用户名: 密码: 验证码:
摩擦对电/磁流变效应影响的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦现象广泛存在于机械结构中,针对不同需求实现增摩、减磨和摩擦主动控制是机械设计重要的目标之一。基于外场控制摩擦是实现摩擦主动控制的重要途径。电/磁流变智能材料因其强度在外场调控下可实现2~5个数量级的增强而成为摩擦主动控制的研究热点。研究电/磁流变效应的机理,讨论颗粒结构与强度的关系对电/磁流变器件设计及应用具有重要意义。本文从颗粒间摩擦与润滑的角度对电/磁流变效应的机理进行了研究。
     首先,根据不同材料的电流变液的剪切流变特性,提出了一种新的结构参数。利用这一结构参数,对不同体积比例的基于沸石/硅油的电流变液在恒定电场、变剪切速率模式下的流变曲线归一化,得到了曲线形式和物理意义与摩擦学中常用的Stribeck曲线具有良好对应关系的归一化曲线。进而借鉴摩擦润滑状态分析了电流变液剪切过程中颗粒结构变化、颗粒-极板的相互作用以及剪切应力的来源。结合电流变液在低剪切速率下的剪切增稠现象,应用特征值分别为10-6、10-4、10-2的结构参数将沸石/硅油基的电流变液颗粒结构随剪切速率增大的演化过程划分为:初始链结构状态、剪切增稠结构状态、过渡结构状态、剪切流挤压结构状态。
     然后,在自制的磁流变剪切装置上发现并研究磁流变液剪切过程中的粘滑现象。根据粘滑空间周期,估算出低剪切速率下磁流变液的剪切屈服区域位于颗粒结构与极板的界面处,并用视频观测进行了验证。分别用电流测试与声发射测试技术对电/磁流变液剪切过程中颗粒结构变化进行辅助表征。电流测试结果印证了基于结构参数对电流变液剪切状态的划分;声发射信号的特征频率成分和杂散峰强度随外加磁场强度和剪切速率的升高而降低,反映了颗粒-极板的碰撞情况。
     进而,通过改变极板粗糙度与基础液润滑性能讨论界面性质对磁流变效应的影响。实验发现增大粗糙度和提高基础液的润滑性能会降低磁流变液剪切强度,并阻碍粘滑现象产生。粗糙度对局部磁感应强度的调制和对颗粒结构的破坏降低了剪切强度并影响粘滑现象的产生;颗粒-极板或颗粒间润滑性能增强降低了颗粒结构强度以及颗粒-极板之间的相互作用势,最终也影响了剪切强度。
     最后,对基于电流变效应的摩擦控制器件的极板表面覆盖尼龙网格,改变极板处局部电场强度以及极板与颗粒结构相互作用势;对磁流变离合器剪切元件进行波纹状设计,强化局部磁感应强度。试制并测试器件,最终获得器件性能增强。
Friction exists in all machines. Controlling the friction, either increasing orreducing, is crucial in modern machine design. Friction control based on external fieldsis one of the important methods. The large range of shear resistance modulation in2~5orders of magnitude upon the external electro/magnetic field of electrorheological(ER)/magnetorheological (MR) fluids implies great potential in such applications. Abetter understanding of the mechanism of ER/MR effect is very important for improvingthe performance of the devices. The mechanism of ER/MR effect has been researched inthis study based on the view point of tribology.
     First a new structure parameter is proposed according to the shear behavior of ERfluids of different materials. This parameter can be used to normalize the shear curves ofER fluids based on zeolite/silicone oil under constant electric field and ramped shearrate, resulting in a curve being analog to Stribeck curve, not only in shape, but also inphysics. So the lubrication regime defined in tribology has been introduced to theanalysis of structure revolution of ER fluids during the shearing, especially theinteraction between the aggregates of particles and the shearing plates along with thesource of the shear resistance in ER effect. In addition the shear thickening of ER fluidsunder low shear rates has been discussed. The magnitude of the critical structureparameters when the shear thickening occurs are all approximately10-6. Together withthe characteristic structure parameter values,10-4and10-2, the particle structureevolution of zeolite/silicone oil based ER fluids can be classified into four states: initialchain state; shear-thickening enhanced structure state; transition structure state and flowcompressed structure state.
     The stick-slip behavior of MR fluids below the shear rates of1s-1has beenresearched on a self-made MR shear test rig with uniform nominal shear rate. Based onthe observed spatial period of the stick-slip phenomenon it is speculated that the shearyield region locates in the boundary between the aggregates of particles and theshearing plates. The particles involved in the yield region are much fewer comparing tothe whole aggregates, most of which maintain a tetragonal chain structure perpendicularto the plates during shearing process. The images recorded during the shear process provided evidence to this speculation. The current test and acoustic emissionmeasurements are introduced to the ER and MR test. The variation of electric currentduring the shearing verifies the regime classification of shear curves based on theproposed structure parameter. The characteristic frequency component of acousticemission signals during the shearing of MR fluids decreases with the increase of themagnetic field strength and the shear rate, indicating the evolution of theaggregates-plates interaction.
     Then the influence of the boundary properties to MR effect is studied by changingthe roughness of the shear plates and lubrication ability of base oils. It has been foundthat the shear strength of MR fluids decreases with the increase of the surface roughnessand the improvement of the lubrication ability of its base oil. The stick-slip behavior ofthe MR fluids is diminished once the shear plates with higher surface roughness or thebase oil with better lubrication ability is used.
     Finally the prototypes of active friction control based on ER and MR effect aredesigned and tested, respectively. In order to enhance the local field and the interactionbetween the aggregates of particles and plates, the surfaces of ER device are coveredwith nylon textiles, while the boundary of MR clutch main part is modified with waveform boundary. Both of the two modifications show the improvement of theperformance of the device.
引文
[1]温诗铸,黄平.摩擦学原理(第3版).北京:清华大学出版社,2008.
    [2] Gleichenstein, A.Bosch Esp–Driving Safety Into the Future,2005.http://www.bosch.com.au/content/language1/html/3401.htm
    [3] Duff A W. The Viscosity of Polarized Dielectrics. Phys Rev (Series I),1896,4(1):23-38.
    [4] Winslow W M. Method and Means for Translating Electrical Impulses Into MechanicalForce: US2417850.1947-03-25.
    [5] Winslow W M. Induced Fibration of Suspensions. J Appl Phys,1949,20(12):1137-1140.
    [6]魏宸官.电流变技术-机理材料工程应用.北京:北京理工大学出版社,2000.
    [7] Electrorheological (ER) Fluids: A Research Needs Assessment. U.S. Dept. of Energy, Officeof Energy Research, Office of Program Analysis:1993.
    [8] Halsey T C. Electrorheological Fluids. Science,1992,258(5083):761-766.
    [9] Martin J E, Odinek J, Halsey T C. Structure of an Electrorheological Fluid in Steady Shear.Phys Rev E,1994,50(4):3263-3266.
    [10] Wu C W, Conrad H. A Modified Conduction Model for the Electrorheological Effect. J PhysD Appl Phys,1996,29(12):3147-3153.
    [11] Wu C W, Conrad H. Dielectric and Conduction Effects in Non-Ohmic ElectrorheologicalFluids. Phys Rev E,1997,56(5):5789-5797.
    [12] Klass D L, Martinek T W. Electroviscous Fluids.2. Electrical Properties. J Appl Phys,1967,38(1):75-80.
    [13] Klass D L, Martinek T W. Electroviscous Fluids.I. Rheological Properties. J Appl Phys,1967,38(1):67-74.
    [14] Stangroom J E. Electrorheological Fluids. Phys Tech,1983,14:290-296.
    [15] Tamura H, See, H, Doi M. Model of Porous Particles Containing Water inElectro-Rheological Fluids. J Phys D Appl Phys,1993,26:1181-1187.
    [16] See H, Tamura H, Doi M. The Role of Water Capillary Forces in Electro-Rheological Fluids.J Phys D Appl Phys,1993,26:746-752.
    [17] Filisko F E, Radzilowski L H. Polyelectrolytes as Inclusions in Electrorheologically ActiveMaterials: Effect of Chemical Characteristics On ER Activity. J Rheol,1991,35:1051-1068.
    [18] Gow C J, Zukoski C F. The Electrorheological Properties of Polyaniline Suspensions. JColloid Interf Sci,1990,136(1):175-188.
    [19] Block H, Kelly J P. Electro-Rheology. J Phys D Appl Phys,1988,21:1661-1677.
    [20] Ahn K H, Klingenberg D J. Relaxation of Polydisperse Electrorheological Suspensions. JRheol,1994,38:713-741.
    [21] Davis L C. Polarization Forces and Conductivity Effects in Electrorheological Fluids. J ApplPhys,1992,72(4):1334-1340.
    [22] Khusid B, Acrivos A. Effects of Conductivity in Electric-Field-Induced Aggregation inElectrorheological Fluids. Phys Rev E,1995,52(2):1669-1693.
    [23] Tang X, Wu C, Conrad H. On the Conductivity Model for the Electrorheological Effect. JRheol,1995,39:1059-1073.
    [24] Tang X, Wu C, Conrad H. On the Conductivity Model for the Electrorheological Response ofDielectric Particles with a Conducting Film. J Appl Phys,1995,78(6):4183-4188.
    [25] Tao R, Sun J M.3-Dimensional Structure of Induced Electrorheological Solid. Phys Rev Lett,1991,67(3):398-401.
    [26] Gulley G L, Tao R. Structures of an Electrorheological Fluid. Phys Rev E,1997,56(4):4328-4336.
    [27] Tao R, Jiang Q. Structural Transitions of an Electrorheological and Magnetorheological Fluid.Phys Rev E,1998,57(5):5761-5765.
    [28] Bossis G, Metayer C. Zubarev A. Analysis of Chaining Structures in Colloidal SuspensionsSubjected to an Electric Field. Phys Rev E,2007,76:041401
    [29] Bossis G, Lemaire E, Volkova O, et al. Yield Stress in Magnetorheological andElectrorheological Fluids: A Comparison Between Microscopic and Macroscopic StructuralModels. J Rheol,1997,41(3):687-704.
    [30] Volkova O, Cutillas S, Bossis G. Shear Banded Flows and Nematic-to-Isotropic Transition inEr and Mr Fluids. Phys Rev Lett,1999,82(1):233-236.
    [31] Parthasarathy M, Klingenberg D J. Electrorheology: Mechanisms and Models. Mat Sci EngR,1996,17(2):57-103.
    [32] Cao J G, Huang J P, Zhou L W. Structure of Electrorheological Fluids Under an Electric Fieldand a Shear Flow: Experiment and Computer Simulation. J Phys Chem B,2006,110(24):11635-11639.
    [33] Marshall L, Zukoski C F, Goodwin J W. Effects of Electric-Fields On the Rheology ofNon-Aqueous Concentrated Suspensions. J Chem Soc-Faraday Trans I,1989,85:2785-2795.
    [34] Melrose J R. Brownian Dynamics Simulation of Dipole Suspensions Under Shear: The PhaseDiagram. Mol Phys,1992,76(3):635-660.
    [35] Adriani P M, Gast A P. A Microscopic Model of Electrorheology. Phys Fluids,1988,31:2757-2768.
    [36] Zhang Y, Lu K, Rao G, et al. Electrorheological Fluid with an Extraordinarily High YieldStress. Appl Phys Lett,2002,80:888-890.
    [37] Tian Y.; Meng Y G, Wen S Z. Er Fluid Based On Zeolite and Silicone Oil with HighStrength. Mater Lett,2001,50(2-3):120-123.
    [38] Lu K Q, Shen R, Wang X Z, et al. Polar Molecule Dominated Electrorheological Effect.Chinese Phys,2006,15(11):2476-2480.
    [39] Lu K, Shen R, Wang X, et al. Polar Molecule Type Electrorheological Fluids. Int J Mod PhysB,2007,21(28-29):4798-4805.
    [40] Shen R, Wang X Z, Lu Y, et al. The Methods for Measuring Shear Stress of Polar MoleculeDominated Electrorheological Fluids. J Appl Phys,2007,102:024106.
    [41] Chen S Y, Huang X X, Van der Vegt N F A, et al. Giant Electrorheological Effect: AMicroscopic Mechanism. Phys Rev Lett,2010,105:046001.
    [42] Huang X X. Wen W J, Yang S H, et al. Mechanisms of the Giant Electrorheological Effect.Solid State Commun,2006,139(11-12):581-588.
    [43] Wen W J, Huang X X, Yang S H, et al. The Giant Electrorheological Effect in Suspensions ofNanoparticles. Nature Mater,2003,2(11):727-730.
    [44] Tam W Y, Yi G H, Wen W J, et al. New Electrorheological Fluid: Theory and Experiment.Phys Rev Lett,1997,78(15):2987-2990.
    [45] Yin J B, Zhao X P. Enhanced Electrorheological Activity of Mesoporous Cr-Doped Tio2From Activated Pore Wall and High Surface Area. J Phys Chem B,2006,110(26):12916-12925.
    [46] Yin J B, Zhao X P. Giant Electrorheological Activity of High Surface Area MesoporousCerium-Doped Tio2Templated by Block Copolymer. Chem Phys Lett,2004,398(4-6):393-399.
    [47] Zhao X P, Yin J B. Preparation and Electrorheological Characteristics of Rare-Earth-DopedTio2Suspensions. Chem Mater,2002,14(5):2258-2263.
    [48] Wen W, Huang, X, Sheng P. Particle Size Scaling of the Giant Electrorheological Effect.Appl Phys Lett,2004,85:299-301.
    [49] Tian Y, Zhang M L, Jiang J L, et al. Reversible Shear Thickening at Low Shear Rates ofElectrorheological Fluids Under Electric Fields. Phys Rev E2011,83:011401.
    [50] Yin J B, Zhao X P, Xiang L Q, et al. Enhanced Electrorheology of Suspensions ContainingSea-Urchin-Like Hierarchical Cr-Doped Titania Particles. Soft Matter,2009,5(23):4687-4697.
    [51] Hong J Y, Choi M, Kim C, et al. Geometrical Study of Electrorheological Activity withShape-Controlled Titania-Coated Silica Nanomaterials. J Colloid Interf Sci,2010,347(2):177-182.
    [52] Cao J. G. Shen M, Zhou L W. Preparation and Electrorheological Properties ofTriethanolamine-Modified Tio2. J Solid State Chem,2006,179(5):1565-1568.
    [53] Jiang J L, Tian Y, Meng Y G. Structure Parameter of Electrorheological Fluids in Shear Flow.Langmuir,2011,27(10):5814-5823.
    [54] Tian Y, Jiang J L, Meng Y G, et al. A Shear Thickening Phenomenon in Magnetic FieldControlled-Dipolar Suspensions. Appl Phys Lett,2010,97:151904.
    [55]龚裂航,李忠国,陆国胜,等.电流变离合器用电流变液探讨.液压气动与密封,2002,3:28-30.
    [56]邱志荣.盘式电流变离合器传动性能优化研究.长春理工大学学报(自然科学版),2011,4:70-73.
    [57]彭杰,朱克勤,席葆树.同心圆桶内电流变液瞬态屈服边界的数值模拟.工程力学,2002,4:90-93.
    [58]纪宏,孟永钢,田煜.电流变液及电流变液联轴器的实验研究.润滑与密封,2002,2:39-40.
    [59] Bullough W A, Johnson A R, Hosseini-Sianaki A, et al. The Electro-Rheological Clutch:Design, Performance Characteristics and Operation.Proceedings of the Institution ofMechanical Engineers, Part I: Journal of Systems and Control Engineering,1993,207(2):87-95.
    [60] Zhang S H, Wei C G, Xia G D. Analysis of the TEST of the ER Fan Clutch J BIT (EnglishEdition),1998,2:161-165.
    [61] Urakami Y, Aoyama T, Anzai H, et al. Development of Tactile Display Device Using ErgMultiple-Disk Clutch. J Intel Mat Syst Str,2011,22:1693-1698.
    [62] Kakunuma Y, Tanaka H, Aoyama T, et al. Development of Multiple-Disk Brake ElementUsing Electro-Rheological Gel. Int J Appl Electrom,2010,33(3):1677-1683.
    [63] Farris R J, Goldfarb M. In Design of a Multi-Disc Electromechanical Modulated Dissipator.ICRA:2010,5:2189-2196.
    [64] Nikitczuk J, Weinberg B, Mavroidis C. Control of Electro-Rheological Fluid Based ResistiveTorque Elements for Use in Active Rehabilitation Devices. Smart Mater Struct,2007,16:418-428.
    [65] Sakaguchi M, Furusho J, Genda E. Basic Study On Rehabilitation Training System Using ErActuators. Systems, Man, and Cybernetics, SMC '99Conference Proceedings.1999,1:135-140.
    [66] Liu L. Huang X. Shen C, et al. Parallel-Field Electrorheological Clutch: Enhanced High ShearRate Performance. Appl Phys Lett,2005,87:104106.
    [67] Katsikopoulus P V, Zukoski C F. Effects of Electrode Morphology On the ElecirorheoLogical Response. ELECTRORHEOLOGICAL,1994,1:251-263.
    [68] Lee C Y, Jwo K L. Experimental Study On Electro-Rheological Material with GroovedElectrode Surfaces. Mater Design,2001,22(4):277-283.
    [69] Wang X, Shen R, Sun G, et al. The Modified Electrodes for the Application of PolarMolecule Dominated Electrorheological (Pm-Er) Fluids. Int J Mod Phys B,2007,21(28-29):4940-4944.
    [70] Wang X Z, Shen R, Wang D, et al. The Electrode Effect On Polar Molecule DominatedElectrorheological Fluids. Mater Design,2009,30(10):4521-4524.
    [71]张敏梁,田煜,蒋继乐等.极板形貌修饰对电流变液/极板界面滑移抑制实验研究.物理学报,2009,12:8394-8399.
    [72] Zhang M L, Tian Y, Jiang J L, et al. Enhancing Compressive Strength of ElectrorheologicalFluid by Patterning the Electrode. Acta Phys Sin-Ch Ed,2009,58(12):8394-8399.
    [73] Hanaoka R, Murakumo M, Anzai H, et al. Effects of Electrode Surface Morphology OnElectrical Response of Electrorheological Fluids. Dielectrics and Electrical Insulation, IEEETrans,2002,9(1):10-16.
    [74] Abu-Jdayil B, Brunn P O. Effect of Electrode Morphology On the Behaviour ofElectrorheological Fluids in Torsional Flow. J Intel Mat Syst Str,2002,13(1):3-11.
    [75] Halsey T C, Martin J E, Adolf D. Rheology of Electrorheological Fluids. Phys Rev Lett,1992,68(10):1519-1522.
    [76] Nguyen Q H, Choi S B. A New Approach for Dynamic Modeling of an ElectrorheologicalDamper Using a Lumped Parameter Method. Smart Mater Struct,2009,18:115020.
    [77] Holzmann K, Kemmetmüller W, Kugi A, et al. In Modeling and Control of an Off-RoadTruck Using Electrorheological Dampers, J. Phys.: Conf. Ser2009,149:012011.
    [78] Choi S B, Choi Y T, Park D W. A Sliding Mode Control of a Full-Car ElectrorheologicalSuspension System Via Hardware in-the-Loop Simulation. J Dyn Syst-T ASME,2000,122:114-121.
    [79]陈永光晏华徐宗俊,等.电流变减振器阻尼力计算及影响因素分析.重庆大学学报,2002,25(9):121-124.
    [80]郑玲邓兆祥李以农.基于电流变减振器的汽车半主动悬架最优控制.重庆大学学报,2003,26(7):1-5.
    [81]周文晋,鲁宏权,孟光.电流变液夹层壳体振动隔离的实验研究.噪声与振动控制,2005,1:14-17.
    [82]沈楚敬.电流变液在车辆减振器中的应用.农业装备与车辆工程,2008,2:26-28.
    [83] Fengqin H, Chunhong Z, Ning L. A Design of Erf Shock Absorber Base On Fuzzy ControlTechnology. Dvpt&Innov Mach&Electro Pro,2010,3:31-34.
    [84] Choi S B, Sung K G. Control of Braking Force Distribution Using Electrorheological FluidValves. Int J Vehicle Des,2008,46(1):111-127.
    [85] Ling Y Y, Zhang Y, Wen W, et al. Integrated Microgiant Electrorheological Fluid Valves forMicroflow Cytometry. J Micro/Naonlith MEMS MOEMS,2009,8(2):021103.
    [86] Ulrich S, B hme G, Bruns R. In Measuring the Response Time and Static RheologicalProperties of Electrorheological Fluids with Regard to the Design of Valves and theirControllers. J Phys: Conf. Ser,2009,149:012031.
    [87] Choi S B, Park D W, Cho M S. Position Control of a Parallel Link Manipulator UsingElectro-Rheological Valve Actuators. Mechatronics,2001,11(2):157-181.
    [88] Simmonds, A. J. In Electro-Rheological Valves in a Hydraulic Circuit,1991; IET:1991; pp400-404.
    [89] Kim, W. B.; Min, B. K.; Lee, S. J., Development of a Padless Ultraprecision PolishingMethod Using Electrorheological Fluid.J Mater Process Tech,2004,155,1293-1299.
    [90] Zhang, L.; Zhao, Y. W.; He, X. S.et al., An Investigation of Effective Area inElectrorheological Fluid-Assisted Polishing of Tungsten Carbide. Int. J. Mach. Tools Manuf.,2008,48,(3-4),295-306.
    [91] Brookfield, D. J.; Dlodlo, Z. B., Robot Torque and Position Control Using anElectrorheological Actuator.Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,1998,212,(3),229-238.
    [92] Koyanagi, K.; Kakinuma, Y.; Anzai, H.et al., Stabilizing Output of an Electrorheological GelLinear Actuator.J Intel Mat Syst Str,2011,.
    [93] Taylor, P. M.; Pollet, D. M.; Hosseini-Sianaki, A.et al., Advances in an ElectrorheologicalFluid Based Tactile Array.Displays,1998,18,(3),135-141.
    [94] Reitz, R. P.; Plangetis, G. F. Bearing apparatus having electrorheological fluid lubricant. US7736063,2010-06-15.
    [95] Miyamoto, T.; Ota, M., Mechanism of Stress Transmission From an Electrorheological Fluidto the Electric Plates.Appl Phys Lett,1994,64,(9),1165-1167.
    [96] Woestman J T. Stick-Slip Response in Electrorheological Fluids. Phys Rev E,1993,47(4):2942-2945.
    [97] Hao T, Kawai A, Ikazaki F. Mechanism of the Electrorheological Effect: Evidence From theConductive, Dielectric, and Surface Characteristics of Water-Free Electrorheological Fluids.Langmuir,1998,14(5):1256-1262.
    [98] Bonnecaze R T, Brady J F. Dynamic Simulation of an Electrorheological Fluid. J Chem Phys,1992,96(3):2183-2202.
    [99] Gong X L, Yang F, Xuan S H, et al. Boundry effect in electrorheological fluids.Phys Rev E,2011,84:061505.
    [100] Rabinow J. Magnetic Fluid Torque and Force Transmiting Device. US Patent25753601951-11-20
    [101] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological Model for MagnetorheologicalDampers. J Eng Mech,1997,123,(3),230-238.
    [102] Bossis G, Lacis S, Meunier A, et al., Magnetorheological Fluids. J Magn Magn Mater,2002,252(1-3):224-228.
    [103] Chin B D, Park J H, Kwon M H, et al. Rheological Properties and Dispersion Stability ofMagnetorheological (Mr) Suspensions. Rheol Acta,2001,40(3):211-219.
    [104] Gomez-Ramirez A, Kuzhir P, Lopez-Lopez M T, et al. Steady Shear Flow of Magnetic FiberSuspensions: Theory and Comparison with Experiments. J Rheol,2011,55(1):43-67.
    [105] Felt D W, Hagenbuchle M, Liu J, et al. Rheology of a Magnetorheological Fluid.J Intel MatSyst Str,1996,7(5):589-593.
    [106] de Vicente J, Klingenberg D J, Hidalgo-Alvarez R. Magnetorheological Fluids: A Review.Soft Matter,2011,7:3701-3710.
    [107] Rosensweig R E. On Magnetorheology and Electrorheology as States of UnsymmetricStress.J Rheol,1995,39:179-192.
    [108] Bossis G, Lacis S, Meunier A, et al. Magnetorheological Fluids. J Magn Magn Mater,2002,252:224-228.
    [109] Lemaire E, Meunier A, Bossis G, et al. Influence of the Particle Size On the Rheology ofMagnetorheological Fluids. J Rheol,1995,39:1011-1020.
    [110] Klingenberg D J, Ulicny J. C, Golden M A. Mason Numbers for Magnetorheology.J Rheol,2007,51(5):883-893.
    [111] Zhang M L, Tian Y, Jiang J L, et al. Compression Enhanced Shear Yield Stress ofElectrorheological Fluid. Chinese Phys Lett,2009,26(4):048301.
    [112] Tao R, Lan Y C, Xu X. Structure-Enhanced Yield Shear Stress in Electrorheological Fluids.Int J Mod Phys B,2002,16(17-18):2622-2628.
    [113] Tang X, Zhang X, Tao R, et al. Structure-Enhanced Yield Stress of MagnetorheologicalFluids. J Appl Phys,2000,87(5):2634-2638.
    [114] Tang X, Zhang X, Tao R. Enhance the Yield Shear Stress of Magnetorheological Fluids. Int JMod Phys B,2001,15(6-7):549-556.
    [115] Tao R. Super-Strong Magnetorheological Fluids. J Phys-Condens Mat,2001,13(50):979-999.
    [116] Kuzhir P, Lopez-Lopez M T, Bossis G. Magnetorheology of Fiber Suspensions. Ⅱ. Theory. JRheol,2009,53(1):127-151.
    [117] Lopez-Lopez M T, Kuzhir P, Bossis G. Magnetorheology of Fiber Suspensions. I.Experimental. J Rheol,2009,53(1):115-126.
    [118] Magnetorheological Suspension Works, Patrascu, D.How2009.http://www.autoevolution.com/news/how-magnetorheological-suspension-works-8947.html
    [119] Military,SuspensionsApplication,L.Lord,2002.http://www.lord.com/products-and-solutions/magneto-rheological-(mr)/military-suspensions.xml
    [120] Magneto-Rheological (MR) Automotive Suspensions, Corp, L.Lord2002.http://www.lord.com/products-and-solutions/magneto-rheological-(mr)/automotive-suspensions.xml
    [121] Nguyen Q H, Choi S B, Wereley N M. Optimal Design of Magnetorheological Valves Via aFinite Element Method Considering Control Energy and a Time Constant. Smart Materialsand Structures,2008,17:025024.
    [122] Nguyen Q H, Choi S B, Lee Y S, et al. An Analytical Method for Optimal Design of MrValve Structures. Smart Mater Struct,2009,18:095032.
    [123] John S, Chaudhuri A, Wereley N M. A Magnetorheological Actuation System: Test andModel. Smart Mater Struct,2008,17:025023.
    [124] Wereley N M, Cho J U, Choi Y T, et al. Magnetorheological Dampers in Shear Mode. SmartMater Struct,2008,17:015022.
    [125] Goncalves F D, Carlson J D. An Alternate Operation Mode for Mr Fluids—MagneticGradient Pinch. J Phys: Conference,2009,149:012050.
    [126] Wang X, Gordaninejad F. Lyapunov-Based Control of a Bridge Using Magneto-RheologicalFluid Dampers. J Intel Mat Syst Str,2002,13(7-8):415-419.
    [127]王修勇,陈政清,倪一清等.斜拉桥拉索磁流变阻尼器减振技术研究.中国公路学报,2003,16(2):52-56.
    [128] Kim Y, Langari R, Hurlebaus S. Semiactive Nonlinear Control of a Building with aMagnetorheological Damper System. Mech Syst Signal Pr,2009,23(2):300-315.
    [129] Zhou L, Wang L X. Adaptive Fuzzy Control for Nonlinear Building-MagnetorheologicalDamper System. J Struct Eng,2003,129:905-913.
    [130] Amini F, Vahdani R. Fuzzy Optimal Control of Uncertain Dynamic Characteristics in TallBuildings Subjected to Seismic Excitation. J Vib Control,2008,14(12):1843-1867.
    [131] Kordonski W I, Jacobs S D. Magnetorheological Finishing. Int J Mod Phys B,1996,10(23):2837-2848.
    [132] Jha S, Jain V K. Rheological Characterization of Magnetorheological Polishing Fluid forMraff. Inter J AdvManu Tech,2009,42(7):656-668.
    [133] Jha S, Jain V K. A Novel Nanofinishing Process Using Magnetorheological AbrasivePolishing Fluid. Inter J Manu Tech Man,2010,21(1):4-16.
    [134]石峰,戴一帆,彭小强,等.磁流变抛光消除磨削亚表面损伤层新工艺.光学精密工程,2010,1:163-168.
    [135]左巍,张云,冯之敬,等.公自转磁流变抛光循环装置及其稳定性.清华大学学报:自然科学版,2010,7:1000-1004.
    [136]左巍,张云,辛科,等. Mgf2红外材料的磁流变抛光性能实验及分析.现代制造工程,2009,8:1-3.
    [137]朱绪力,孟永钢,田煜.颗粒体积比和磁场强度对磁流变弹性体颗粒结构的影响.清华大学学报:自然科学版,2010,2:246-249.
    [138] Liao G J, Gong X L, Kang C J, et al. The design of an active-adaptive tuned vibrationabsorber based on magnetorheological elastomer and its vibration attenuation performance.Smart Mater Struct,2011,20(7):075015.
    [139] de Vicente J, López-López M T, Durán J D G, et al. Shear Flow Behavior of ConfinedMagnetorheological Fluids at Low Magnetic Field Strengths. Rheol Acta,2004,44(1):94-103.
    [140] Edison, T. Improvement in Telegraph Apparatus: US Patent No.123984,1872-02
    [141] Skinner S M, Savage R L, Rutzler J E. Electrical Phenomena in Adhesion. I. ElectronAtmospheres in Dielectrics. J Appl Phys,1953,24(4):438-450.
    [142] Paulmier D, Bouchoucha A, Zaidi H. Influence of the Electrical Current On Wear in a SlidingContact Copper---Chrome Steel, and Connection with the Environment. Vacuum,1990,41(7-9):2213-2216.
    [143] Zaidi H, Csapo E, Nery H, et al. Friction Coefficient Variation in a Graphite GraphiteDynamical Contact Crossed by an Electric-Current. Surf Coat Tech,1993,62(1-3):388-392.
    [144] El Mansori, M Paulmier, D Ginsztler J, et al. Lubrication Mechanisms of a Sliding Contact bySimultaneous Action of Electric Current and Magnetic Field. Wear,1999,225:1011-1016.
    [145] Bhushan B, Ge S. Electromagnetic Effects On the Friction and Wear of Solid-Solid Interface.Materialwiss Werkst,2003,34(10-11):938-945.
    [146] Nakanishi Y, Murakami T, Higaki K. Effects of Electric Field On Lubricating Ability ofSynovia Constituents. Proceedings of the23rd Leeds-Lyon Symposium on Tribology held inthe Institute of Tribology, Department of Mechanical Engineering Tribology Series,1997,32:383-394.
    [147]翟文杰,陈仁际,齐毓霖.用外加电压控制摩擦力的机理与技术.摩擦学学报,1996,16(1):1-5.
    [148]常秋英,孟永钢,温诗铸.电极电势对氮化硅/黄铜滑动摩擦副摩擦磨损性能的影响研究.摩擦学学报,2002,22(5):373-376.
    [149]常秋英,孟永钢,温诗铸.辅助电极对电控摩擦的影响研究.摩擦学学报,2002,22(4):461-464.
    [150]蒋洪军,孟永钢.外加电场对3种陶瓷/金属摩擦副摩擦行为的影响.中国机械工程,1999,10(7):785-789.
    [151]蒋洪军,孟永钢,温诗铸.外加电压对三氧化二铝/黄铜摩擦副摩擦的主动控制试验研究.摩擦学学报,1999,19(3):244-249.
    [152]白少先,孟永钢,温诗铸,等.外加电场作用下双电层电粘度对水润滑特性的影响.润滑与密封,2006,10:1-3.
    [153] Bai S X, Huang P, Meng Y G, et al. Experimental Study of Influence On Electric DoubleLayer On Aqueous Lubrication. J Eng Design,2007,3:253-261.
    [154]胡波,孟永钢,温诗铸.电控摩擦离合器的初步实验研究.摩擦学学报,2004,24(1):46-50.
    [155] He S, Meng, Y, Tian Y. Correlation Between Adsorption/Desorption of Surfactant andChange in Friction of Stainless Steel in Aqueous Solutions Under Different ElectrodePotentials. Tribol Lett,2011,41(3):485-494.
    [156] He S, Meng Y, Tian Y, et al. Response Characteristics of the Potential-Controlled Friction ofZro2/Stainless Steel Tribopairs in Sodium Dodecyl Sulfate Aqueous Solutions. Tribol Lett,2010,38(2):169-178.
    [157] Kimura Y, Nakano K, Kato T, et al. Control of Friction Coefficient by Applying ElectricFields Across Liquid Crystal Boundary Films. Wear,1994,175(1-2):143-149.
    [158] Xie G, Luo J, Liu S, et al. Thin Liquid Film Lubrication Under External Electrical Fields:Roles of Liquid Intermolecular Interactions. J Appl Phys,2011,109:114302.
    [159] Muju M K, Radhakrishna A. Wear of Non-Magnetic Materials in the Presence of a MagneticField. Wear,1980,58(1):49-58.
    [160] Kumagai K, Suzuki K, Kamiya O. Study On Reduction in Wear Due to Magnetization. Wear,1993,162:196-201.
    [161] Zaidi H, Pan L, Paulmier D, et al. Influence of a Magnetic Field On the Wear and FrictionBehaviour of a Nickel/Xc48Steel Couple. Wear,1995,181:799-804.
    [162] Zaidi H, Amirat M, Frene J, et al. Magnetotribology of Ferromagnetic/Ferromagnetic SlidingCouple. Wear,2007,263:1518-1526.
    [163] Zaidi H, Chin K J, Frene J. Analysis of Surface and Subsurface of Sliding Electrical ContactSteel/Steel in Magnetic Field. Surf Coat Tech,2001,148(2-3):241-250.
    [164] Mansori M E, Zaidi H, Kadiri E K, et al. Surface Modifications of a Non-FerromagneticCopper/Ferromagnetic Steel Xc48Couple in Magnetized Sliding Contact. Surf Coat Tech,1996,86:511-515.
    [165] Bockstedt J, Klamecki B E. Effects of Pulsed Magnetic Field On Thrust Bearing WasherHardness. Wear,2007,262(9-10):1086-1096.
    [166] Paulmier D, El Mansori M, Zaidi H. Study of Magnetized Or Electrical Sliding Contact of aSteel Xc48/Graphite Couple. Wear,1997,203:148-154.
    [167] El Mansori M, Schmitt M, Paulmier D. Third Body Effects On Graphite/Xc48SteelMagnetized Sliding Contact. J Tribology,1999,121:403-407.
    [168] Chin K J, Zaidi H, Mathia T. Oxide Film Formation in Magnetized Sliding Steel/SteelContact--Analysis of the Contact Stress Field and Film Failure Mode. Wear,2005,259(1-6):477-481.
    [169] Socoliuc A, Gnecco E, Maier S, et al. Atomic-Scale Control of Friction by Actuation ofNanometer-Sized Contacts. Science,2006,313(5784):207-210.
    [170] Kerssemakers J, De Hosson J T M. Probing the Interface Potential in Stick/Slip Friction by aLateral Force Modulation Technique. Surf Sci,1998,417(2-3):281-291.
    [171] Dinelli F, Biswas S K, Briggs G, et al. Ultrasound Induced Lubricity in Microscopic Contact.Appl Phys Lett,1997,71:1177-1179.
    [172]魏鹏威,陈维山.基于虚拟滚动体超声波摩擦改性技术的研究.压电与声光,2003,25(002):165-169.
    [173] Nagata M, Fujita M, Yamada M, et al. Evaluation of Tribological Properties of BearingMaterials for Marine Diesel Engines Utilizing Acoustic Emission Technique. Tribol Int,2012,46(1):183-189.
    [174] Máthis K, Prchal D, NovotnyR, et al. Acoustic Emission Monitoring of Slow Strain RateTensile Tests of304L Stainless Steel in Supercritical Water Environment. Corros Sci,2011,53(1):59-63.
    [175] Wang J D, Ren C J, Yang Y R. Characterization of Flow Regime Transition and ParticleMotion Using Acoustic Emission Measurement in a Gas-Solid Fluidized Bed. AIChE J,2010,56:1173-1183.
    [176] Choi H J, Jhon M S. Electrorheology of Polymers and Nanocomposites. Soft Matter,2009,5(8):1562-1567.
    [177] Kim S G, Lim J Y, Sung J H, et al. Emulsion Polymerized Polyaniline Synthesized withDodecylbenzenesulfonic Acid and its Electrorheological Characteristics: Temperature Effect.Polymer,2007,48(22):6622-6631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700