown good agreement with the found values determined by Atomic Fluorescence Spectrometer. The sensor also exhibits excellent selectivity (chapter2).
     (2) An ultrasensitive "turn-on" fluorescent sensor was presented for determination of Hg2+. This method is mainly based on Hg2+-induced conformational change of a thymine-rich single-stranded DNA. The water-soluble long lifetime fluorescence quantum dot (Mn:CdS/ZnS) acted as the fluorophore, which was labeled on a33-mer thymine-rich single-stranded DNA (probe2). The gold nanoparticles (GNPs) functionalized10-mer single-stranded DNA (probe1) is selected as the quencher to quench the fluorescence of Mn:CdS/ZnS. Without Hg2+in the sample solution, probe1and2could form hybrid-structures, resulting in the fluorescence of Mn:CdS/ZnS decreased sharply. When Hg2+is present in the sample solution, Hg2+-mediated base pairs induced the folding of probe1into a hairpin structure, leading to the release of GNPs-tagged probe2from the hybrid-structures. The fluorescence signal is then increased obviously compared with that without Hg2+Meanwhile, a detection limit of0.18nmol/L is estimated based on3a/slope. Selectivity experiments reveal that the fluorescent sensor is specific for Hg2+even with interference by high concentrations of other metal ions. This sensor is successfully applied to determination of Hg2+in tap water and lake water samples (chapter3).
     (3) a sensitive time-gated fluorescent method for mercury ions (Hg2+) monitoring is developed based on Hg2+-mediated thymine (T)-Hg2+-T structure and the mechanism of fluorescence resonance energy transfer from Mn-doped CdS/ZnS quantum dots to graphene oxide. The authors employ two T-rich single-stranded DNA (ssDNA) as the capture probes for Hg2+, and one of them is modified with Mn-doped CdS/ZnS quantum dots. The addition of Hg2+makes the two T-rich ssDNA hybrids with each other to form stable T-Hg2+-T coordination chemistry, which makes Mn-doped CdS/ZnS quantum dots far away from the surface of graphene oxide. As a result, the fluorescence signal is increased obviously compared with that without Hg2+The time-gated fluorescence intensities are linear with the concentrations of Hg2+in the range from0.2to10nmol/L with a limit of detection of0.11nmol/L. The detection limit is much lower than the U.S. Environmental Protection Agency limit of the concentration of Hg+for drinking water. The time-gated fluorescent method is specific for Hg2+even with interference by other metal ions. Importantly, the proposed method is applied successfully to the determination of Hg2+in natural water samples (chapter4).
     (4) Gold nanoparticles (GNPs) can effectively differentiate the unfolded and folded aptamer, and quench the fluorescence of terbium ternary complexes (Tb-complexes), thus the authors herein report a sensitive strategy for protein detection, using label-free aptamer, Tb-complexes and GNPs. In the presence of thrombin, the aptamer is inclined to form G-quartet, and the folded aptamer cannot adsorb on the surface of GNPs, induced the GNPs aggregation in the presence of0.5mol/L salt. After centrifugation at low speed to remove the aggregated GNPs, the quenching capability of the supernatant for Tb-complexes is decreased. The fluorescence intensity of Tb-complexes is increased with the concentration of thrombin increased. Due to the highly specific recognition ability of the aptamer for thrombin and the strong quenching property of GNPs for Tb-complexes, the proposed protocol has good selectivity and high sensitivity for thrombin. Under the optimum conditions, a linear range from1.0×10-9mol/L to1.0×10-8mol/L is obtained with a detection limit of0.14nmol/L, which is much lower than those commonly used colorimetric sensors and some fluorescent sensors. The proposed sensor has been successfully applied in complicated biological samples for thrombin detection (chapter5).
     (5) In the present study, the authors report a novel sensitive method for the detection of thrombin using time-resolved fluorescence sensing platform based on two different thrombin aptamers. The thrombin15-mer aptamer as a capture probe was covalently attached to the surface of glass slide, and the thrombin29-mer aptamer was fluorescently labeled as a detection probe. A bifunctional europium complex was used as the fluorescent label. The introduction of thrombin triggers the two different thrombin aptamers and thrombin to form a sandwich structure. The fluorescence intensity is proportional to the thrombin concentration. The present sensing system could provide both a wide linear dynamic range and a low detection limit. The proposed sensing system also presented satisfactory specificity and selectivity (chapter6).
     (6) In this protocol, the authors report a time-resolved fluorescence biosensor based on home-made europium complexes for highly sensitive detection of small molecules using adenosine as a model analyte. The fluorophore that used is europium complexes. Its signal can be measured in a time-resolved manner that eliminates most of the unspecific fluorescent background. The amino modified aptamer probe, which is designed to specifically recognize adenosine, is combined to the aldehyde-group modified glass slide by covalent bond. Europium complex-labeled a short ssDNA, designed to segment hybridize with aptamer probe is immobilized on the glass slide by hybridization reaction. In the presence of adenosine, the aptamer part is more inclined to bounds with adenosine and triggers structure-switching of the aptamer from aptamer/ssDNA duplex to aptamer/target complex. As a result, europium complexes-labeled ssDNA is forced to dissociate from the sensor interface, resulting in time-resolved fluorescence intensity decrease. The decrement intensity is proportional to the amount of adenosine. Under optimized assay conditions, a linear range (1.0×10-8mol/L to1.0×10-7mol/L) is got with low detection limit of5.61nmol/L. The biosensor exhibits excellent selectivity and can provide a promising potential for aptamer-based adenosine detection (chapter7).
     (7) A time-gated fluorescence sensor for water content determination in organic solvents was proposed in this paper. A europium ternary complex (ETC) was synthesized and used as the fluorescence indicator in the fabrication of the fluorescence water sensor. To prevent leakage of the fluorophore, ETC was photo-copolymerized with acrylamide,(2-hydroxyethyl)methacrylate,2-hydroxy-2-methyl-1-phenyl-1-propanone, and triethylene glycol dimethacrylate on a glass surface treated with a silanizing agent. The time-gated fluorescence intensity of ETC decreased with increasing of water content in organic solvents. In the range of0.0%~8.0%(v/v), the time-gated fluorescence intensity of ETC changed as a linear function of water content. The detection limits were0.056%,0.042%, and0.033%for ethanol, tetrahydrofuran, and1,4-dioxane, respectively. The sensor exhibited satisfactory reproducibility, reversibility, and a short response time. The sensing membrane was found to have a lifetime of at least one mouth (chapter8).
引文
[1]Lakowicz J R. Principles of fluorescence spectroscopy. Springer,2007
    [2]Zhang H, Li Y, Su X. A small-molecule-linked DNA-graphene oxide-based fluorescence-sensing system for detection of biotin. Analytical Biochemistry, 2013,442(2):172-177
    [3]Yin J, He X, Wang K, et al. Label-free and turn-on aptamer strategy for cancer cells detection based on a dna-silver nanocluster fluorescence upon recognition-induced hybridization. Analytical Chemistry,2013,85(24): 12011-12019
    [4]Pang S, Liu S Y, Su X G. A novel fluorescence assay for the detection of hemoglobin based on the G-quadruplex/hemin complex. Talanta,2014,118: 118-122
    [5]Duong H D, Rhee J I. A ratiometric fluorescence sensor for the detection of ammonia in water. Sensors and Actuators B:Chemical,2014,190:768-774
    [6]Dai S, Xue Q W, Zhu J, et al. An ultrasensitive fluorescence assay for protein detection by hybridization chain reaction-based DNA nanotags. Biosensors and Bioelectronics,2014,51:421-425
    [7]Dong B, Cao L, Su G, et al. Facile synthesis of highly luminescent water-soluble ZnSe:Mn/ZnS core/shell doped nanocrystals with pure dopant emission. The Journal of Physical Chemistry C,2012,116(22):12258-12264
    [8]Yan H, Wang H F. Turn-on room temperature phosphorescence assay of heparin with tunable sensitivity and detection window based on target-induced self-assembly of polyethyleneimine capped Mn-doped ZnS quantum dots. Analytical Chemistry,2011,83(22):8589-8595
    [9]Xiao Y N, Zhang R, Ye Z Q, et al. Lanthanide complex-based luminescent probes for highly sensitive time-gated luminescence detection of hypochlorous acid. Analytical Chemistry,2012,84(24):10785-10792
    [10]Weitz E A, Chang J Y, Rosenfield A H, et al. The basis for the molecular recognition and the selective time-gated luminescence detection of ATP and GTP by a lanthanide complex. Chemical Science,2013,4(10):4052-4060
    [11]Dai Z C, Tian L, Ye Z Q, et al. A Lanthanide complex-based ratiometric luminescence probe for time-gated luminescence detection of intracellular thiols. Analytical Chemistry,2013,85(23):11658-11664
    [12]Weissman S I. Intramolecular energy transfer the fluorescence of complexes of europium. The Journal of Chemical Physics,2004,10(4):214-217
    [13]Richardson F S. Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems. Chemical Reviews,1982,82(5):541-552
    [14]Petoud S, Cohen S M, Bunzli J C G, et al. Stable lanthanide luminescence agents highly emissive in aqueous solution:multidentate 2-hydroxyisophthalamide complexes of Sm3+, Eu3+, Tb3+, Dy3+. Journal of the American Chemical Society, 2003,125(44):13324-13325
    [15]Matsumura K, Endo M, Komiyama M. Lanthanide complex-oligo-DNA hybrid for sequence-selective hydrolysis of RNA. Chemical Communications,1994, (17):2019-2020
    [16]Faulkner S, Pope S J A. Lanthanide-sensitized lanthanide luminescence: terbium-sensitized ytterbium luminescence in a trinuclear complex. Journal of the American Chemical Society,2003,125(35):10526-10527
    [17]Crosby G A, Whan R E, Alire R M. Intramolecular energy transfer in rare earth chelates. role of the triplet state. The Journal of Chemical Physics,1961,34(3): 743-748
    [18]Kleinerman M. Energy migration in lanthanide chelates. The Journal of Chemical Physics,1969,51(6):2370-2381
    [19]Bhaumik M L, Elsayed M A. Studies on the triplet-triplet energy transfer to rare earth chelatesla. The Journal of Physical Chemistry,1965,69(1):275-280
    [20]Soini E, Lovgren T, Reimer C B. Time-resolved fluorescence of lanthanide probes and applications in biotechnology. CRC Critical Reviews in Analytical Chemistry,1987,18(2):105-154
    [21]Selvin P R, Hearst J E. Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proceedings of the National Academy of Sciences,1994,91(21):10024-10028
    [22]Jaakkola L, Peuralahti J, Hakala H, et al. Solid-phase synthesis of oligonucleotides labeled with luminescent lanthanide (III) chelates. Bioconjugate Chemistry,2005,16(3):700-709
    [23]Soini E, Hemmila I. Fluoroimmunoassay:present status and key problems. Clinical Chemistry,1979,25(3):353-361
    [24]Mujumdar R B, Ernst L A, Mujumdar S R, et al. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chemistry,1993,4(2): 105-111
    [25]Matsumoto K, Yuan J. Lanthanide chelates as fluorescence labels for diagnostics and biotechnology. Metal Ions in Biological Systems,2003,40:191-232
    [26]Tanke H J. Imaging of lanthanide luminescence by time-resolved microscopy. Lanthanide Luminescence Springer 2011,313-328
    [27]Peng H, Stich M I J, Yu J, et al. Luminescent europium (III) nanoparticles. for sensing and imaging of temperature in the physiological range. Advanced Materials,2010,22(6):716-719
    [28]Ma Z, Huang B, Zhang J, et al. Time-resolved fluoroimmunoassay of zearalenone in cereals with a europium chelate as label. Journal of Rare Earths, 2009,27(6):1088-1091
    [29]Jiang L, Wu J, Wang G, et al. Development of a visible-light-sensitized europium complex for time-resolved fluorometric application. Analytical Chemistry,2010, 82(6):2529-2535
    [30]Hungerford G, Hussain F, Patzke G R, et al. The photophysics of europium and terbium polyoxometalates and their interaction with serum albumin:a time-resolved luminescence study. Physical Chemistry Chemical Physics,2010, 12(26):7266-7275
    [31]De Silva C R, Vagner J, Lynch R, et al. Optimization of time-resolved fluorescence assay for detection of europium-tetraazacyclododecyltetraacetic acid-labeled ligand-receptor interactions. Analytical Biochemistry,2010,398(1): 15-23
    [32]Blomberg K R, Mukkala V-M, Hakala H H O, et al. A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays. Analytical and Bioanalytical Chemistry,2011,399(4):1677-1682
    [33]Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018
    [34]Bruchez M, Moronne M, Gin P, et al. Semiconductor nanoerystals as fluorescent biological labels. Science,1998,281(5385):2013-2016
    [35]Wang X, Ren X, Kahen K, et al. Non-blinking semiconductor nanoerystals. Nature,2009,459(7247):686-689
    [36]Vamivakas A N, Lu C Y, Matthiesen C, et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature,2010, 467(7313):297-300
    [37]Semonin O E, Luther J M, Choi S, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science,2011, 334(6062):1530-1533
    [38]Mocatta D, Cohen G, Schattner J, et al. Heavily doped semiconductor nanocrystal quantum dots. Science,2011,332(6025):77-81
    [39]Konstantatos G, Howard I, Fischer A, et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature,2006,442(7099):180-183
    [40]Bourzac K. Quantum dots go on display. Nature,2013,493(7432):283-283
    [41]Zhang W J, Zhang H, Feng Y Y, et al. Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. Acs Nano,2012,6(12):11066-11073
    [42]Taniguchi S, Green M, Rizvi S B, et al. The one-pot synthesis of core/shell/shell CdTe/CdSe/ZnSe quantum dots in aqueous media for in vivo deep tissue imaging. Journal of Materials Chemistry,2011,21(9):2877-2882
    [43]Law W C, Yong K T, Roy I, et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small,2009,5(11):1302-1310
    [44]Dai M Q, Zheng W, Huang Z W, et al. Aqueous phase synthesis of widely tunable photoluminescence emission CdTe/CdS core/shell quantum dots under a totally ambient atmosphere. Journal of Materials Chemistry,2012,22(32): 16336-16345
    [45]Cheng C T, Chen C Y, Lai C W, et al. Syntheses and photophysical properties of type-Ⅱ CdSe/ZnTe/ZnS (core/shell/shell) quantum dots. Journal of Materials Chemistry,2005,15(33):3409-3414
    [46]Yang Y, Chen O, Angerhofer A, et al. On doping CdS/ZnS core/shell nanocrystals with Mn. Journal of the American Chemical Society,2008,130(46): 15649-15661
    [47]Yang Y, Chen O, Angerhofer A, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society, 2006,128(38):12428-12429
    [48]Norris D J, Efros A L, Erwin S C. Doped nanocrystals. Science,2008,319(5871): 1776-1779
    [49]Norris D J, Yao N, Charnock F T, et al. High-quality manganese-doped ZnSe nanocrystals. Nano Letters,2001,1(1):3-7
    [50]Nag A, Chakraborty S, Sarma D D. To dope Mn2+ in a semiconducting nanocrystal. Journal of the American Chemical Society,2008,130(32): 10605-10611
    [51]Erwin S C, Zu L, Haftel M I, et al. Doping semiconductor nanocrystals. Nature, 2005,436(7047):91-94
    [52]Zhang F, He X W, Li W Y, et al. One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells. Journal of Materials Chemistry, 2012,22(41):22250-22257
    [53]Stouwdam J W, Janssen R A J. Electroluminescent Cu-doped CdS Quantum Dots. Advanced Materials,2009,21(28):2916-2920
    [54]Baranov P G, Orlinskii S B, Donega C D, et al. High-frequency EPR, ESE, and ENDOR spectroscopy of Co-and Mn-doped ZnO quantum dots. Physica Status Solidi B-Basic Solid State Physics,2013,250(10):2137-2140
    [55]濑升.超微颗粒导论.武汉:武汉工业大学出版社,1991
    [56]Ball P, Garwin L. Science at the atomic scale. Nature,1992,355:761-766
    [57]张立德,牟季美.物理学与新型(功能)材料专题系列介绍(Ⅲ)开拓原子和物质的中间领域—纳米微粒与纳米固体.物理,1992,21(3):167-173
    [58]谢海燕,庞代文.Ⅱ-Ⅵ型量子点制备及其在生物检测中应用研究进展.分析化学,2004,32(8):1099-1103
    [59]Peng Z A, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Journal of the American Chemical Society,2001,123(1): 183-184
    [60]Peng Z A, Peng X. Mechanisms of the shape evolution of CdSe nanocrystals. Journal of the American Chemical Society,2001,123(7):1389-1395
    [61]Peng X, Wickham J, Alivisatos A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:"focusing" of size distributions. Journal of the American Chemical Society,1998,120(21):5343-5344
    [62]Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals. Nature, 2000,404(6773):59-61
    [63]Murray C, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society,1993,115(19): 8706-8715
    [64]Katari J E B, Colvin V L, Alivisatos A P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. The Journal of Physical Chemistry,1994,98(15):4109-4117
    [65]Bullen C R, Mulvaney P. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Letters,2004,4(12):2303-2307
    [66]Becerra L R, Murray C B, Griffin R G, et al. Investigation of the surface morphology of capped CdSe nanocrystallites by 31P nuclear magnetic resonance. The Journal of Chemical Physics,1994,100(4):3297-3300
    [67]Rogach A L, Katsikas L, Kornowski A, et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Berichte der Bunsengesellschaft fur physikalische Chemie,1996,100(11):1772-1778
    [68]Gaponik N, Talapin D V, Rogach A L, et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. The Journal of Physical Chemistry B,2002,106(29):7177-7185
    [69]Breus V V, Heyes C D, Nienhaus G U. Quenching of CdSe-ZnS core-shell quantum dot luminescence by water-soluble thiolated ligands. The Journal of Physical Chemistry C,2007,111(50):18589-18594
    [70]Bao H, Gong Y, Li Z, et al. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core-shell structure. Chemistry of Materials,2004,16(20): 3853-3859
    [71]Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology,2003,21(1):41-46
    [72]Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science,2002,298(5599):1759-1762
    [73]Yuan J, Wang G, Majima K, et al. Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Analytical Chemistry,2001, 73(8):1869-1876
    [74]Yuan J, Wang G. Lanthanide complex-based fluorescence label for time-resolved fluorescence bioassay. Journal of Fluorescence,2005,15(4):559-568
    [75]Xu Y, Li Q. Multiple fluorescent labeling of silica nanoparticles with lanthanide chelates for highly sensitive time-resolved immunofluorometric assays. Clinical Chemistry,2007,53(8):1503-1510
    [76]Soini E, Kojola H. Time-resolved fluorometer for lanthanide chelates-a new generation of nonisotopic immunoassays. Clinical Chemistry,1983,29(1):65-68
    [77]Soini E, Hemmila I, Dahlen P. Time-resolved fluorescence in biospecific assays. Annales de Biologie Clinique,1990,48(8):567-571
    [78]Seveus L, Vaisala M, Syrjanen S, et al. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytometry,1992,13(4):329-338
    [79]Petoud S, Cohen S M, Biinzli J C G, et al. Stable lanthanide luminescence agents highly emissive in aqueous solution:multidentate 2-hydroxyisophthalamide complexes of Sm3+, Eu3+, Tb3+, Dy3+. Journal of the American Chemical Society, 2003,125(44):13324-13325
    [80]Hemmila I. Luminescent lanthanide chelates-a way to more sensitive diagnostic methods. Journal of Alloys and Compounds,1995,225(1):480-485
    [81]Hanaoka K, Kikuchi K, Kobayashi S, et al. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. Journal of the American Chemical Society,2007, 129(44):13502-13509
    [82]Hagan A K, Zuchner T. Lanthanide-based time-resolved luminescence immunoassays. Analytical and Bioanalytical Chemistry,2011,400(9): 2847-2864
    [83]Gudgin Dickson E F, Pollak A, Diamandis E P. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays. Journal of Photochemistry and Photobiology B:Biology,1995,27(1):3-19
    [84]Evangelista R A, Pollak A, Allore B, et al. A new europium chelate for protein* labelling and time-resolved fluorometric applications. Clinical Biochemistry, 1988,21(3):173-178
    [85]Matsumoto K, Yuan J, Wang G, et al. Simultaneous determination of a-fetoprotein and carcinoembryonic antigen in human serum by time-resolved fluoroimmunoassay. Analytical Biochemistry,1999,276(1):81-87
    [86]Yuan J L, Wang G L, Majima K, et al. Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay. Analytical Chemistry, 2001,73(8):1869-1876
    [87]Huang B, Xiao H, Zhang J, et al. Dual-label time-resolved fluoroimmunoassay for simultaneous detection of aflatoxin B1 and ochratoxin A. Archives of Toxicology,2009,83(6):619-624
    [88]Wang G L, Yuan J L, Matsumoto K, et al. Quantitative measurement of p21 protein in human serum by time-resolved fluoroimmunoassay. Analytical Sciences,2001,17(7):881-883
    [89]Majima K, Fukui T, Yuan J L, et al. Quantitative measurement of 17 beta-estradiol and estriol in river water by time-resolved fluoroimmunoassay. Analytical Sciences,2002,18(8):869-874
    [90]Ikegawa M, Yuan J L, Matsumoto K, et al. Elevated plasma stromal cell-derived factor 1 protein level in the progression of HIV type I infection/AIDS. Aids Research and Human Retroviruses,2001,17(7):587-595
    [91]Wu F B, Han S Q, Zhang C, et al. Synthesis of a highly fluorescent β-diketone-europium chelate and its utility in time-resolved fluoroimmunoassay of serum total thyroxine. Analytical Chemistry,2002,74(22):5882-5889
    [92]Wu F B, Han S Q, Xu T, et al. Sensitive time-resolved fluoroimmunoassay for simultaneous detection of serum thyroid-stimulating hormone and total thyroxin with Eu and Sm as labels. Analytical Biochemistry,2003,314(1):87-96
    [93]Shen J, Zhang Z, Yao Y, et al. Time-resolved fluoroimmunoassay for ractopamine in swine tissue. Analytical and Bioanalytical Chemistry,2007, 387(4):1561-1564
    [94]Shen J, Zhang Z, Yao Y, et al. A monoclonal antibody-based time-resolved fluoroimmunoassay for chloramphenicol in shrimp and chicken muscle. Analytica Chimica Acta,2006,575(2):262-266
    [95]Bacigalupo M A, Meroni G, Secundo F, et al. Time-resolved fluoroimmunoassay for quantitative determination of ampicillin in cow milk samples with different fat contents. Talanta,2008,77(1):126-130
    [96]Niu C G, Liu J, Qin P Z, et al. A novel bifunctional europium chelate applied in quantitative determination of human immunoglobin G using time-resolved fluoroimmunoassay. Analytical Biochemistry,2011,409(2):244-248
    [97]吴英松,李明.时间分辨荧光免疫分析技术.北京:军事医学科学出版社,2009
    [98]Yang X, Lee J, Brooks J, et al. Binding characterization of the interleukin-13 signaling complex and development of a ternary time-resolved fluorescence resonance energy transfer assay. Analytical Biochemistry,2008,376(2):206-212
    [99]Wang G, Yuan J, Matsumoto K, et al. Homogeneous time-resolved fluoroimmunoassay of bensulfuron-methyl by using terbium fluorescence energy transfer. Talanta,2001,55(6):1119-1125
    [100]Harma H, Pelkkikangas A M, Soukka T, et al. Sensitive miniature single-particle immunoassay of prostate-specific antigen using time-resolved fluorescence. Analytica Chimica Acta,2003,482(2):157-164
    [101]Zhang H, Xu Y, Yang W, et al. Dua1-lanthanide-chelated silica nanoparticles as labels for highly sensitive time-resolved fluorometry. Chemistry of Materials, 2007,19(24):5875-5881
    [102]Tan M, Ye Z, Wang G, et al. Preparation and time-resolved fluorometric application of luminescent europium nanoparticles. Chemistry of Materials, 2004,16(12):2494-2498
    [103]Jaakohuhta S, Harma H, Tuomola M, et al. Sensitive Listeria spp. immunoassay based on europium (Ⅲ) nanoparticulate labels using time-resolved fluorescence. International Journal of Food Microbiology,2007,114(3):288-294
    [104]Ruan M, Niu C G, Qin P Z, et al. Sensitive and simple detection of Escherichia coli strain based on time-resolved fluorescence DNA hybridization assay. Analytica Chimica Acta,2010,664(1):95-99
    [105]Qin P Z, Niu C G, Zeng G M, et al. Time-resolved fluorescence based DNA detection using novel europium ternary complex doped silica nanoparticles. Talanta,2009,80(2):991-995
    [106]Chen Y, Lu Z H. Dye sensitized luminescent europium nanoparticles and its time-resolved fluorometric assay for DNA. Analytica Chimica Acta,2007, 587(2):180-186
    [107]Chen Y, Chi Y M, Wen H M, et al. Sensitized luminescent terbium nanoparticles: Preparation and time-resolved fluorescence assay for DNA. Analytical Chemistry,2007,79(3):960-965
    [108]Wang G, Yuan J, Matsumoto K, et al. Homogeneous time-resolved fluorescence DNA hybridization assay by DNA-mediated formation of an EDTA-Eu (Ⅲ)-β-diketonate ternary complex. Analytical Biochemistry,2001,299(2): 169-172
    [109]Sueda S, Yuan J, Matsumoto K. A homogeneous DNA hybridization system by using a new luminescence terbium chelate. Bioconjugate Chemistry,2002,13(2): 200-205
    [110]Sueda S, Yuan J, Matsumoto K. Homogeneous DNA hybridization assay by using europium luminescence energy transfer. Bioconjugate Chemistry,2000, 11(6):827-831
    [111]Soini E J, Pelliniemi L J, Hemmila I A, et al. Lanthanide chelates as new fluorochrome labels for cytochemistry. Journal of Histochemistry and Cytochemistry,1988,36(11):1449-1451
    [112]Marriott G, Heidecker M, Diamandis E P, et al. Time-resolved delayed luminescence image microscopy using an europium ion chelate complex. Biophysical Journal,1994,67(3):957-965
    [113]Rulli M, Kuusisto A, Salo J, et al. Time-resolved fluorescence imaging in islet cell autoantibody quantitation. Journal of Immunological Methods,1997,208(2): 169-179
    [114]Bjartell A, Laine S, Pettersson K, et al. Time-resolved fluorescence in immunocytochemical detection of prostate-specific antigen in prostatic tissue sections. The Histochemical Journal,1999,31(1):45-52
    [115]Harma H, Soukka T, Lovgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clinical Chemistry,2001,47(3):561-568
    [116]Connally R, Veal D, Piper J. Time-resolved fluorescence microscopy using an improved europium chelate BHHST for the in situ detection of Cryptosporidium and Giardia. Microscopy Research and Technique,2004,64(4):312-322
    [117]Deng W, Jin D, Drozdowicz-Tomsia K, et al. Europium chelate (BHHCT-Eu3+) and its metal nanostructure enhanced luminescence applied to bioassays and time-gated bioimaging. Langmuir,2010,26(12):10036-10043
    [118]Liu Y, Zhou S, Tu D, et al. Amine-functionalized lanthanide-doped zirconia nanoparticles:optical spectroscopy, time-resolved fluorescence resonance energy transfer biodetection, and targeted imaging. Journal of the American Chemical Society,2012,134(36):15083-15090
    [119]Liu M, Ye Z, Wang G, et al. Development of a novel europium (Ⅲ) complex-based luminescence probe for time-resolved luminescence imaging of the nitric oxide production in neuron cells. Talanta,2012,99:951-958
    [120]Zhang L, Tian L, Ye Z, et al. Preparation of visible-light-excited europium biolabels for time-resolved luminescence cell imaging application. Talanta,2013, 108:143-149
    [121]Phimphivong S, Saavedra S S. Terbium chelate membrane label for time-resolved, total internal reflection fluorescence microscopy of substrate-adherent cells. Bioconjugate Chemistry,1998,9(3):350-357
    [122]Tan M, Song B, Wang G, et al. A new terbium (Ⅲ) chelate as an efficient singlet oxygen fluorescence probe. Free Radical Biology and Medicine,2006,40(9): 1644-1653
    [123]Song B, Wang G, Yuan J. A new europium chelate-based phosphorescence probe specific for singlet oxygen. Chemical Communications,2005, (28):3553-3555
    [124]Song B, Wang G, Tan M, et al. A europium (Ⅲ) complex as an efficient singlet oxygen luminescence probe. Journal of the American Chemical Society,2006, 128(41):13442-13450
    [125]Song B, Wang G, Tan M, et al. Synthesis and time-resolved fluorimetric application of a europium chelate-based phosphorescence probe specific for singlet oxygen. New Journal of Chemistry,2005,29(11):1431-1438
    [126]Ye Z, Wang G, Chen J, et al. Development of a novel terbium chelate-based luminescent chemosensor for time-resolved luminescence detection of intracellular Zn2+ ions. Biosensors and Bioelectronics,2010,26(3):1043-1048
    [127]Song C, Ye Z, Wang G, et al. A lanthanide-complex-based ratiometric luminescent probe specific for peroxynitrite. Chemistry-A European Journal, 2010,16(22):6464-6472
    [128]Ye Z, Chen J, Wang G, et al. Development of a terbium complex-based luminescent probe for imaging endogenous hydrogen peroxide generation in plant tissues. Analytical Chemistry,2011,83(11):4163-4169
    [129]Liu M, Ye Z, Wang G, et al. Synthesis and time-gated fluorometric application of a europium (Ⅲ) complex with a borono-substituted terpyridine polyacid ligand: Talanta,2012,91:116-121
    [130]Xiao Y, Zhang R, Ye Z, et al. Lanthanide complex-based luminescent probes for highly sensitive time-gated luminescence detection of hypochlorous acid. Analytical Chemistry,2012,84(24):10785-10792
    [131]Dai Z, Tian L, Ye Z, et al. A lanthanide complex-based ratiometric luminescence probe for time-gated luminescence detection of intracellular thiols. Analytical Chemistry,2013,85(23):11658-11664
    [132]Venezia M, Alonzo G, Palmisano L. EDTA excess Zn(Ⅱ) back-titration in the presence of 4-(2-pyridylazo)-resorcinol indicator and naphthol green beta as inert dye for determining Cr(Ⅲ) as Cr(Ⅲ)/EDTA complex:application of the method to a leather industry wastewater. Journal of Hazardous Materials,2008, 151(2-3):356-363
    [133]Su L, Li J G, Ma H B, et al. Determination of trace amounts of manganese in natural waters by flow injection stopped-flow catalytic kinetic spectrophotometry. Analytica Chimica Acta,2004,522(2):281-288
    [134]Gharehbaghi M, Shemirani F, Farahani M D. Cold-induced aggregation microextraction based on ionic liquids and fiber optic-linear array detection spectrophotometry of cobalt in water samples. Journal of Hazardous Materials, 2009,165(1-3):1049-1055
    [135]Dai S J, Zhang X S, Yu L Y, et al. The determination of trace lead in drinking water by flow injection spectrophotometry. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2010,75(1):330-333
    [136]Li B, Wang D, Lv J, et al. Flow-injection chemiluminescence simultaneous determination of cobalt (Ⅱ) and copper (Ⅱ) using partial least squares calibration. Talanta,2006,69(1):160-165
    [137]Badocco D, Pastore P, Favaro G, et al. Effect of eluent composition and pH and chemiluminescent reagent pH on ion chromatographic selectivity and luminol-based chemiluminescence detection of Co2+. Mn2+and Fe2+at trace levels. Talanta,2007,72(1):249-255
    [138]Yilmaz U T, Somer G. Investigation of polarographic interference between Se(IV) and Cr(VI), its elimination and application to Gerede river water. Journal of Electroanalytical Chemistry,2009,633(1):193-197
    [139]Yantasee W, Hongsirikarn K, Warner C L, et al. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst,2008, 133(3):348-355
    [140]Tarley C R T, Santos V S, Baeta B E L, et al. Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. Journal of Hazardous Materials,2009,169(1-3):256-262
    [141]Threeprom J, Meelapsom R, Som-aum W, et al. Simultaneous determination of Cr(Ⅲ) and Cr(VI) with prechelation of Cr(Ⅲ) using phthalate by ion interaction chromatography with a C-18 column. Talanta,2007,71(1):103-108
    [142]Igarashi S, Ide N, Takagai Y. High-performance liquid chromatographic-spectrophotometric determination of copper(Ⅱ) and palladium(Ⅱ) with 5,10,15, 20-tetrakis(4N-pyridyl)porphine following homogeneous liquid-liquid extraction in the water-acetic acid-chloroform ternary solvent system. Analytica Chimica Acta,2000,424(2):263-269
    [143]Gaurav, Malik A K, Rai P K. Development of a new SPME-HPLC-UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples. Journal of Hazardous Materials, 2009,172(2-3):1652-1658
    [144]胡晓斌,韩志萍,王趁义.累积进样石墨炉原子吸收光谱法测定地表水中痕量镉.分析科学学报,2008,24(1):94-96
    [145]Jiang X J, Gan W E, Wan L Z, et al. Determination of mercury by electrochemical cold vapor generation atomic fluorescence spectrometry using polyaniline modified graphite electrode as cathode. Spectrochimica Acta Part B-Atomic Spectroscopy,2010,65(2):171-175
    [146]Escudero L A, Martinez L D, Salonia J A, et al. Determination of Zn(II) in natural waters by ICP-OES with on-line preconcentration using a simple solid phase extraction system. Microchemical Journal,2010,95(2):164-168
    [147]Ciftci H, Yalcin H, Eren E, et al. Enrichment and determination of Ni2+ ions in water samples with a diamino-4-(4-nitro-phenylazo)-1H-pyrazole (PDANP) by using FAAS. Desalination,2010,256(1-3):48-53
    [148]Jimenez M S, Velarte R, Castillo J R. Performance of different preconcentration columns used in sequential injection analysis and inductively coupled plasma-mass spectrometry for multielemental determination in seawater. Spectrochimica Acta Part B-Atomic Spectroscopy,2002,57(3):391-402
    [149]Zhang Y J, Leng Y M, Miao L J, et al. The colorimetric detection of Pb2+ by using sodium thiosulfate and hexadecyl trimethyl ammonium bromide modified gold nanoparticles. Dalton Transactions,2013,42(15):5485-5490
    [150]Yan F Y, Wang M, Cao D L, et al. New fluorescent and colorimetric chemosensors based on the rhodamine detection of Hg2+ and Al3+ and application of imaging in living cells. Dyes and Pigments,2013,98(1):42-50
    [151]Sung H K, Oh S Y, Park C, et al. Colorimetric detection of Co2+ion using silver nanoparticles with spherical, plate, and rod shapes. Langmuir,2013,29(28): 8978-8982
    [152]Song H D, Choi I, Lee S, et al. On-chip colorimetric detection of Cu2+ ions via density-controlled plasmonic core-satellites nanoassembly. Analytical Chemistry, 2013,85(16):7980-7986
    [153]Ravindran A, Elavarasi M, Prathna T C, et al. Selective colorimetric detection of nanomolar Cr(VI) in aqueous solutions using unmodified silver nanoparticles. Sensors and Actuators B:Chemical,2012,166:365-371
    [154]Liu R L, Lu H Y, Li M, et al. Simple, efficient and selective colorimetric sensors for naked eye detection of Hg2+, Cu2+and Fe3+. RSC Advances,2012,2(10): 4415-4420
    [155]Kim H N, Ren W X, Kim J S, et al. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews,2012, 41(8):3210-3244
    [156]Hung Y L, Hsiung T M, Chen Y Y, et al. Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. Journal of Physical Chemistry C,2010,114(39):16329-16334
    [157]Hung Y L, Hsiung T M, Chen Y Y, et al. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles. Talanta,2010, 82(2):516-522
    [158]Ferhan A R, Guo L H, Zhou X D, et al. Solid-phase colorimetric sensor based on gold nanoparticle-loaded polymer brushes:lead detection as a case study. Analytical Chemistry,2013,85(8):4094-4099
    [159]Du J J, Jiang L, Shao Q, et al. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small,2013,9(9-10):1467-1481
    [160]Zhang J T, Jin Z Y, Li W C, et al. Graphene modified carbon nanosheets for electrochemical detection of Pb(Ⅱ) in water. Journal of Materials Chemistry A, 2013,1(42):13139-13145
    [161]Yantasee W, Lin Y, Hongsirikarn K, et al. Electrochemical sensors for the detection of lead and other toxic heavy metals:the next generation of personal exposure biomonitors. Environmental Health Perspectives,2007:1683-1690
    [162]Xu X X, Duan G T, Li Y, et al. Fabrication of gold nanoparticles by laser ablation in liquid and their application for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+, Hg2+. ACS Applied Materials and Interfaces,2014, 6(1):65-71
    [163]Xiong S Q, Wang M, Cai D Q, et al. Electrochemical detection of Pb(II) by glassy carbon electrode modified with amine-functionalized magnetite nanoparticles. Analytical Letters,2013,46(6):912-922
    [164]Wang Z Q, Liu G, Zhang L N, et al. Electrochemical detection of trace cadmium in soil using a Nafion/stannum film-modified molecular wire carbon paste electrodes. Ionics,2013,19(11):1687-1693
    [165]Tutulea M D, Cretescu I, Sibiescu D, et al. Electrochemical sensors for heavy metal ions detection from aqueous solutions. Environmental Engineering and Management Journal,2012,11(2):463-470
    [166]Shen L, Chen Z, Li Y, et al. Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au Bio-Bar codes. Analytical Chemistry,2008,80(16): 6323-6328
    [167]Safavi A, Farjami E. Construction of a carbon nanocomposite electrode based on amino acids functionalized gold nanoparticles for trace electrochemical detection of mercury. Analytica Chimica Acta,2011,688(1):43-48
    [168]Liu C W, Huang C C, Chang H T. Highly selective DNA-based sensor for lead (II) and mercury (II) ions. Analytical Chemistry,2009,81(6):2383-2387
    [169]Krystofova O, Trnkova L, Adam V, et al. Electrochemical microsensors for the detection of Cadmium(II) and Lead(II) ions in plants. Sensors,2010,10(6): 5308-5328
    [170]Aragay G, Merkoci A. Nanomaterials application in electrochemical detection of heavy metals. Electrochimica Acta,2012,84:49-61
    [171]Zhang K, Guo J K, Nie J J, et al. Ultrasensitive and selective detection of Cu2+ in aqueous solution with fluorescence enhanced CdSe quantum dots. Sensors and Actuators B:Chemical,2014,190:279-287
    [172]Wang W H, Jin Y, Zhao Y N, et al. Single-labeled hairpin probe for highly specific and sensitive detection of lead(II) based on the fluorescence quenching of deoxyguanosine and G-quartet. Biosensors and Bioelectronics,2013,41: 137-142
    [173]Wang M L, Meng G W, Huang Q, et al. Electrospun 1,4-DHAQ-doped cellulose nanofiber films for reusable fluorescence detection of trace Cu2+ and further for Cr3+. Environmental Science and Technology,2012,46(1):367-373
    [174]Lv Q, Li G, Cheng Z H, et al. Magnetically recoverable fluorescence chemosensor for the adsorption and selective detection of Hg2+ in water. Environmental Science-Processes and Impacts,2014,16(1):116-123
    [175]Liu W Y, Shen S L, Li H Y, et al. Fluorescence turn-on chemodosimeter for rapid detection of mercury (II) ions in aqueous solution and blood from mice with toxicosis. Analytica Chimica Acta,2013,791:65-71
    [176]Li T, Dong S, Wang E. A lead (Ⅱ)-driven DNA molecular device for turn-on fluorescence detection of lead (Ⅱ) ion with high selectivity and sensitivity. Journal of the American Chemical Society,2010,132(38):13156-13157
    [177]Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society,2000,122(42):10466-10467
    [178]Li C L, Liu K T, Lin Y W, et al. Fluorescence detection of lead (II) ions through their induced catalytic activity of DNAzymes. Analytical Chemistry,2010,83(1): 225-230
    [179]Kim J H, Han S H, Chung B H. Improving Pb2+ detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosensors and Bioelectronics,2011,26(5):2125-2129
    [180]Fu X L, Lou T T, Chen Z P, et al. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene. ACS Applied Materials and Interfaces,2012,4(2):1080-1086
    [181]Fu Q Q, Tang Y, Shi C Y, et al. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium. Biosensors and Bioelectronics,2013,49:399-402
    [182]夏其昌,曾嵘.蛋白质化学与蛋白质组学.科学出版社,2004
    [183]王克夷.蛋白质导论.科学出版社,2007
    [184]Reed R H, Holmes D, Weyers J, et al. Practical skills in biomolecular sciences. Pearson education,2007
    [185]孔繁祚.糖化学.北京:科学出版社,2005
    [186]G B.食品安全国家标准
    [187]Albert K, Schlotterbeck G, Braumann U, et al., Structure determination of vitamin A acetate isomers through coupled HPLC and 1H NMR spectroscopy. Angewandte Chemie International Edition,1995,34(9):1014-1016
    [188]Odriozola-Serrano I, Hernandez-Jover T, Martin-Belloso O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chemistry,2007,105(3):1151-1158
    [189]G.B.食品中维生素A和维生素E的测定
    [190]G.B.食品中核黄素的测定
    [191]G.B.食品中硫胺素(维生素B1)的测定
    [192]李冠一.核酸生物化学.北京:科学出版社,2007
    [193]Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion. Chemical Reviews,2008,108(9):3443-3480
    [194]Hylander L D, Goodsite M E. Environmental costs of mercury pollution. Science of the Total Environment,2006,368(1):352-370
    [195]Wojcik D P, Godfrey M E, Christie D, et al. Mercury toxicity presenting as chronic fatigue, memory impairment and depression:diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting (1994-2006). Neuro Endocrinology Letters,2006,27(4):415-423
    [196]Sekowski J W, Malkas L H, Wei Y, et al. Mercuric ion inhibits the activity and fidelity of the human cell DNA synthesome. Toxicology and Applied Pharmacology,1997,145(2):268-276
    [197]Butler O T, Cook J M, Harrington C F, et al. Atomic spectrometry update. Environmental analysis. Journal of Analytical Atomic Spectrometry,2007,22(2): 187-221
    [198]Li Y, Chen C, Li B, et al. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry,2006,21(1):94-96
    [199]Leermakers M, Baeyens W, Quevauviller P, et al. Mercury in environmental samples:speciation, artifacts and validation. TrAC Trends in Analytical Chemistry,2005,24(5):383-393
    [200]Bernaus A, Gaona X, Esbri J M, et al. Microprobe techniques for speciation analysis and geochemical characterization of mine environments:The mercury district of Almaden in Spain. Environmental Science and Technology,2006, 40(13):4090-4095
    [201]Zhang L, Li T, Li B, et al. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury (Ⅱ) ion. Chemical Communications, 2010,46(9):1476-1478
    [202]Xue X. Wang F, Liu X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the Americanr Chemical Society,2008,130(11):3244-3245
    [203]Xu X, Wang J, Jiao K, et al. Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosensors and Bioelectronics,2009,24(10): 3153-3158
    [204]Wegner S V, Okesli A, Chen P, et al. Design of an emission ratiometric biosensor from MerR family proteins:a sensitive and selective sensor for Hg2+. Journal of the American Chemical Society,2007,129(12):3474-3475
    [205]Wang Y, Yang F, Yang X. Colorimetric biosensing of mercury (II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Biosensors and Bioelectronics,2010,25(8):1994-1998
    [206]Nolan E M, Lippard S J. Turn-on and ratiometric mercury sensing in water with a red-emitting probe. Journal of the American Chemical Society,2007,129(18): 5910-5918
    [207]Li H, Zhai J, Tian J, et al. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury (Ⅱ) ion in aqueous solution. Biosensors and Bioelectronics,2011,26(12):4656-4660
    [208]Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angewandte Chemie,2008,120(21):3991-3995
    [209]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie,2007,119(22):4171-4174
    [210]Zhang X, Xiao Y, Qian X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ions in living cells. Angewandte Chemie International Edition, 2008,47(42):8025-8029
    [211]Liu H, Liang G, Abdel-Halim E S, et al. A sensitive and selective quantum dots-based FRET biosensor for the detection of cancer marker type Ⅳ collagenase. Analytical Methods,2011,3(8):1797-1801
    [212]Liu B, Zeng F, Wu G, et al. A FRET-based ratiometric sensor for mercury ions in water with multi-layered silica nanoparticles as the scaffold. Chemical Communications,2011,47(31):8913-8915
    [213]Li M, Wang Q, Shi X, et al. Detection of mercury (Ⅱ) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Analytical Chemistry,2011,83(18):7061-7065
    [214]Kong L, Wang J, Zheng G, et al. A highly sensitive protocol (FRET/SIMNSEF) for the determination of mercury ions:a unity of fluorescence quenching of graphene and enhancement of nanogold. Chemical Communications,2011, 47(37):10389-10391
    [215]Chen G, Jin Y, Wang L, et al. Gold nanorods-based FRET assay for ultrasensitive detection of Hg2+. Chemical Communications,2011,47(46):12500-12502
    [216]Tavares A J, Noor M O, Vannoy C H, et al. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Analytical Chemistry,2011,84(1): 312-319
    [217]Peng H, Zhang L, Kjallman T H M, et al. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. Journal of the American Chemical Society,2007,129(11):3048-3049
    [218]Hardzei M, Artemyev M, Molinari M, et al. Comparative efficiency of energy transfer from CdSe-ZnS quantum dots or nanorods to organic dye molecules. ChemPhysChem,2012,13(1):330-335
    [219]Goldman E R, Medintz I L, Whitley J L, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. Journal of the American Chemical Society,2005,127(18):6744-6751
    [220]Chi C W, Lao Y H, Li Y S, et al. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter:application to label-free thrombin detection. Biosensors and Bioelectronics,2011,26(7):3346-3352
    [221]Blaudeck T, Zenkevich E I, Abdel-Mottaleb M, et al. Formation principles and ligand dynamics of nanoassemblies of CdSe quantum dots and functionalised dye molecules. ChemPhysChem,2012,13(4):959-972
    [222]Zeng Q, Zhang Y, Liu X, et al. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods FRET nanoplatform. Chemical Communications, 2012,48(12):1781-1783
    [223]Wang H, Wang Y, Jin J, et al. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury (II) ions in aqueous solution. Analytical Chemistry, 2008,80(23):9021-9028
    [224]Mandal G, Bardhan M, Ganguly T. Occurrence of Forster resonance energy transfer between quantum dots and gold nanoparticles in the presence of a biomolecule. The Journal of Physical Chemistry C,2011,115(43):20840-20848
    [225]Li M, Cushing S K, Wang Q, et al. Size-dependent energy transfer between CdSe/ZnS quantum dots and gold nanoparticles. The Journal of Physical Chemistry Letters,2011,2(17):2125-2129
    [226]Huang C C, Chiu S H, Huang Y F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Analytical Chemistry,2007,79(13):4798-4804
    [227]Gueroui Z, Libchaber A. Single-molecule measurements of gold-quenched quantum dots. Physical Review Letters,2004,93(16):166101-166104
    [228]Dyadyusha L, Yin H, Jaiswal S, et al. Quenching of CdSe quantum dot emission, a new approach for biosensing. Chemical Communications,2005, (25): 3201-3203
    [229]Yang Y, Chen O, Angerhofer A, et al. On doping CdS/ZnS core/shell nanocrystals with Mn. Journal of the American Chemical Society,2008,130(46): 15649-15661
    [230]Yang Y, Chen O, Angerhofer A, et al. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. Journal of the American Chemical Society, 2006,128(38):12428-12429
    [231]Miyake Y, Togashi H, Tashiro M, et al. MercuryⅡ-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes. Journal of the American Chemical Society,2006,128(7):2172-2173
    [232]Tanaka Y, Oda S, Yamaguchi H, et al.15N-15N J-coupling across HgⅡ:Direct observation of HgⅡ-mediated T-T base pairs in a DNA duplex. Journal of the American Chemical Society,2007,129(2):244-245
    [233]Grabar K C, Freeman R G, Hommer M B, et al. Preparation and characterization of Au colloid monolayers. Analytical Chemistry,1995,67(4):735-743
    [234]Storhoff J J, Elghanian R, Mucic R C, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. Journal of the American Chemical Society,1998,120(9):1959-1964
    [235]Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots. Journal of the American Chemical Society,1999, 121(35):8122-8123
    [236]Zahir F, Rizwi S J, Haq S K, et al. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology,2005,20(2):351-360
    [237]Tchounwou P B, Ayensu W K, Ninashvili N, et al. Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology,2003,18(3):149-175
    [238]Harris H H, Pickering I J, George G N. The chemical form of mercury in fish. Science,2003,301(5637):1203-1203
    [239]Butler O T, Cook J M, Harrington C F, et al. Atomic spectrometry update. Environmental analysis. Journal of Analytical Atomic Spectrometry,2006,21(2): 217-243
    [240]Li Y F, Chen C Y, Li B, et al. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry,2006,21(1):94-96
    [241]Leermakers M, Baeyens W, Quevauviller P, et al. Mercury in environmental samples:speciation, artifacts and validation. TrAC-Trends in Analytical Chemistry,2005,24(5):383-393
    [242]Zhu Z Q, Su Y Y, Li J, et al. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Analytical Chemistry,2009,81(18): 7660-7666
    [243]Du J, Liu M Y, Lou X H, et al. Highly sensitive and selective chip-based fluorescent sensor for mercuric ion:development and comparison of turn-on and turn-off systems. Analytical Chemistry,2012,84(18):8060-8066
    [244]Tang X M, Liu H X, Zou B H, et al. A fishnet electrochemical Hg2+ sensing strategy based on gold nanoparticle-bioconjugate and thymine-Hg2+ -thymine coordination chemistry. Analyst,2012,137(2):309-311
    [245]Wang H, Wang Y X, Jin J Y, et al. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution. Analytical Chemistry,2008,80(23):9021-9028
    [246]Freeman R, Finder T, Willner I. Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. Angewandte Chemie International Edition,2009,48(42):7818-7821
    [247]Kong L T, Wang J, Zheng G C, et al. A highly sensitive protocol (FRET/SIMNSEF) for the determination of mercury ions:a unity of fluorescence quenching of graphene and enhancement of nanogold. Chemical Communications,2011,47(37):10389-10391
    [248]He X X, Qing Z H, Wang K M, et al. Engineering a unimolecular multifunctional DNA probe for analysis of Hg2+ and Ag+. Analytical Methods,2012,4(2): 345-347
    [249]Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. Journal of the American Chemical Society,2007,129(32):9838-9839
    [250]Ren X S, Xu Q H. Highly sensitive and selective detection of mercury ions by using oligonucleotides, DNA intercalators, and conjugated polymers. Langmuir, 2009,25(1):29-31
    [251]Wang Z D, Lee J H, Lu Y. Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chemical Communications,2008, (45):6005-6007
    [252]Yan F Y, Cao D L, Yang N, et al. A selective turn-on fluorescent chemosensor based on rhodamine for Hg2+ and its application in live cell imaging. Sensors and Actuators B:Chemical,2012,162(1):313-320
    [253]Ye B C, Yin B C. Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angewandte Chemie International Edition,2008,47(44):8386-8389
    [254]Li M, Wang Q Y, Shi X D, et al. Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Analytical Chemistry,2011,83(18):7061-7065
    [255]Mattoussi H, Mauro J M, Goldman E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. Journal of the American Chemical Society,2000,122(49):12142-12150
    [256]Freeman R, Willner I. Optical molecular sensing with semiconductor quantum dots (QDs). Chemical Society Reviews,2012,41(10):4067-4085
    [257]Li Y F, Han M, Bai H Y, et al. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination. Electrochimica Acta,2011,56(20):7058-7063
    [258]Liu H Y, Liang G X, Abdel-Halim E S, et al. A sensitive and selective quantum dots-based FRET biosensor for the detection of cancer marker type IV collagenase. Analytical Methods,2011,3(8):1797-1801
    [259]Huang C C, Chiu S H, Huang Y F, et al. Aptamer-functionalized gold nanoparticles for turn-on light switch detection of platelet-derived growth factor. Analytical Chemistry,2007,79(13):4798-4804
    [260]Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6(3): 183-191
    [261]Pumera M. Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews,2010,39(11):4146-4157
    [262]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets. Nature,2007,446(7131):60-63
    [263]Dong H F, Gao W C, Yan F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Analytical Chemistry,2010,82(13):5511-5517
    [264]Lu C H, Yang H H, Zhu C L, et al. A Graphene platform for sensing biomolecules. Angewandte Chemie International Edition,2009,48(26): 4785-4787
    [265]Patil A J, Vickery J L, Scott T B, et al. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials,2009,21(31):3159-3164
    [266]Wang Y, Li Z H, Hu D H, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 2010,132(27):9274-9276
    [267]Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6): 2341-2346
    [268]Huang P J J, Liu J W. Molecular beacon lighting up on graphene oxide. Analytical Chemistry,2012,84(9):4192-4198
    [269]Hummers Jr W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society,1958,80(6):1339-1339
    [270]Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials,1999,11(3):771-778
    [271]Cote L J, Kim F, Huang J. Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society,2008,131(3):1043-1049
    [272]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249(4968): 505-510
    [273]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [274]Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry,2006, 78(9):2918-2924
    [275]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346(6287):818-822
    [276]Huang D W, Niu C G, Zeng G M, et al. Time-resolved fluorescence biosensor for adenosine detection based on home-made europium complexes. Biosensors and Bioelectronics,2011,29(1):178-183
    [277]Huang D W, Niu C G, Qin P Z, et al. Time-resolved fluorescence aptamer-based sandwich assay for thrombin detection. Talanta,2010,83(1):185-189
    [278]Huang D W, Niu C G, Li Z Z, et al. A sensitive strategy for label-free and time-resolved fluorescence assay of thrombin using Tb-complex and unmodified gold nanoparticles. Analyst,2012,137(23):5607-5613
    [279]Ouyang X Y, Yu R Q, Jin J Y, et al. New strategy for label-free and time-resolved luminescent assay of protein:conjugate Eu3+ complex and aptamer-wrapped carbon nanotubes. Analytical Chemistry,2011,83(3):782-789
    [280]Liu J W, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor.'Analytical Chemistry,2004,76(6):1627-1632
    [281]Liu J W, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. Journal of the American Chemical Society,2004,126(39):12298-12305
    [282]Liu J W, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angewandte Chemie International Edition,2006,45(1):90-94
    [283]Li H X, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America,2004,101(39): 14036-14039
    [284]Xia F, Zuo X L, Yang R Q, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proceedings of the National Academy of Sciences of the United States of America,2010,107(24):10837-10841
    [285]He P L, Shen L, Liu R Y, et al. Direct detection of beta-agonists by use of gold nanoparticle-based colorimetric assays. Analytical Chemistry,2011,83(18): 6988-6995
    [286]Wang L H, Liu X F, Hu X F, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications, 2006, (36):3780-3782
    [287]Mandal G, Bardhan M, Ganguly T. Occurrence of forster resonance energy transfer between quantum dots and gold nanoparticles in the presence of a biomolecule. Journal of Physical Chemistry C,2011,115(43):20840-20848
    [288]Jin Y, Li H Y, Bai J Y. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay. Analytical Chemistry,2009,81(14):5709-5715
    [289]Melby L R, Rose N J, Abramson E, et al. Synthesis and fluorescence of some trivalent lanthanide complexes. Journal of the American Chemical Society,1964, 86(23):5117-5125
    [290]Chen H, Zhang W G. A strong-fluorescent Tb-containing hydrotalcite-like compound. Journal of the American Ceramic Society,2010,93(8):2305-2310
    [291]Zhang S S, Xia J P, Li X M. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Analytical Chemistry,2008,80(22): 8382-8388
    [292]Zayats M, Huang Y, Gill R, et al. Label-free and reagentless aptamer-based sensors for small molecules. Journal of the American Chemical Society,2006, 128(42):13666-13667
    [293]Wu Z S, Guo M M, Zhang S B, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry,2007,79(7):2933-2939
    [294]Nutiu R, Li Y F. In vitro selection of structure-switching signaling aptamers. Angewandte Chemie International Edition,2005,44(7):1061-1065
    [295]Nutiu R, Li Y F. Aptamers with fluorescence-signaling properties. Methods, 2005,37(1):16-25
    [296]Nutiu R, Li Y F. Structure-switching signaling aptamers. Journal of the American Chemical Society,2003,125(16):4771-4778
    [297]Liang Y Y. Automation of Karl Fischer water titration by flow injection sampling. Analytical Chemistry,1990,62(22):2504-2506
    [298]Ohira S I, Goto K, Toda K, et al. A capacitance sensor for water:trace moisture measurement in gases and organic solvents. Analytical Chemistry,2012,84(20): 8891-8897
    [299]Niu C G, Qin P Z, Zeng G M, et al. Fluorescence sensor for water in organic solvents prepared from covalent immobilization of 4-morpholinyl-1, 8-naphthalimide. Analytical and Bioanalytical Chemistry,2007,387(3):1067-1074
    [300]Niu C G, Guan A L, Zeng G M, et al. Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta,2006, 577(2):264-270
    [301]Choi M M F, Ling Tse O. Humidity-sensitive optode membrane based on a fluorescent dye immobilized in gelatin film. Analytica chimica acta,1999, 378(1):127-134
    [302]Yang X, Niu C G, Shang Z J, et al. Optical-fiber sensor for determining water content in organic solvents. Sensors and Actuators B:Chemical,2001,75(1):43-47
    [303]Binnemans K. Lanthanide-based luminescent hybrid materials. Chemical Reviews,2009,109(9):4283-4374
    [304]Niu C G, Guan A L, Zeng G M, et al. A ratiometric fluorescence halide sensor based on covalently immobilization of quinine and benzothioxanthene. Analytica Chimica Acta,2005,547(2):221-228
    [305]Bernhard D D, Mall S, Pantano P. Fabrication and characterization of microwell array chemical sensors. Analytical Chemistry,2001,73(11):2484-2490
    [306]Li Z Z, Niu C G, Zeng G M, et al. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1,8-napthalimide and benzothioxanthene. Sensors and Actuators B:Chemical,2006,114(1):308-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700