用户名: 密码: 验证码:
航空用铝锂合金结构选择性增强工艺与裂纹抑制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:现代民用客机日益向着大型化方向发展,安全、舒适、经济、环保成为飞机设计的基本要求。要达到经济、环保的要求,除了开发环保、高效的发动机外,飞机结构轻型化也是一个非常重要途径;在轻量化的同时,提高飞机构件的疲劳性能,对飞机的安全性起着决定性作用,各国科研工作者也一直致力于开发新型低密度材料及解决结构疲劳问题的研究。在结构设计方面,提出了许多新的飞机设计方法来提高结构安全性,在减轻结构重量的同时提高构件的疲劳寿命,选择性增强技术就是其中之一。
     本文在国家大飞机专项重点项目“铝锂合金综合设计技术研究”的资助下,以新一代铝锂合金(Al-Li-S-4)为研究对象,开展了铝锂合金结构选择性增强工艺及裂纹抑制机理的研究。通过理论计算、实验研究及有限元仿真等方法,研究了铝锂合金连接(胶接)机理与胶接工艺,制备了铝锂合金选择性增强构件并开展了构件的内应力、裂纹扩展的实验及仿真研究,为大飞机的机身选择性增强结构设计、制造提供理论支持与工艺参数,以提高我国飞机设计制造水平。论文的主要研究内容及如下:
     (1)在技术上突破了铝锂合金胶接性能的关键工艺:铝锂合金表面处理工艺,确定了最优的处理工艺参数。
     通过正交实验的方法,对表面处理工艺进行了优化,使之适合铝锂合金。探索出该合金的最佳表面处理工艺,大大提高了该材料的胶接连接性能,为胶接连接的铝锂合金选择性增强结构提供制备工艺。
     (2)基于边界层理论,利用商用有限元分析软件Marc.MSC建立混合失效的内聚力模型,对胶接边界应力奇异性进行了分析,提出了改进的胶接接头奇异点应力计算公式,对估算铝锂合金胶接接头端部的应力峰值提供了更为精确的计算方法;在此基础上,系统研究了铝锂合金胶接接头几何、物理参数(材料的厚度、接头长度、胶接剂的弹性模量、胶接剂厚度等)对接头内应力的影响,为选择性增强结构的胶接工艺改进提供理论上的支持。
     (3)利用有限元方法,建立热残余应力模型,研究了铝锂合金选择性增强构件由于高温固化时产生的热残余应力大小及其影响区域。并采用理论计算、实验研究相结合的方法验证了建立的有限元模型的有效性。
     (4)采用实验的方法研究了两种材料做增强板(钛合金、GLARE复合板)的选择性增强构件的裂纹扩展速率;并研究了不同几何尺寸的钛合金增强板对铝锂合金选择性增强结构试样裂纹扩展速率的影响;此外,对钛合金板螺栓与胶接混合增强构件的裂纹扩展速率做了研究;同时对增强材料与铝锂合金的匹配关系、连接方式做了初步的探讨,为选择性增强结构的设计方法提供了有效的参考。
     (5)采用实验数据与有限元分析相结合的方法研究了裂纹尖端应力与裂纹扩展速率及裂纹长度之间的关联关系,揭示了选择性增强构件裂纹抑制机理;在经典疲劳裂纹扩展模型公式(Paris公式)的基础上,利用实验数据,改进了经典公式适用于铝锂合金选择性增强结构特征构件的疲劳裂纹扩展速率公式,并通过实验结果验证了该公式在预测选择性增强构件裂纹扩展速率的有效性。
Abstract:Modern aircraft is becoming large-scale device. Safety, comfort, pursuing aircraft reduction operating costs and environmental-friendly are the aims of designers. In order to reaching the goal, light-aircraft is one of important ways besides environmental-friendly and high-efficieny engineer. On the other hand, it becomes important that how to improve safety and fatigue property of aircraft. Researchers in the world are studying new lighter materials and fatigue of material since plane born at the beginning of the last century. A lot of design ideas were put up to improve fatigue life of structure. Selective reinforcement structure is one of important technologies.
     This paper was funded through major project of state major project 'Research on the integrated design technology of aluminum lithium alloy'. Research work went on the crack inhibition mechanism of the aluminum lithium alloy by theoretical calculation, experiment and finite element simulation methods. The work is mainly including bonding technology, optimization of bonding methods and research of selective reinforcement structure, which including internal stress, crack propagation mechanism. This will offer the reference for aircraft structure design and manufacture of China. The main content includes:
     (1) Key process of aluminum alloy bonding is broken through in technical field. The optimized parameters are determined to handle surface of the alloy.
     Anodization process are optimized by orthogonal experimental method; The aim is to explore the best alloy surface treatment technology improving bonding properties to fit the alloy studied in paper; this will provide a process for selective reinforcement structure of aluminum lithium alloy.
     (2) Cohesive zone model of mixed failure on the bonding specimens is founded by commercial analysis software MARC.MSC, basing on the boundary layer theory. Singularity of stress on the bonding edge of bonding sample are analyzed and put forward optimized formula to improve bonding joint stress calculation estimating the joint edge peak stress. On base of these analyses, parameters of material and dimension (thickness, length of overlap, elastic modulus and thickness of adhesive, and so on) were researched, all these work will provide useful reference for improving bonding process.
     (3) Thermal residual stress of aluminum lithium alloy selective reinforcement structure during curing is studied by finite element model method, and theoretical calculation and experimental methods is used to verify the validity of the finite element method.
     (4) Crack growth rate of aluminum lithium alloy selective reinforcement structure with two different reinforced patches (Titanium alloy and GLARE composite plate) under varied cyclical loading is studied. Effect on crack growth rate of reinforced plate dimensions of Ti alloy plates was researched. In addition, crack growth rate of selective reinforcement structure by titanium alloy bolted and bonding was studied. At the same time, preliminary study was carried out on the relationship of matching between aluminum alloy and reinforced plate, connective mode. All these work will provide effective reference to the selective reinforcement design.
     (5) Experimental data and finite element method are used to study relationship between crack growth rate of crack, crack length and stress of crack tip in selective reinforcement strength structure in this paper. The mechanism of crack inhibition in reinforcement structure was revealed. A new formula was put forward based on the classical Paris formula which fit selective reinforcement structure fatigue crack propagation in this paper, using the method of experiment and finite element method, and validity of the predicting formula is verified by experimental results.
引文
[1]王倩.背压对AA5083超塑成形性能及变形量对TC4机械性能的影响[D].南京:南京航空航天大学,2010.
    [2]熊峻江.飞行器结构疲劳与寿命设计[M].北京航空航天大学出版社,2004.
    [3]穆志韬,曾本银.直升机结构疲劳[M].北京:国防工业出版社,2009.
    [4]张兴金,邓忠林.浅谈纤维复合材料与中国大飞机[J].纤维复合材料,2009,26(2):3.
    [5]王远达,梁永胜,王宏伟.飞机结构的耐久性与损伤容限设计[J].飞机设计,2009,29((1):7.
    [6]薛景川,焦坤芳.飞机结构耐久性/损伤容限设计的工程控制[J].结构强度研究,20032:1-6.
    [7]LEE J J. Can we accelerate the improvement of energy efficiency in aircraft systems [J]. Energy Conversion and Management,2010,51(1):189-196.
    [8]张纪奎,郦正能,程小全,等.复合材料整体结构在大型民机上的应用[J].航空制造技术,2007,28(4):38-43.
    [9]HULL D, SHI Y B. Damage mechanism characterization in composite damage tolerance investigations [J]. Composite Structures,1993,23(2):99-120.
    [10]FRITZ L. Damage tolerance of a stitched carbon/epoxy laminate [J]. Composites Part A:Applied Science and Manufacturing,1997,28(11):923-934.
    [11]DAVIES G A O, HITCHINGS D, ZHOU G. Impact damage and residual strengths of woven fabric glass/polyester laminates [J]. Composites Part A: Applied Science and Manufacturing,1996,27(12):1147-1156.
    [12]PIR M T. On damage tolerance design of fuselage structure (longitudinal cracks) [J]. Engineering Fracture Mechanics,1986,24(6):915-927.
    [13]PIR M T. On damage tolerance design of fuselage structure-circumferential cracks [J]. Engineering Fracture Mechanics,1987,26(5):771-782.
    [14]PIR M T. A review of some damage tolerance design approaches for aircraft structures [J]. Engineering Fracture Mechanics,1973,5(4):837-880.
    [15]陈建.铝锂合金的性能特点及其在飞机中的应用研究[J].民用飞机设计与研究,2010(001):39-41.
    [16]高洪林,吴国元.Al-Li合金的研究进展[J].材料导报,2007,21(6):87-90.
    [17]启文.A380飞机用铝合金的开发[J].航空维修与工程,2008 6:29-31.
    [18]杨勇,柴永成,滕国春.铝锂合金的发展[J].中国金属通报,2010,25:44-45.
    [19]杨乃宾,梁伟.大飞机复合材料结构设计导论[M].北京:航空工业出版社,2009.
    [20]陈绍杰.复合材料技术与大型飞机[J].航空学报,2008,29(3):6.
    [21]姚铭.复合材料结构优化技术在飞机设计中的应用[J].中国制造业信息化,2011,40(7):6.
    [22]王新阁,孟庆迪,韩慧伶.现代飞机胶接技术的发展与应用[C].创新驱动,加快战略性新兴产业发展——吉林省第七届科学技术学术年会论文集(上).2012
    [23]于秀荣.W6飞机机翼壁板的胶接[J].粘接,1987,8(05):25-27.
    [24]徐建新,刘艳红,周煊,等.损伤金属结构的复合材料胶接修补实验研究[J].南京航空航天大学学报,2001,33(1):96-99.
    [25]KE-JIE Y,李艳,SHOU-FU L.某飞机机翼壁板战伤的胶接修理计算[J].航空计算技术,2008,38(4):3.
    [26]李欣,张晓妮,徐晓沐.胶接结构和复合材料用于航空航天技术的发展[J].化学与黏合,2006,28(3):172-175.
    [27]ADMINISTRATION R A S P. Damage Tolerance Assessment Handbook [M]. U.S. Deportment of Transportation Federal Aviation Administration,1993.
    [28]A B A, R J. Bonded repair of aircraft structures [M]. Martinus Nijhoff,1988.
    [29]沈培良.选择性加强结构在飞机结构设计中的应用[J].科学技术与工程,2012,21:5404-5407.
    [30]王远达,梁永胜,王宏伟.飞机结构的耐久性与损伤容限设计[J].飞机设计,2009,01:37-43.
    [31]K A. A plate with a crack, stiffened by a partially debonded stringer [J]. Engineering Fracture Mechanics,1974,6(1):133-140.
    [32]CIRCULAR A. Damage tolerance fatigue evaluation of structures [M]//AVIATION F, ADMINISTRATION D O T. Washington D.C.1988.
    [33]DOEL T J A, CARDONA D C, BOWEN P. Fatigue crack growth in selectively reinforced titanium metal matrix composites [J]. International Journal of Fatigue, 1998,20(1):35-50.
    [34]PIN T. A hybrid finite element method for damage tolerance analysis [J]. Computers & amp; Structures,1984,19(1-2):263-269.
    [35]PHILLIPS H J, SHENOI R A. Damage tolerance of laminated tee joints in FRP structures [J]. Composites Part A:Applied Science and Manufacturing,1998, 29(4):465-478.
    [36]BORDAS S, MORAN B. Enriched finite elements and level sets for damage tolerance assessment of complex structures [J]. Engineering Fracture Mechanics, 2006,73(9):1176-1201.
    [37]HOANG-NGOC C-T, PAROISSIEN E. Simulation of single-lap bonded and hybrid (bolted/bonded) joints with flexible adhesive [J]. International Journal of Adhesion and Adhesives,2010,30(3):117-129.
    [38]BOSCOLO M, ALLEGRIG, ZHANG X. Design and Modeling of Selective Reinforcements for Integral Aircraft Structures [J]. American Institute of Aeronautics andAstronautics Journal,2008, (46):2323-2331.
    [39]黄季墀,隋福成.引进先进战斗机延寿取得重大突破的主要技术途径——耐久性修理是重新赋予飞机生命的修理[J].飞机设计,2010,30(1):4.
    [40]李艳,焦良,于克杰.补片尺寸对胶补飞机蒙皮强度的影响[J].航空维修与工程,2008,(2):2.
    [41]宋笔锋,张彬乾,韩忠华.大型客机总体设计准则与概念创新[J].航空学报,2008,29(3):13.
    [42]薛佳,汪文学,徐元铭,等.碳纤维增强铝合金层合板的残余热应力分析[J-].飞机设计,2008,28(5):22-26.
    [43]彭福明,郝际平,岳清瑞.碳纤维增强复合材料(CFRP);加固修复损伤钢结构[J].工业建筑,2003,(09):7-10+28.
    [44]王遵.复合材料单面补强含裂纹铝合金薄板的残余热应力及其影响研究[D].长沙:国防科技大学,2007.
    [45]文思维.硼/环氧复合材料补片修复含中心裂纹铝合金厚板研究[D].长沙:国防科学技术大学,2008.
    [46]杨孚标.复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究[D].长沙:国防科学技术大学,2006.
    [47]《航空制造工程手册》总编委会.航空制造工程手册[M].航空工业出版社,1995.
    [48]郭忠信.铝合金结构胶接[M].北京:国防工业出版社,1993.
    [49]GB-T2943.胶粘剂术语[S].1994,
    [50]PETRIE E M. Adhesives for the assembly of aircraft structures and components: Decades of performance improvement, with the new applications of the horizon [J]. Metal Finishing,2008,106(2):26-31.
    [51]顾继友.胶接理论与胶接基础[M].科学出版社,2003.
    [52]阿方萨斯V波丘斯.粘接与黏剂技术导论[M].北京:化学工业出版社, 2005.
    [53]BROCKMANN W, HENNEMANN O D, KOLLEK H. Adhesion in bonded aluminium joints for aircraft construction [J]. International Journal of Adhesion and Adhesives,1986,6(3):115-143.
    [54]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望[J].航空制造技术,2003,12:19-25.
    [55]张岩.胶接技术发展概述[J].科技信息,2008,17:46-47.
    [56]朱定锋.胶接接头残余热应力分布的数值研究[D].宜昌:三峡大学,2010.
    [57]赵波,吕振华,吕毅宁.基于理论解的三种胶接接头简化有限元单元[J].工程力学,2010,07:1-9.
    [58]杨小辉,胡坤镜,赵宁.内聚力界面单元在胶接接头分层仿真中的应用[J].计算机仿真,2010,10:317-320.
    [59]陈如开.纵向间隙对胶接接头应力分布影响的数值分析[J].科技信息(学术研究),2008,09:359-360.
    [60]车飞,卢超.兰姆波评价胶接接头内聚强度的有限元分析[J].无损检测,2009,09:677-680.
    [61]KIM Y T, LEE M J, LEE B C. Simulation of adhesive joints using the superimposed finite element method and a cohesive zone model [J]. International Journal of Adhesion and Adhesives,2011,31(5):357-362.
    [62]DE MOURA M F S F, CHOUS AL J A G. Cohesive and continuum damage models applied to fracture characterization of bonded joints [J]. International Journal of Mechanical Sciences,2006,48(5):493-503.
    [63]ZGOUL M, CROCOMBE A D. Numerical modelling of lap joints bonded with a rate-dependent adhesive [J]. International Journal of Adhesion and Adhesives, 2004,24(4):355-366.
    [64]VABLE M, REDDY MADDI J. Boundary element analysis of adhesively bonded joints [J]. International Journal of Adhesion and Adhesives,2006,26(3):133-144.
    [65]SCHMIDT P. Modelling of adhesively bonded joints by an asymptotic method [J]. International Journal of Engineering Science,2008,46(12):1291-1324.
    [66]郑祥明.胶接接头强度及环境退化的超声波无损定征[D].北京:北京工业大学,2003.
    [67]高岩磊,周二鹏,郧海丽.环氧/铝胶接接头在氯化钠水溶液中的老化行为[J].热固性树脂,2011,03:18-20.
    [68]邹明国.粘接接头的耐久性及破坏机理[J].粘接,1982,06:1-8.
    [69]焦洁清.铝合金胶接接头环境破坏机理[J].粘接,1987,02:1-7.
    [70]马满珍,孟繁涛,孙能娃.87-1胶胶接接头环境稳定性研究[J].宇航材料工艺,1993,02:31-34.
    [71]马满珍.结构胶耐久性的研究[J].粘合剂,1987,02:11-12+16.
    [72]金炯福.胶接技术在汽车维修上应用[J].中国胶粘剂,1992,1(05):45-47.
    [73]卢志国,林建平,张宝文.车身铝合金板胶接接头固化度解析预测研究[J].材料工程,2011,07:15-18.
    [74]刘跃进.太阳能板与铝合金框架胶接接头力学性能分析[J].现代制造工程,2009,09:55-57.
    [75]李智.胶接接头动态应力分布的数值分析[D].宜昌:三峡大学,2008.
    [76]NWANKWO E, SOLEIMAN FALLAH A, LOUCA L A. An investigation of interfacial stresses in adhesively-bonded single lap joints subject to transverse pulse loading [J]. Journal of Sound and Vibration,2013,332(7):1843-1858.
    [77]程家林.层压复合材料连接接头设计及其在大飞机中的应用[J].航空学报,2008,03:640-644.
    [78]MONTOIS P, NASSIET V, ALAIN PETIT J. Viscosity effect on epoxy-diamine/metal interphases-Part Ⅱ:Mechanical resistance and durability [J]. International Journal of Adhesion and Adhesives,2007,27(2):145-155.
    [79]李春威.复合材料胶接技术的发展与应用[J].航空制造技术,2011,20:88-91.
    [80]PEREIRA A M, FERREIRA J M, ANTUNES F V. Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints [J]. Journal of Materials Processing Technology,2010,210(4):610-617.
    [81]PROLONGO S G, URE A A. Effect of surface pre-treatment on the adhesive strength of epoxy-aluminium joints [J]. International Journal of Adhesion and Adhesives,2009,29(1):23-31.
    [82]游敏,郑小玲.胶接强度分析及应用[M].武汉:华中科技大学出版社,2009.
    [83]翁熙祥.金属粘接技术[M].北京:化学工业出版社,2005.
    [84]RECHNER R, JANSEN I, BEYER E. Influence on the strength and aging resistance of aluminium joints by laser pre-treatment and surface modification [J]. International Journal of Adhesion and Adhesives,2010,30(7):595-601.
    [85]BAKER A A, CHESTER R J, DAVIS M J. Reinforcement of the F-111 wing pivot fitting with a boron/epoxy doubler system--materials engineering aspects [J]. Composites,1993,24(6):511-521.
    [86]MIL-HDBK-23A. Structural Sandwich Composite [M].1968 (1974)
    [87]杨孚标.复合材料修复含中心裂纹铝合金板的静态与疲劳特性研究[D].长沙:国防科学技术大学,2006.
    [88]丁佩章.粘接理论及其评价[J].滨州师专学报,1993,2:24-27.
    [89]SPADARO C, SUNSERI C, DISPENZA C. Laser surface treatments for adhesion improvement of aluminium alloys structural joints [J]. Radiation Physics and Chemistry,76(8-9):1441-1446.
    [90]BJ RGUM A, LAPIQUE F, WALMSLEY J. Anodising as pre-treatment for structural bonding [J]. International Journal of Adhesion and Adhesives,2003, 23(5):401-412.
    [91]P C. Advance in corrosion science and technology [M]. New York and London: Plenum Press,1980.
    [92]马宏毅.玻璃纤维—铝合金层板的制备和性能研究[D].北京:北京航空材料研究院,2006.
    [93]梁中全.GLARE层板的力学性能及其在A380客机上的应用[J].玻璃钢/复合材料,2005,4:3.
    [94]王世明.大飞机用Glare层板的性能综合评价研究[J].材料导报,2010,24(17):88-91.
    [95]梁中全.GLARE层板与铝合金板在力学性能上的比较及其应用[J].玻璃纤维,2006,3:3.
    [96]崔德刚.浅谈民用大飞机结构技术的发展[J].航空学报,2008,29(3):10.
    [97]叶清.玻璃纤维一铝合金复合板的研究进展[J].纤维复合材料,2001,18(2):2.
    [98]陈绍杰.复合材料与A380客机[J].航空制造技术,2002,9:3.
    [99]杨孚标,肖加余,曾竟成.铝合金磷酸阳极化和胶接性能分析[J].中国表面工程,2005,04:37-41.
    [100]PAGGI M, ACARPINTERI. On the stress-singularities at multi-material interfaces and related analogies with fluid dynamics and diffusion [J]. Applied Mechanics Reviews,2008,61(2):1-22.
    [101]RIBEIRO-AYEH S, HALLSTR M S. Strength prediction of beams with bi-material butt-joints [J]. Engineering Fracture Mechanics,2003,70(12): 1491-1507.
    [102]吴志学.双材料界面端附近奇异应力场消除几何条件研究[J].工程力学, 2004,06:193-196.
    [103]吴志学.无应力奇异性条件下的界面应力集中问题研究[J].工程力学,2010,02:54-58.
    [104]吴志学.三维双材料结构的应力奇异性分析[J].计算力学学报,2004,05:592-596.
    [105]吴志学.影响双材料界面端三维应力奇异性的几何因素研究[J].计算力学学报,2007,04:494-497.
    [106]BARROSO A, MANTIC V, PAR S F. Singularity parameter determination in adhesively bonded lap joints for use in failure criteria [J]. Composites Science and Technology,2008,68(13):2671-2677.
    [107]RUPEN E. Some basic problems of the mathematical theory of elasticity:by N.I. Muskhelishvili. Second edition, translated from the Russian by J. R. M. Radok,704 pages,16×24 cm. Groningen (Holland), P. Noordhoff Ltd.,1953. Price, ff 38 [J]. Journal of the Franklin Institute,1954,258(2):170.
    [108]HATTORI T, NISHIMURA N, YAMASHITA M. Standardization of strength evaluation methods using critical distance stress [J]. Engineering Fracture Mechanics,2008,75(7):1725-1735.
    [109]WANG J. Debonding of FRP-plated reinforced concrete beam, a bond-slip analysis. I. Theoretical formulation [J]. International Journal of Solids and Structures,2006,43(21):6649-6664.
    [110]TENG J G, YAO J. Plate end debonding in FRP-plated RC beams-Ⅱ:Strength model [J]. Engineering Structures,2007,29(10):2472-2486.
    [111]NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding [J]. Applied Mechanics,1987,54:525-531.
    [112]刘昌发.Al-Li合金航空板材胶接工艺及接头强度分析[D].长沙:中南大学,2011.
    [113]HU P, HAN X, DA SILVA L F M. Strength prediction of adhesively bonded joints under cyclic thermal loading using a cohesive zone model [J]. International Journal of Adhesion and Adhesives,2013,41(0):6-15.
    [114]LI G, LEE-SULLIVAN P. Finite element and experimental studies on single-lap balanced joints in tension [J]. International Journal of Adhesion and Adhesives, 2001,21(3):211-220.
    [115]曹平,游敏,刘刚.单搭接接头承载能力与搭接长度关系定量描述[J].化学与粘合,2004,06:330-333.
    [116]张志冬,王永清.胶接原理与实用胶接配方600种[M].哈尔滨:哈尔滨出版社,1985.
    [117]MCGEORGE D. Inelastic fracture of adhesively bonded overlap joints [J]. Engineering Fracture Mechanics,2010,77(1):1-21.
    [118]ARENAS J M, NARB N J J, AL A C. Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution [J]. International Journal of Adhesion and Adhesives,2010,30(3):160-165.
    [119]郑小玲,孔凡荣,游敏.胶层厚度对拉伸试样应力分布影响的数值分析[J].粘接,2004,25(05):30-32.
    [120]ANDREASSI L, BAUDILLE R, BIANCOLINIM E. Spew formation in a single lap joint [J]. International Journal of Adhesion and Adhesives,2007,27(6): 458-468.
    [121]郑小玲,娜日松,游敏.胶瘤对单搭接胶接接头强度的影响[J].三峡大学学报(自然科学版),2001,23(06):530-532.
    [122]WANG C H, ROSE L R F, CALLINAN R. Thermal stresses in a plate with a circular reinforcement [J]. International Journal of Solids and Structures,2000, 37(33):4577-4599.
    [123]FRANCOIS J. Fatigue evaluation of thick monolithic aluminum structures [D]. Ottawa; Sherbrooke,2001.
    [124]ALB AT A M. Thermal residual stresses in bonded composite repairs on cracked metal structures [D]. NEW YORK; Columbia,1998.
    [125]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,2005.
    [126]张杰刚.TC21钛合金锻造工艺的数值模拟研究[D].南京:南京航空航天大学,2007.
    [127]SUN Z-Q, HUANG M-H, HU G-H. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti-6A1-4V alloy strap [J]. Materials andf Design,2012,35(0):725-730.
    [128]李毅波.连续铸轧多场耦合建模及工艺参数匹配规律的仿真研究[D].长沙:中南大学,2006.
    [129]CHENG C, NIU Z, ZHOU H. Evaluation of multiple stress singularity orders of a V-notch by the boundary element method [J]. Engineering Analysis with Boundary Elements,2009,33(10):1145-1151.
    [130]NIU Z, GE D, CHENG C. Evaluation of the stress singularities of plane V-notches in bonded dissimilar materials [J]. Applied Mathematical Modelling, 2009,33(3):1776-1792.
    [131]CARPINTERI A, CORNETTI P, PUGNO N. A finite fracture mechanics approach to structures with sharp V-notches [J]. Engineering Fracture Mechanics, 2008,75(7):1736-1752.
    [132]G MEZ F J, ELICES M. Fracture of components with V-shaped notches [J]. Engineering Fracture Mechanics,2003,70(14):1913-1927.
    [133]NIU Z, CHENG C, YE J. A new boundary element approach of modeling singular stress fields of plane V-notch problems [J]. International Journal of Solids and Structures,2009,46(16):2999-3008.
    [134]CHEN M-C, PING X-C, XIE H-M. Numerical and experimental analyses of singular electro-elastic fields around a V-shaped notch tip in piezoelectric materials [J]. Engineering Fracture Mechanics,2008,75(18):5029-5041.
    [135]李克唐.飞机损伤容限和耐久性设计技术的发展[J].航空学报,1986,06:531-538.
    [136]李戈岚,刘汉海.耐久性/损伤容限设计简介[J].飞机设计,2004,04:23-32.
    [137]丁传富,于辉,吴学仁.LY12CZ铝合金的疲劳门槛值及宽范围裂纹扩展速率的研究[J].航空材料学报,2000,01:12-17.
    [138]吉凤贤.多处损伤的疲劳裂纹扩展分析方法研究[J].机械强度,2003,25(3):8-12.
    [139]王森.高强高韧7475铝合金成品板材疲劳特性和断裂韧性研究[D].长沙:中南大学,2009.
    [140]杜凤山,闫亮.高强铝合金疲劳特性研究[J].航空材料学报,2009,29(1):96-100.
    [141]应中伟.应力场强计算裂纹应力强度因子的方法研究[J].机械强度,2009,31(1):117-121.
    [142]BOSCOLO M, ZHANG X. A modelling technique for calculating stress intensity factors for structures reinforced by bonded straps. Part I:Mechanisms and formulation [J]. Engineering Fracture Mechanics,2010,77(6):883-895.
    [143]SCHIJVE J. Crack stoppers and arall laminates [J]. Engineering Fracture Mechanics,1990,37(2):405-421.
    [144]BAGNOLI F, BERNABEI M, FIGUEROA-GORDON D. The response of aluminium/GLARE hybrid materials to impact and to in-plane fatigue [J]. Materials Science and Engineering:A,2009,523(1-2):118-124.
    [145]CUI-XIANG J, YAO Z, TU-GUANG L. Effect of a Local Reinforcement on the Stress Intensity Factor of a Cracked Plate [J]. Journal of Ship Mechanics,2004, (8):85-94.
    [146]SCHUBBE J J, MALL S. Investigation of a cracked thick aluminum panel repaired with a bonded composite patch [J]. Engineering Fracture Mechanics, 1999,63(3):305-323.
    [147]伍颖.断裂与疲劳[M].武汉:中国地质大学出版社,2008.
    [148]陈庆丰,党华.断裂力学的形成发展与应用[J].内蒙古石油化工,2011,22:4-5.
    [149]王中光.材料疲劳断裂研究的现状和发展[J].中国科学院院刊,1993,03:205-208.
    [150]陈圆圆.2XXX航空铝合金的疲劳与断裂行为研究[D].长沙:中南大学,2010..
    [151]李雪.2124铝合金板材断裂韧性和高周疲劳特性研究[D].长沙:中南大学,2007.
    [152]刘玲霞,成建国,吕绯.7A52铝合金焊接结构件疲劳性能研究[J].兵器材料科学与工程,2005,05:37-40.
    [153]丁传富,吴学仁.疲劳小裂纹试验方法及测试技术[J].材料工程,1997,6:19..
    [154]黄新跃,吴学仁,马库斯·朗.裂纹闭合与疲劳裂纹扩展力的测试方法[J].材料工程,1997,06:3-5.
    [155]袁熙,李舜酩.疲劳寿命预测方法的研究现状与发展[J].航空制造技术,2005,12:80-84.
    [156]邓爱明,张明荣,梅华生.基于特征值的零构件疲劳可靠性统计方法[J].实验室研究与探索,2007,10:077.
    [157]程帆.低于材料持久极限的应力循环对构件疲劳失效的影响[J].机械工程师,1995,04:48-49.
    [158]郭维,胡雄.大型金属构件疲劳寿命估算软件设计[J].计算机辅助工程,2006,01:34-38.
    [159]付月,张建宇,赵丽滨.复合材料疲劳分析方法研究进展[C].北京力学会第17届学术年会论文集.2011.
    [160]潘小娟,郭领军,李贺军.国内外C/C复合材料疲劳性能的研究进展[J].材料导报,2011,07:63-66.
    [161]郭领军,潘小娟,李贺军.国内外C/C复合材料疲劳性能的研究进展[C]. 第22届炭—石墨材料学术会论文集.2010.
    [162]何春林,龚成中,邢静忠.复合材料疲劳理论研究进展[J].甘肃科技,2006,03:140-143.
    [163]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [164]周驰,崔维成.用现有疲劳试验数据确定疲劳裂纹扩展率[J].中国造船,2003,03:74-79.
    [165]李向阳,崔维成,张文明.一种改进的疲劳裂纹扩展表达式[J].船舶力学,2006,01:54-61.
    [166]MCEVILY A J, ISHIHARA S. On the dependence of the rate of fatigue crack growth on the ona(2a) parameter [J]. International Journal of Fatigue,2001,23(2): 115-120.
    [167]ISHIHARA S, MCEVILY A J. Analysis of short fatigue crack growth in cast aluminum alloys [J]. International Journal of Fatigue,2002,24(11):1169-1174.
    [168]陈铮,倪永峰,何明.稀土元素对2090铝锂合金疲劳短裂纹门槛值的影响[J].中国稀土学报,1994,01:50-54.
    [169]ZITOUNIS V, IRVING P E. Fatigue crack acceleration effects during tensile underloads in 7010 and 8090 aluminium alloys [J]. International Journal of Fatigue,2007,29(1):108-118.
    [170]KUMAI S, HIGO Y. Effects of delamination on fatigue crack growth retardation after single tensile overloads in 8090 AlLi alloys [J]. Materials Science and Engineering:A,1996,221(1-2):154-162.
    [171]WANG Q Y, PIDAPARTI R M. Static characteristics and fatigue behavior of composite-repaired aluminum plates [J]. Composite Structures,2002,56(2): 151-155.
    [172]SABELKIN V, MALL S, HANSEN M A. Investigation into cracked aluminum plate repaired with bonded composite patch [J]. Composite Structures,2007, 79(1):55-66.
    [173]杜凤山,闫亮,戴圣龙.高强铝合金疲劳特性研究[J].航空材料学报,2009,29(1):15-20.
    [174]赵军,朱建龙,薛花娟.阳极氧化对7075铝合金疲劳性能的影响[J].南京航空航天大学学报,2008,40(3):5.
    [175]李建国,王亮,杨文言.A356铝合金中裂纹的萌生及其扩展[J].轻合金加工技术,2002,30(12):5.
    [176]鲍蕊,董彦民,张建宇.腐蚀条件下铝合金疲劳裂纹扩展试验及模型[J]. 航空材料学报,2006,26(6):5.
    [177]孙戬.多尺度下裂纹断裂过程区力学特性分析[D].西安:西安科技大学,2009.
    [178]许寰宇.A7N01P-T4铝合金疲劳小裂纹扩展特性研究[D].哈尔滨:哈尔滨工业大学,2009.
    [179]王清远,袁祥明,李戍中.损伤金属结构件复合材料粘贴修补[J].玻璃钢/复合材料,2003,6:4.
    [180]王清远,陶华.复合材料修补件的强度和疲劳性能[J].材料工程,2003,1:21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700