用户名: 密码: 验证码:
双环可展开桁架式天线动力学分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空技术和国防事业的发展,我国对大口径及超大口径天线的需求变得越来越迫切。然而,天线的口径不仅受到天线本身重量的约束,还受到火箭体积的限制。为了满足日益增长的需求,克服客观存在的限制与其之间的矛盾,大口径及超大口径天线就要求设计成轻质,并且在运输或未使用过程中保持小体积,而当在轨工作时便可展开成需要的形状。为了应对这样的现状,空间可展开结构作为天线周边支撑结构,越来越多地应用在天线上。本文对新型双环可展开桁架结构的方案设计和动力学分析、固有频率和模态分析、基于动力学约束的结构优化设计等问题进行了深入的研究。
     在大量阅读国内外文献的基础上,总结了大口径及超大口径可展开天线的研究现状,对三种不同基本类型的可展开天线分别进行了介绍。说明了随着航天技术和国防事业的发展,对新型空间可展开桁架结构的需求和结构方案设计及展开分析的必要性。
     从以往的单环可展开桁架结构出发,简要介绍了已被广泛应用的单环可展开桁架结构的优点。接着阐明了随着通信科学、地球勘测等日益发展,由于传统的单环可展开桁架结构的刚度低,已经不再满足大口径及超大口径天线的需要,从而揭示了设计新型可展开桁架结构方案的迫切需要。介绍了双环可展开桁架结构的几何拓扑关系及可展开的必要条件。基于天线的正常工作性能,从动力学特性的角度出发,推导并确定了该可展开桁架结构的最优高度和最佳划分边数。最后,分别介绍了双环可展开桁架结构内、外环的展开单元和内、外环之间的连系桁架的展开机理。
     基于双环可展开桁架结构的动力学特性,基于Moore-Penrose广义逆方法,运用多体系统动力学理论来分析其展开的运动过程。在已有单环可展开桁架结构的基础上,添加了双环可展开桁架结构特有的约束方程:内、外环之间连系杆约束和扭簧连杆的约束。根据以上理论,采用C++Visual Studio2008自编计算仿真程序。为了验证该程序的可靠性,引入单摆模型和可展开桥梁模型,通过和理论计算值、ADAMS计算值的对比,可知两者在仿真结果上可以基本符合,并且自编仿真程序在建模过程和计算过程中能大大节约时间,提高效率。最后,通过数值仿真,获得该双环可展开桁架结构展开过程中的各个状态和各节点动力学参数,为之后的结构优化设计提供了依据。
     基于Matlab对双环可展开桁架结构进行参数化建模,使得在计算不同口径、划分边数以及桁架高度的结构时建模更便捷。编制有限元动力学计算程序,以双环可展开桁架结构的初始尺寸为基准,计算该结构完全展开状态时的各阶模态以及在各个展开过程中的基频,从而分析该结构的动力学特性。通过和ANSYS计算结果对比,验证该程序的正确性。最后,实验室设计并制作了2m口径的双环可展开桁架结构的缩比模型,利用自编有限元程序计算了该模型的动力学特性并对其展开了测试试验。将计算结果和测试结果对比,可知上述自编程序所进行的有限元计算是比较符合实际的。
     对少变量优化模型采用序列二次规划法和遗传算法分别进行优化并对比,为了显示双环可展开桁架结构在动力学特性方面的优势,建立了基于频率约束的最小质量优化模型。通过优化计算,获得了单、双环可展开桁架结构满足基频的最优质量。从优化结果分析可见,双环可展开桁架结构在保证刚度及减轻重量方面有明显的优势,并且随着口径的增大该优势更为明显。
     双环可展开桁架结构的动力学特性不仅表现在完全展开状态时,它在初始收拢和各个展开过程中的动力学特性也至关重要。因此,可通过优化计算,获得了双环可展开桁架结构的最优截面和最小质量,并且计算了在该最优解的情况下,双环可展开桁架结构在初始收拢状态、展开过程中及完全展开状态时都满足动力学要求。
     基于金属反射面的型面精度理论,对预应力索网反射面给出了型面精度计算公式。建立以最小质量为目标函数,双环可展开周边桁架的动力学特性、天线整体的动力学特性和型面精度、以及预应力拉索的最大应力为约束条件的优化模型。通过选择不同数量的设计变量获得了不同的最小质量最优解,结合实际模型加工、制作的情况,选择了适合该双环可展开桁架天线结构的最优设计变量数目,获得了双环可展开周边桁架式天线结构的最优解,因此,为天线结构的设计奠定了基础。
     根据本文研究的最优计算方法,实验室研制了双环可展开天线的缩比模型,并对各类节点进行了机械设计。为了测试该缩比模型的可展开性和动力学特性,使得天线测试和试验结果更具有参考性,需要研制模拟太空失重环境的设备,对天线进行重力补偿,将重力的影响降到最低。本实验室与西安39所合作设计了一套无重力的试验吊架系统,为后续的试验做准备。
Demand for large-caliber and ultra-large-caliber antennas is increasing with the rapid development of the space science and astronautical technology. However, the caliber of antennas is severely restricted by weight and volume limitations of the launch vehicle such as the cowling for space use. Ultimately, this creates a design space governed by competing properties, where the antenna is desired to be as light and as small as possible during transportation, while as large as needed for effective operation when the antenna is fully deployed on the orbit. Foldable and deployable supporting structures have proven to be an effective system for addressing this challenging design problem. This paper emphasized on the design and dynamic analysis of the double-ring deployable truss antenna, and researched on the frequencies, modal analysis and structural optimization subjected to dynamic constraints.
     On the basis of lots of domestic and foreign literatures, the current research situation of large-caliber and ultra-large-caliber antennas. Three basic different types of deployable antennas are introduced and it illustrates the necessity of the design and research of new kind of deployable truss antennas for space use. The design and manufacture of the scaled model and the tested results verified the numerical results. Therefore, the necessity and significance of the research of the double-ring deployable truss antenna are proved.
     This paper starts with the general single-ring deployable truss antenna, and introduced the merits of the single-ring deployable truss antenna which is widely used nowadays. But the stiffness of the single-ring deployable truss antenna decreases sharply with the increasing caliber of the antennas when the space technology develops fast and fast. So the single-ring deployable truss antenna cannot satisfy the demand of the large-caliber and ultra-large-caliber antennas. It is necessary to design a new kind of antennas to satisfy this demand. This paper introduces the geometrical topology and the necessary conditions of the double-ring deployable truss. And due to the normal performances of the antenna, staring with the dynamic analysis, the best height and number of sides of the truss were obtained. Finally, the deploying mechanism of the inner ring and the outer ring of the double-ring deployable truss were introduced in details.
     On the basis of the characteristics of the double-ring deployable truss and theory of Moore-Penrose, multi-body dynamic was utilized to analyze the deploying process. Some special constraints of the double-ring deployable truss were added on the basis of the formal single-ring deployable truss. Simulation was taken out in C++Visual2008. To verify the self-programmed procedure, the simple pendulum and deployable bridge were tested. And the results were compared with the calculated values by theory which gives the validity. Moreover, the self-programmed procedure can save much time when modeling and calculating. At last, each state and coordinates of all the nodes can be obtained by numerical simulation of the deploying process of the double-ring deployable truss.
     Different models with different calibers and initial heights can be obtained by parameterization. By finite element method, modal analysis of the double-ring deployable truss and the first frequency of the double-ring deployable truss in each deploying state were obtained. By comparisons of the results with ANSYS, the validity of the self-programmed procedure was verified.
     SQP method and GA were used for the few variables in the optimization. In order to show the advantages of the double-ring deployable truss, minimum weight optimization with frequencies constraints is established. By optimization, the minimum weight of the single-ring deployable truss and double-ring deployable truss were obtained separately. We can see that the double-ring deployable truss can save weight over the single-ring deployable truss with constraints satisfied.
     Not only the characteristics of the double-ring deployable truss in the final deployed state were important, the characteristics of the double-ring deployable truss in the initial folded state and each deploying states were also important. Therefore, these dynamic constraints were added into to optimization model. By optimization, the minimum weight can be obtained with all the dynamic constraints in the initial folded state, each deploying states and the final deployed state satisfied.
     The equation of the RMS of the reflecting surface was established according to the theory of the metallic reflector. Therefore the RMS constraint was also added into the optimization model and the optimal result was obtained. Then different numbers of the design variables were chosen to obtain the different minimum weights. The best number of the design variables was chosen to design and manufacture the model, which gives some foundations for the design of antenna. A scaled model was designed by the optimization method researched in this paper, and a set of systems which can eliminate the gravity of the antenna was also designed for the experiments in the future.
引文
[1]关富玲,杨治,程媛,等.杭州黄龙体育中心网球馆开合屋面设计[J].工程设计学报,2005,12(2):118-123.
    [2]刘伟,钱锋.体育建筑中可开合屋面的应用与发展[J].建筑科学与工程学报,2010,27(4):121-126.
    [3]戴璐,关富玲.基于广义逆矩阵的空间可展桥梁动态仿真和实验[J].空间结构,2012,18(2):79-83,26.
    [4]关富玲,周益君,况祺,等.一种轻型可展军用桥梁的设计与动力学分析[J].西南交通大学学报,2012,47(5):735-740,747.
    [5]刘凯,高维成,刘宗仁.索杆膜空间结构协同形态分析[J].工程力学,2007,24(12):38-42.
    [6]姚刚,肖正直.张拉索膜结构体系及其施工技术[J].建筑技术,2004,35(2):138-140.
    [7]You Z, Pellegrino S. Foldable bar structures[J]. International Journal of Solids and Structures,1997,34(15):1825-1847.
    [8]Pellegrino S. Deployable structures[M]. Springer,2001.
    [9]牛治永,李晓岚,王三民,等.空间桁架可展天线反射器的形面精度优化调整[J].机械设计与制造,2011(6):123-125.
    [10]赵孟良,关富玲.考虑摩擦的周边桁架式可展天线展开动力学分析[J].空间科学学报,2006,26(3):220-226.
    [11]李团结,Yan ZHANG,段宝岩.周边桁架可展开天线展开过程仿真方法[J].系统仿真学报,2008,20(8):2081-2084.
    [12]甘克力,周明玮,葛升民,等.带双轴太阳帆板驱动器的卫星建模与姿态控制[J].电机与控制学报,2013,17(1):82-87.
    [13]孙凯,戈新生.航天器太阳帆板伸展过程最优控制的粒子群优化算法[J].工程力学,2007,24(9):188-192.
    [14]罗鹰,段宝岩.星载可展开天线结构现状与发展[J].电子机械工程,2005,21(5):30-34.
    [15]Tibert G. Deployable tensegrity structures for space applications[M]. Royal Institute of Technology,2002.
    [16]Freeland R E, Bilyeu G D, Veal G R, et al. Large inflatable deployable antenna flight experiment results[J]. Acta Astronautica,1997,41(4):267-277.
    [17]Freeland R E, Bilyeu G D, Veal G R. Validation of a unique concept for a low-cost, lightweight space-deployable antenna structure[J]. Acta Astronautica, 1995,35(9):565-572.
    [18]Yu X Y G F. Precision Analysis and Shape Adjustment of Inflatable Antenna [J]. Chinese Journal of Space Science,2006,4:9.
    [19]徐彦,关富玲,马燕红.充气可展开天线的反射面设计及精度测量[J].浙江大学学报(工学版),2007,41(11):1921F-1926F.
    [20]Archer J S, Palmer W B. Antenna Technology for QUASAT application[J]. In NASA. Langley Research Center Large Space Antenna Systems Technol.,1984 p 251-270 (SEE N85-23813 14-15),1985,1:251-270.
    [21]Guest S D, Pellegrino S. A new concept for solid surface deployable antennas[J]. Acta Astronautica,1996,38(2):103-113.
    [22]Thomson M W. The Astromesh deployable reflector:IUTAM-IASS Symposium on Deployable Structures:Theory and Applications,2000[C].
    [23]Thomson M W. The Astromesh deployable reflector:IEEE,1999[C].
    [24]Thomson M W. Astromesh deployable reflectors for Ku-and Ka-band commercial satellites,2002[C].
    [25]Rogers C A, Stutzman W L, Campbell T G, et al. Technology assessment and development of large deployable antennas [J]. Journal of Aerospace Engineering, 1993,6(1):34-54.
    [26]李洲洋.环形桁架卫星天线的三维参数化造型及静力学分析[D].西北工业大学,2004.
    [27]袁士杰,生物力学,吕哲勤.多刚体系统动力学[M].北京理工大学出版社,1992.
    [28]Vinayak H, Singh R. Multi-body dynamics and modal analysis of compliant gear bodies[J]. Journal of Sound and Vibration,1998,210(2):171-214.
    [29]Rahnejat H. Multi-body dynamics:historical evolution and application[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2000,214(1):149-173.
    [30]Tasora A, Negrut D, Anitescu M. Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2008,222(4):315-326.
    [31]Rahnejat H. Multi-body dynamics:vehicles, machines, and mechanisms[M]. Professional Engineering,1998.
    [32]Amirouche F M. Computational methods in multibody dynamics(Book)[J]. Englewood Cliffs, NJ:Prentice-Hall, Inc,1992.,1992.
    [33]Jerkovsky W. The structure of multibody dynamics equations[J]. Journal of Guidance, Control, and Dynamics,1978,1(3):173-182.
    [34]Schiehlen W. Multibody system dynamics:roots and perspectives[J]. Multibody system dynamics,1997,1(2):149-188.
    [35]Shabana A A. Flexible multibody dynamics:review of past and recent developments[J]. Multibody system dynamics,1997,1(2):189-222.
    [36]Eich-Soellner E,F U Hrer C. Numerical methods in multibody dynamics[M]. Teubner Stuttgart,1998.
    [37]贾书惠.刚体动力学[M].高等教育出版社,1987.
    [38]刘延柱.高等动力学[M].高等教育出版社,2001.
    [39]休斯敦,刘又午.多体系统动力学[J].天津:天津大学出版杜,1987,2.
    [40]Courrieu P. Fast computation of Moore-Penrose inverse matrices[J]. arXiv preprint arXiv:0804.4809,2008.
    [41]Manjunatha Prasad K, Bapat R B. The generalized Moore-Penrose inverse[J]. Linear Algebra and its Applications,1992,165:59-69.
    [42]Puystjens R, Robinson D W. The Moore-Penrose inverse of a morphism with factorization[J]. Linear Algebra and its Applications,1981,40:129-141.
    [43]Fill J A, Fishkind D E. The Moore--Penrose Generalized Inverse for Sums of Matrices[J]. SIAM Journal on Matrix Analysis and Applications,2000,21(2):629-635.
    [44]Kawaguichi K, Hangai Y. Analysis of stabilizing paths and stability of kinematically indeterminate frameworks,1990[C].
    [45]Tanaka H, Hangai Y. Rigid body displacement and stabilization conditions of unstable truss structures [J]. Shells, Membranes and Space Frames,1986,2:55-62.
    [46]肖勇,王三民,陈国定.大型卫星天线系统固有模态的有限元分析[J].机械设计与制造,2006,7(7):1-2.
    [47]马兴瑞,王本利,航天,等.航天器动力学:若干问题进展及应用[M].科学出版社,2001.
    [48]Grandhi R V, Venkayya V B. Structural optimization with frequency constraints[J]. AIAA journal,1988,26(7):858-866.
    [49]Grandhi R. Structural optimization with frequency constraints-a review[J]. AIAA journal,1993,31(12):2296-2303.
    [50]Ma Z, Kikuchi N, Hagiwara I. Structural topology and shape optimization for a frequency response problem[J]. Computational mechanics,1993,13(3):157-174.
    [51]Khot N S. Structure/control optimization to improve the dynamic response of space structures [J]. Computational Mechanics,1988,3(3):179-186.
    [52]Khot N S. Optimization of structures with multiple frequency constraints [J]. Computers \& structures,1985,20(5):869-876.
    [53]Xie Y M, Steven G P. A simple approach to structural frequency optimization[J]. Computers \& structures,1994,53(6):1487-1491.
    [54]Xie Y M, Steven G P. Evolutionary structural optimization for dynamic problems[J]. Computers \& Structures,1996,58(6):1067-1073.
    [55]Chu D N, Xie Y M, Hira A, et al. Evolutionary structural optimization for problems with stiffness constraints [J]. Finite Elements in Analysis and Design, 1996,21(4):239-251.
    [56]Park Y, Park Y. Structure optimization to enhance its natural frequencies based on measured frequency response functions [J]. Journal of sound and vibration, 2000,229(5):1235-1255.
    [57]Xie Y M, Steven G P. Basic Evolutionary Structural Optimization[M]. Springer, 1997.
    [58]Arora J. Introduction to optimum design[M]. Academic Press,2004.
    [59]Komkov V, Choi K K, Haug E J. Design sensitivity analysis of structural systems[M]. Access Online via Elsevier,1986.
    [60]Adelman H M, Haftka R T. Sensitivity analysis of discrete structural systems[J]. AIAA journal,1986,24(5):823-832.
    [61]Haftka R T, Grandhi R V. Structural shape optimization-a survey[J]. Computer Methods in Applied Mechanics and Engineering,1986,57(1):91-106.
    [62]Venkayya V B. Design of optimum structures[J]. Computers \& Structures, 1971,1(1):265-309.
    [63]Schramm U, Pilkey W D. Optimal design of structures under impact loading[J]. Shock and Vibration,1996,3(1):69-81.
    [64]GURDAL Z A, Others. Elements of structural optimization[M]. Springer,1992.
    [65]Barthelemy J, Haftka R T. Approximation concepts for optimum structural design-a review[J]. Structural optimization,1993,5(3):129-144.
    [66]Haftka R T, Adelman H M. Recent developments in structural sensitivity analysis[J]. Structural optimization,1989,1(3):137-151.
    [67]陈建军,车建文,陈勇.具有频率和振型概率约束的工程结构动力优化设计[J].计算力学学报,2001,18(1):74-80.
    [68]张锦江,杨智春.具有多阶频率与振型约束的结构动力学优化设计[J].强度与环境,2007,34(1):11-16.
    [69]尤国强,杨东武,张杰.以减轻重量为目标的索网桁架式可展开太空天线结构的优化设计[J].高技术通讯,2009,19(7):745-748.
    [70]狄杰建,段宝岩,杨东武,等.索网式星载展开天线结构纵向调整索数及其初始张力的优化[J].机械工程学报,2005,41(11):153-157.
    [71]杨东武,保宏.非对称索网抛物面天线力平衡特性及预拉力设计[J].机械工程学报,2009,45(8):308-312.
    [72]罗鹰,段宝岩,杨东武,等.大型星载展开天线动力优化设计[J].空间科学学报,2004,24(3):203-210.
    [73]杨东武,仇原鹰,段宝岩.索网式天线结构预拉力优化的新方法[J].西安电子科技大学学报(自然科学版),2008,35(2):319-323.
    [74]尤国强.周边桁架可展开天线的结构优化设计[D].西安电子科技大学机械电子工程,2005.
    [75]李彬,胡国伟,黄芬.周边桁架可展开天线索网结构力密度优化找形方法[J].桂林电子科技大学学报,2009,29(5):373-376.
    [76]罗鹰,段宝岩.周边桁架式展开天线几何布局优化[J].空间科学学报,2004,24(2):132-137.
    [77]狄杰建,段宝岩,仇原鹰,等.周边式桁架可展开天线的形面调整[J].宇航学报,2004,25(5):583-586.
    [78]尤国强.周边桁架可展开天线的结构优化设计[D][D].西安电子科技大学,2005.
    [79]尤国强,段宝岩,郑飞.频率约束下的可展开天线多目标优化设计术[J].华南理工大学学报(自然科学版),2008,36(8).
    [80]尤国强,段宝岩,郑飞.以表面精度和基频为目标的可展开天线索网结构的优化设计[J].中国机械工程,2008,19(19):2306-2309.
    [81]左孔天.连续体结构拓扑优化理论与应用研究[D][D].武汉:华中科技大学,2004.
    [82]程耿东.关于桁架结构拓扑优化中的奇异最优解[J].大连理工大学学报,2000,40(4):379-383.
    [83]郭中泽,张卫红,陈裕泽.结构拓扑优化设计综述[J][J].机械设计2007,24(8):1-5.
    [84]汪树玉,刘国华.结构优化设计的现状与进展(续)[J].基建优化,1999,20(5):3-7.
    [85]许素强,夏人伟.桁架结构拓扑优化与遗传算法[J].计算结构力学及其应用,1994,11(4):436-446.
    [86]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005,35(1):69-76.
    [87]Moon S J, Yoon G H. A newly developed qp-relaxation method for element connectivity parameterization to achieve stress-based topology optimization for geometrically nonlinear structures[J]. Computer Methods in Applied Mechanics and Engineering,2013,265(0):226-241.
    [88]Cai K, Qin Q H, Luo Z, et al. Robust topology optimisation of bi-modulus structures[J]. Computer-Aided Design,2013,45(10):1159-1169.
    [89]Jeong S H, Park S H, Choi D, et al. Toward a stress-based topology optimization procedure with indirect calculation of internal finite element information[J]. Computers & Mathematics with Applications,2013,66(6):1065-1081.
    [90]Zhao F. A meshless Pareto-optimal method for topology optimization[J]. Engineering Analysis with Boundary Elements,2013,37(12):1625-1631.
    [91]Deng Y, Liu Z, Liu Y, et al. Combination of topology optimization and optimal control method[J]. Journal of Computational Physics,2014,257, Part A(0):374-399.
    [92]隋允康,张轩,宇慧平.结构形状优化响应面方法的改进与应用[J].北京工业大学学报,2008,34(1):31-36.
    [93]唐和生,李峰,王勇,等.桁架结构形状优化的粒子群优化算法[J].哈尔滨工业大学学报,2009(12):-
    [94]王丽.浅谈预应力索-桁架结构形状优化设计[J].黑龙江科技信息,2013(21):224.
    [95]张爱林,杨海军.预应力索-桁架结构形状优化设计[J].计算力学学报,2007(1):91-97.
    [96]曹亮,高延安.改进的PSO算法在桁架结构形状优化设计中的应用[J].建筑 与环境,2012(4):92-95.
    [97]朱朝艳,刘敬宇,董锦坤,等.离散变量结构形状优化设计的拟满应力遗传算法[J].昆明理工大学学报:理工版,2010,35(6):24-28.
    [98]Firl M, Bletzinger K. Shape optimization of thin walled structures governed by geometrically nonlinear mechanics[J]. Computer Methods in Applied Mechanics and Engineering,2012,237-240(0):107-117.
    [99]Kegl M, Brank B. Shape optimization of truss-stiffened shell structures with variable thickness[J]. Computer Methods in Applied Mechanics and Engineering, 2006,195(19-22):2611-2634.
    [100]Ha S, Cho S. Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh[J]. Computers & Structures,2008,86(13-14):1447-1455.
    [101]Ansola R, Canales J, Tarrago J A, et al. An integrated approach for shape and topology optimization of shell structures[J]. Computers & Structures,2002,80(5-6):449-458.
    [102]Houst V, Elias J, Mica L. Shape optimization of concrete buried arches[J]. Engineering Structures,2013,48(0):716-726.
    [103]Miguel L F F, Fadel Miguel L F. Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms[J]. Expert Systems with Applications,2012,39(10):9458-9467.
    [104]Choi J. Shape design sensitivity analysis and optimization of general plane arch structures [J]. Finite Elements in Analysis and Design,2002,39(2):119-136.
    [105]彭斯俊.优化算法在结构设计中的应用[D].武汉理工大学固体力学,2004.
    [106]侯贯泽,刘树堂,简国威.工程结构优化设计理论与方法[J].钢结构,2009,24(8):30-33.
    [107]李晶,鹿晓阳,陈世英.结构优化设计理论与方法研究进展[J].工程建设,2007,39(6):21-31.
    [108]蔡新,李洪煊,武颖利,等.工程结构优化设计研究进展[J]-河海大学学报 (自然科学版),2011,39(3):269-276.
    [109]胡忆华.基于数学规划理论的基础工程优化设计研究[D].东南大学岩土工程,2009.
    [110]张德恒,鹿晓阳.结构拓扑优化设计的理论与方法[J].化学工程与装备,2011(1):155-158.
    [111]谢金星,邢文训.现代优化计算方法[M].2005.
    [112]谢金星,邢文训.现代优化计算方法[M].1999.
    [113]顾元宪,程耿东.结构形状优化设计数值方法的研究和应用[J].计算结构力学及其应用,1993,10(3):321-335.
    [114]吴杰.预张力结构优化设计理论与应用研究[D].同济大学结构工程,2003.
    [115]高亮,高海兵,周驰,等.基于粒子群优化算法的模式分类规则获取[J].华中科技大学学报:自然科学版,2004,32(11):24-26.
    [116]章万国,周驰,高海兵,等.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11.
    [117]周驰,高亮,高海兵.基于粒子群优化算法的约束布局优化[J].控制与决策,2005,20(1):36-40.
    [118]Jiang B, Wang N, Wang L. Particle swarm optimization with age-group topology for multimodal functions and data clustering[J]. Communications in Nonlinear Science and Numerical Simulation,2013,18(11):3134-3145.
    [119]Ting C, Wu K, Chou H. Particle swarm optimization algorithm for the berth allocation problem[J]. Expert Systems with Applications,2014,41(4, Part 1):1543-1550.
    [120]Gao H, Kwong S, Yang J, et al. Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation[J]. Information Sciences,2013,250(0):82-112.
    [121]Cherniavsky A G, Gulyayev V I, Gaidaichuk V V, et al. Large deployable space antennas based on usage of polygonal pantograph[J]. Journal of Aerospace Engineering,2005,18(3):139-145.
    [122]Medzmariashvili E, Tserodze S, Tsignadze N, et al. A new design variant of the large deployable space reflector[J]. Proceedings of Earth \& Space,2006.
    [123]Medzmariashvili E, Tserodze S, Gogilashvili V, et al. New variant of the deployable ring-shaped space antenna reflector[J]. Space Communications, 2009,22(1):41-48.
    [124]刘尔烈,崔恩第,徐振铎.有限单元法及程序设计[M].2004.
    [125]刘延柱.高等动力学[M].2001.
    [126]赵孟良.空间可展结构展开过程动力学理论分析、仿真及试验[D].浙江大学,2007.
    [127]何旭初.广义逆矩阵的基本理论和计算方法[M].1985.
    [128]陈务军,关富玲,等.基于零空间基的非线性结构分析方法[J].计算力学学报,2001,18(4):409-413.
    [129]段宝岩.天线结构分析、优化与测量[M].1998.
    [130]席少霖.非线性最优化方法[M].1992.
    [131]蒋金山,何春雄,潘少华.最优化计算方法[M].2007.
    [132]蒋金山.最优化计算方法与实现[M].2012.
    [133]罗鹰.大型星载可展开天线的动力优化设计与工程结构的系统优化设计[D].西安电子科技大学机械制造及其自动化,2004.
    [134]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M].1996.
    [135]蒋友谅.非线性有限元法[M].1988.
    [136]张惠峰.基于非线性有限元法的索膜结构形态分析[J].安徽建筑,2012,19(3):168.
    [137]董明,钱若军.张力结构的非线性有限元分析[J].计算力学学报,1997,14(3):268-275.
    [138]刘相春,李陈峰,任慧龙,等.大跨度板架屈曲分析的非线性有限元法[J].舰船科学技术,2013(1):46-50.
    [139]游潇,苏小卒.简析非线性有限元法[J].江西科学,2012,30(1):75-78.
    [140]伍冲.索结构六节点等参元非线性有限元法[J].交通科技,2011(4):53-55.
    [141]郑昊,古娟妮,王娜.索膜结构基于非线性有限元法的ANSYS找形分析[J].四川建筑,2010(1):110-112.
    [142]黄涛,周金枝,朱若燕.具有扭转自由度的五节点索单元非线性有限元法[J].武汉理工大学学报:交通科学与工程版,2010,34(6):1150-1153.
    [143]张剑.基于ANSYS桥梁检查车主桁架的有限元分析[J].大科技,2013(8):175-176.
    [144]杨钦,李承铭ANSYS索结构找形及悬链线的模拟[J].土木建筑工程信息技术,2010(4):61-65.
    [145]董学武.大跨径悬索桥结构设计[J].江苏交通工程,2000(2):1-5.
    [146]郭锦良.独塔空间索面自锚式悬索桥结构设计[J].城市道桥与防洪,2012(4):49-53.
    [147]张其林.索和膜结构[M].2002.
    [148]韩栋栋.索膜结构的发展和应用[J].中国科技财富,2010(22):242.
    [149]李冰.现代建筑空间结构的设计与施工[J].黑龙江科技信息,2011(25):301.
    [150]张定邦.新型空间结构的设计与施工探析[J].中国房地产业:理论版,2013(5):33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700