用户名: 密码: 验证码:
高速车轮成形理论及组织演变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,高速车轮需求量随着高速铁路交通的快速发展而不断增加。截止目前,我国高速车轮全部依赖于国外进口的局面仍未打破。高速车轮要求较高的强韧性能,对车轮的冶金质量、成形及热处理工艺等都有较高要求。我国高速车轮制造仍存在诸多理论、技术上的关键问题亟待解决,尤其是车轮轧制成形变形规律、多工步成形过程组织演变、热处理对提高车轮断裂韧性这一关键指标等方面的研究还相对肤浅,有些甚至是空白。鉴于此,本文基于“863”重点项目“高速动车组用车轮的研究与开发”,主要围绕高速车轮热成形,系统研究车轮压轧成形过程金属变形及组织演变规律,为提高成形精度、优化工艺及控制缺陷提供理论依据;并研究开发出提高断裂韧性的车轮热处理新技术。本文的主要研究内容和结果如下:
     (1)基于上限法开发出车轮终锻压力快速预测模型,并分析了工艺参数对锻压力的影响。探讨了轮辋顶端圆角半径对模具压靠时金属流动及锻压力的影响,从理论上说明了在终锻结束时轮辋外端角部难以完全充满的原因。
     (2)基于理论解析给出了车轮立式轧制时轧辊接触区面积的计算方法,分析得到主辊侧与辐板辊侧压入量的关系及其在轧制中的变化规律。研究发现,辐板辊侧的压入量稍大于主辊侧,且随着轮辋直径扩大,辐板辊侧压入量所占比例逐渐增大。得到车轮立式轧制的咬入条件及轮辋轧透条件,为车轮轧制工艺优化提供了理论指导。
     (3)通过车轮多工步热成形有限元分析,尤其是车轮轧制的三维模拟,系统分析了高速车轮成形过程的金属变形规律,得到以下主要结果:1)发现车轮轧制过程中轮辋断面存在两个难变形区,即轮辋内侧中部近表面区域和轮辋心部,难变形区金属在周向和径向受到拉伸作用;2)轧制时轮辋内外径的扩大主要发生在主辊变形区前后的两个影响区中,并阐明其发生机理;3)揭示了轧制中车轮的应力分布特点,轧制时辐板径向和周向受明显拉应力作用,变形区以外的轮辋及轮缘则周向受压;4)发现并解释了车轮轧制时辐板减薄现象及机理;5)得到主辊每圈进给量对车轮轧制的影响规律;6)解释了预成形坯轮缘局部欠充满是轧后轮辋发生椭圆现象主要原因之一,阐明了轮缘严重欠充满处轮辋内侧面产生折叠缺陷的根本原因是,主辊变形区中轮辋内侧靠近轮缘部位在径向和周向受强烈拉伸作用。这些结果对进一步厘清车轮轧制变形认识具有重要意义,并为车轮轧制工艺优化、轧制缺陷控制提供了理论指导。
     (4)基于Gleeble实验分析得出高速车轮钢热成形过程奥氏体组织演化模型,并通过二次开发将组织演化模型与车轮多工步热成形有限元模型相集成,结合实验验证,对车轮成形过程组织演变的进行了系统分析。得出以下主要规律:1)初锻中,坯料金属动态再结晶充分;终锻中,动态再结晶主要发生在轮毂中部和下部、辐板及轮辋区域;2)开锻温度每升高30℃,终锻后平均晶粒尺寸增加20~30m;随锻压速度的降低,轮辋中部金属的晶粒尺寸增大,而近表面金属晶粒尺寸有所细化;3)轧制中,轮辋仅外端部分金属发生动态再结晶,轮辋的大部分及辐板变形部位金属只能在轧制变形区间隙时间内发生部分静态再结晶;4)轧制中轮辋近表层金属晶粒细化明显,其中轮辋外端细晶区分布区域深度明显大于轮辋内端。车轮成形过程的组织演变研究为车轮成形工艺和后继热处理工艺的优化提供了新的视角。
     (5)开发出“预处理+终处理”车轮热处理新工艺,通过改善轮辋组织状态以提高轮辋断裂韧性。主要研究结果有:1)预处理中晶粒尺寸及其分布主要受温度影响,而初始组织状态的影响较小,通过一次预处理可以显著细化并改善晶粒尺寸分布均匀性;2)预处理加热温度合理控制范围为840~880℃,终处理选择840℃左右为宜;3)以870℃×2.5h预处理+840℃×2.5h终处理工艺进行实物车轮试制,结果表明,车轮的断裂韧性相对于传统工艺得到显著提高,各项力学性能也都能满足高速车轮的技术要求。用该工艺生产高速车轮的技术条件已通过评审,试制车轮正准备装车试验。
The demand of high-speed railway (HSR) wheels has increased dramatically with the rapiddevelopment of HSR transportation in recent years. So far, the situation that HSR wheels are alldependent on foreign imports has not been broken in China. The HSR wheels require high strengthand toughness, which lead to higher requirements in metallurgy, hot forming and heat treatmentprocesses. There are some key issuers in the theories, technologies of HSR wheels manufacturing thatmust be resolved. This thesis has studied in depth metal deformation and microstructure evolutionduring HSR wheel multi-stage forming processes supported by the “863” key project titled of“Research and development of high speed EMU wheels”. At last, a new heat treatment process wasdeveloped to improve the wheel fracture toughness. The main contributions of the present thesis indetails are as follows:
     (1) A quick prediction model for railway wheel final forging load was developed based on the upperbound method, by which the effect of process parameters on forging load was analyzed. The effects offillet radius of the rim external side on the load and metal flow in the rim were investigated. Thephenomenon of underfill in the conner of external end of the rim during final forging was explained.
     (2) Based on analytical method, the methods for determining the contact area of rolls and the ratioof unilateral reductions of web roll side and back roll side were obtained. It was found that theunilateral reduction of the web roll side is slightly larger than that of the back roll side and with theincreasing of the rim radius the proportion of the reduction in web rolls side increases during rolling.The bite condition and plastic penetration condition of the rim were also obtained, which providetheoretical guidance for rolling optimization.
     (3) The metal deformation during HSR wheel multi-forming processes, especially for the rollingprocess, were analyzed systematically by FEM. The main results are as follows:1) It was found thatthere are two difficult-deformation regions in the rim, one of which is the area near the middle of riminternal side and the other is the center region of the rim. The metal in the these regions subjects totensile stresses in circumferential and radial directions.2) The expanding of the radius of rim mainlytakes place in the two affected zones before and after the main deformation zone.3) During rolling,the web subject to radial and circumferential tensile stresses, the metal of the rim outside thedeformation zones subject to compressive stress in circumferential direction.4) The phenomenon ofthe web thinning during rolling process was identified and explained.5) The effects of feedings perround on rolling deformation were obtained.6) Research indicated that the local underfill in the wheel flange is one of the reasons for the wheel ellipsing. The main cause of the folding defect occurs in theinternal side of the rim corresponding to the positioin of severely underfilling in the flange subject tointensive stretching action of the metal near the defect during rolling. These results further deepen theunderstanding of metal deformation characteristics during wheel rolling and provide guidance tooptimizing rolling process and reducing rolling defects.
     (4) Based on Gleeble experiments, the mathematical models for the recrystallization and graingrowth of a HSR wheel steel were derived. The evolution of the austenite grain size during the HSRwheel multi-stage forming processes was simulated by integrating the microstructure evolutionmodels with the finite element model based on programming the user subroutines. The main resultsare as follows:1) In the primary forging, almost all the metal subjects to full dynamic recrystallization;In the final forging, dynamic recrystallization only take place mainly in center and down part of thehub, the web and the rim areas.2) The average grain size increased by20~30m with the initialtemperature elevated every30℃; The grain size increases for the rim center and decreases for themetal near surface when forging speed reduces.3) During wheel rolling process, only part of externalend of the rim subject to partial dynamic recrystallization, while static recrystallization occurs in otherdeformation regions.4) The grains for the metal near to surface were refined evidently, thedistribution depth of the fine grains in the external end of the rim is larger than that of the internal end.
     (5) A new heat treatment of railway wheel, which involving a pre-treatment and a final treatment,was developed to improve the microstructure morphologies and increase the fracture toughness of theHSR wheel rim. The main results are as follows:1) It was found that the grain size and its distributionafter pre-treatment are mainly dependant on the temperature, while the initial microstructure has littleeffect on it.2) It is appropriate that the temperature of the pre-treatment be in the range of840~880℃,while the temperature of the final treatment be about840℃.3) The pilot production of HSR wheelwas conducted by the process of870℃×2.5h pre-treatment+840℃×2.5h final treatment.Contracted to the conventional technology, the new heat treatment process improves the fracturetoughness significantly and makes all the mechanical properties meet the specifications of the HSRwheel. The technical conditions for production HRS wheel had passed the technical assessment andthe pilot products are preparing to service test.
引文
[1]中华人民共和国铁道部统计中心.2011年铁道统计公报.《人民铁道》报2012.4.13
    [2]曼弗雷德.林登布拉特.火车车轮生产的现代化设备和工艺技术[J].锻压技术,1998,(6):47-50.
    [3]水恒勇,张永权,杨才福.高速列车车轮用材料的开发动向[J].钢铁研究学报,2003,15(3):66-69.
    [4]沈志云.轮轨接触力学研究的最新进展[J].中国铁道科学,2001,22(2):1-14.
    [5]王玉发,汪五洲,李良.关于KDQ型高速轻型车轮运用情况及建议[J].铁道车辆,2003,41(7):13-15.
    [6] Lonsdale C.P., Swarzell R.D. Recent improvements in wrought railroad wheel production atStandard Steel[A]., Proceedings of the2000ASME/IEEE Joint Railroad Conference, New Jersey,2000:63-66.
    [7]刘吉远,陈雷.铁路货车轮轴技术概论[M].北京:中国铁道出版社,2009,10.
    [8] Skorokhod A.G., Ioffe A.M., Staroseletskii M.M., etc. Control of rim formation on railroad wheelsduring rolling[J]. Metallurg,1983,(6):33-34.
    [9] ШИФPИH M. Ю.整体辗钢车轮制造工艺的改进[J].国外机车车辆工艺,1997,(5):13-18
    [10] Kushnarev A.V., Kirichkov A.A., Shestak V.D., et al. Introduction of wheel production on a newpressing and rolling line[J]. Steel in Translation,2010,40(12):1098-1100.
    [11] Danchenko V.N., Dyja H., Shramko A.V. Selection of process scheme for multiple-stage formingof railway wheel blanks[J]. Metallurgical and Mining Industry,2010,2(1):23-26.
    [12]杨发昌,朱宇宙.车轮在热轧生产中的偏心问题[J].钢铁,1980,(1):49-58.
    [13]章国胜.车轮压痕新工艺探讨[J].马钢技术,1997,(1):17-18.
    [14]章国胜.热轧车轮偏心及解决办法[J].马钢科研,1997,(4):35-38.
    [15]许章泽.车轮折叠缺陷的分析与改进[J].安徽冶金,2011,(1):46-48.
    [16]许章泽,谢峰,张磊,等.1050-DF11机车轮折迭缺陷的分析与改进[J].热加工工艺,2011,40(9):174-175.
    [17]张磊,许章泽,吴江淮. DF8B型机车车轮毛坯内侧面辐板折叠原因分析[J].内燃机车,2011(9):30-31.
    [18]裘哲.马钢火车车轮锻压工艺及模具改进的实验研究[D][硕士学位论文].北京:清华大学.1992
    [19]王祖唐,王志诚.火车车轮制造优化新工艺的试验研究[J].钢铁,1995,30(2):45-47.
    [20]王志诚,王祖唐.火车车轮成形新工艺的开发研究[J].塑性工程学报,1996,3(2):49-52.
    [21] Guy D., Wilson F.G.. Forging developments for railway and ring rolled products[A]. Sellars C.M.,Davies G.J. eds, Hot working and Forging Processes[C], Lond: The Metals Society,1997:204-208.
    [22] Miller B.C., Ward M.J., Davey K. The numerical simulation of potential forming problems inrailway wheel and tyre manufacturing processes[A]. The International Conference on Forging andRelated Techology. Birmingham U.K.,1998:201-206.
    [23]王志诚,王祖唐.火车车轮制造优化新工艺数值模拟[J].塑性工程学报,1995,2(4):3-11.
    [24] Ward M.J., Miller B.C., Davey K. Simulation of a multi-stage railway wheel and tyre formingprocesses[J]. Journal of Materials Processing Technology,1998,80:206-212
    [25] Davey K., Miller B.C., Ward M.J. Efficient strategies for the simulation of railway wheelforming[J]. Journal of Materials Processing Technology,2001,118:389-396.
    [26]陈慧琴,郭晓霞,刘建生,等.快速车轮成形过程的刚塑性有限元数值模拟[J].太原重型机械学院学报,2003,24:312-315.
    [27]许章泽,谢峰,李翔,等.反辐板机车轮的生产研制[J].机车车辆工艺,2006,(2):1-2.
    [28]李翔,许章泽,安涛,等.薄轮辋深盆形车轮的热成形工艺[J].钢铁研究学报,2007,11:40-42.
    [29] Gangopadhyay, T., Ohdar, R.K., Pratihar, D.K., et al. Three-dimensional finite element analysis ofmulti-stage hot forming of railway wheels[J]. International Journal of Advanced ManufactureTechnology,2011,53:301-312.
    [30] Kushnarev A.V., Bogatov A.A., Kirichkov A.A., et al. Production of high-quality railroadwheels[J]. Steel in Translation,2010,40(3):268-272.
    [31]华林,黄兴高,朱春东.环件轧制理论和技术[M],北京:机械工业出版社,2001,10.
    [32] Erden Eruc, Rajiv Shivpuri. A summary of ring rolling technology--I. Recent trends in machines,processes and production lines[J]. International Journal of Machine Tools and Manufacture,1992,32:379-398.
    [33] Erden Eruc, Rajiv Shivpuri. A summary of ring rolling technology--II. Recent trends in processmodeling, simulation, planning and control[J]. International Journal of Machine Tools andManufacture,1992,32:399-413.
    [34] Kim K.H., Suk H.G., Huh M.Y. Development of the profile ring rolling process for large slewingrings of alloy steels[J]. Journal of Materials Processing Technology,2007,187-188:730-733.
    [35] Wang M., Yang H., Sun Z.C.,et al. Analysis of coupled mechanical and thermal behaviors in hotrolling of large rings of titanium alloy suing3D dynamic explicit FEM[J]. Journal of MaterialsProcessing Technology,2009,209:3384-3395.
    [36]武胜飞,陆彬,崔振山,等.车轮轧制成形过程的有限元模拟[J].塑性工程学报,2011,18(6):36-40.
    [37]沈晓辉,安涛,阎军,等.840车轮预成形过程的有限元分析[J].钢铁研究学报,2005,17(1):30-33.
    [38]沈晓辉,阎军,安涛,等.车轮轧制成形过程有限元分析[J].钢铁,2006,41(3):55-58.
    [39]秦国庆,韩静涛,李连诗,等.七辊卧式轧机调整参数的分析计算[J].北京科技大学学报,1999,21,(3):258-260.
    [40] Lewandowski J.J., Thompson A.W. Effects of the prior autenite grain size on the ductility of fullypearlitic eutectoid steel[J]. Metallurgical transactions A,1986,17A:461-472.
    [41] Kavishe F.P.L., Baker T.J. Effect of prior austenite grain size and pearlite interlamellar spacing onstrength and fracture toughness of a eutectoid rail steel[J]. Materials science and technology,1986,2(8):816-822.
    [42] Salishchev G A, Sugirbekov B A, Farkhutdinov K G, et al. Effect of grain size and pearlitemorphology on the components of the fracture energy in steel45in the region of the ductile-brittletransition [J]. Metal Science and Heat treatment,1995,37:7-10.
    [43] Sakamoto H, Toyama K, Hirakawa K. Fracture toughness of medium-high carbon steel forrailroad wheel[J]. Materials Science and Engineering A,2000,285:288-292.
    [44] McQueen H.J., Jonas J.J. Recent advances in hot working: fundamental dynamic softeningmechanics[J]. J. Appl. Metalworking,1984,3(3):233-241.
    [45] McQueen H.J, Jonas J.J. Role of the dynamic and static softening mechanisms in multistage hotworking[J]. J. Appl. Metalworking,1985,3:410-420.
    [46] Sellars C.M., Whiteman J.A. Computer modeling of hot working processes[J]. Materials Scienceand Technology,1985,1(4):325-332.
    [47] Sellars C.M., Witeman J.A. Recrystallization and grain growth in hot rolling[J]. Matal Science,1979,3:187-194.
    [48] Lee S.K., Ko D.C., Kim B.M. Optimal die profile design for uniform microstructure in hotextruded product[J]. International Journal of Machine Tools&manufacture,2000,40:1457-1478.
    [49] Park J.J., Lee S.J. Design of rolling pass schedules to improve grain-size uniformity inthickness[J]. Journal of Materials processing Technology,2003,140:454-459.
    [50] Wang Liansheng, Cao Qixiang, Liu Zhuang. Numerical simulation and experimental verificationof microstructure evolution in a3-dimensional hot-upsetting process. Journal of Materials ProcessingTechnology,1996,58:331-336.
    [51] Sinczak J., Majta J., Glowacki M., etc. Prediction of mechanical properties of heavy forgings[J].Journal of Materials Processing Technology,1998,80-81:166-173.
    [52] Jang Y.S., Ko D.C., Kim B.M. Application of the finite element method to predict microstructureevolution in the hot forging of steel[J]. Journal of Materials Processing Technology,2000,101:85-94.
    [53] Lee S.K., Ko D.C., Kim B.M. Optimal die profile design for uniform microstructure in hotextruded product[J]. International Journal of Machine Tools&Manufacture,2000,40:1457-1478.
    [54] Yada H., Senuma T. Resistance to hot deformation of steel[J]. Journal of the Japan Society forTechnology of Plasticity,1986,27:33-44.(in Japanese)
    [55] Wang M.T., Li X.T., Du F.S., et al. Hot deformation of austenite and prediction of microstructureevolution of cross-wedge rolling[J]. Material Science and Engineering A,2004,379:133-140.
    [56] Wang M.T., Li X.T., Du F.S., et al. A coupled thermal-mechanical and microstructural simulationof the cross wedge rolling process and experimental verification[J]. Material Science and EngineeringA,2005,391:305-312.
    [57] Cho J.R., Jeong H.S., Cha D.J., et al. Prediction of microstructural evolution and recrystallizationbehaviors of a hot working die steel by FEM[J]. Journal of Materials Processing Technology,2005,160:1-8.
    [58] Bianchi J.H., Karjalainen L.P. Modeling of dynamic and metadyanmic recrystallization during barrolling of a medium carbon spring steel[J]. Journal of Materials Processing Technology,2005,160:267-277.
    [59] Du F.S., Wang M.T., Li X.T. Research on deformation and microstructure evolution duringforging of large-scale parts[J]. Journal of Materials Processing Technology,2007,187-188:591-594.
    [60] Jung K.H., Lee H.W., Im Y.T. A microstructure evolution model for numercial prediciton ofaustenite grain size distribution[J]. International Journal of Mechanical Sciences,2010,52:1136-1144.
    [61]蔡钊.25t大轴重火车车轮热处理性能研究[J].铁道车辆,1993(5):19-21.
    [62]苏世怀,张建平,江波,等.一种改善车削加工性能的火车车轮热处理方法:中国,02113182.1[P].2003-5-28.
    [63]陈刚,王世付,江波,等.高碳钢火车车轮轮辋表面的热处理方法及热处理装置:中国,2008100020421.5[P].2008-9-24.
    [64]韩建生.车轮硬度不合格的原因分析及热处理改进方法[J].铁道技术监督,2004(12):9-10.
    [65]安涛,肖锋,程德利,等. KKD车轮淬火加热动态测温试验及分析[J].工业加热,2004,33(4):48-50.
    [66]张振国,刘英,邹东红. R7E拖车轮E级热处理工艺的研究及应用[J].机械工程材料,2004,28(9):32-34.
    [67]张振国,刘英,邹东红. R9E动车轮E级热处理工艺试验机应用[J].金属热处理,2004,29(7):70-74.
    [68]张振国,史光远,邹东红.车轮E级热处理国产化的试验与应用[J].热加工工艺,2004(2):63-64.
    [69]邹东红.车轮的整体浸入式热处理[J].机车车辆工艺,2001(5):5-9.
    [70]李效伟,蒋建东.斯里兰卡动车组淬火车轮国产化的工艺开发[J].铁道机车车辆,2008,28(4):30-32.
    [71]蔡钊.车轮轮辋三面强化淬火[J].铁道车辆,1989,(5):13-17.
    [72]沈晓辉,闫军,安涛,等.车轮热处理过程中的变形分析[J].中国冶金,2007,17(7):9-22.
    [73]付斌,安涛,沈晓辉,等.火车车轮淬火过程中温度场[J].钢铁研究学报,2007,19(9):46-49.
    [74]李小宇,安涛,沈晓辉,等.火车车轮残余应力的产生与分布研究[J].铁道车辆,2007,45(7):1-6.
    [75]沈晓辉,赵亚琼,安涛,等.热处理工艺对车轮残余应力的影响[J].钢铁,2007,42(10):68-71.
    [76] M.ю.席夫林.车轮和轮箍轧制[M].北京:中国工业出版社,1965:140-144.
    [77]虞松,赵国群,王广春.刚塑性有限元模拟中体积变化问题处理方法[J].塑性工程学报,2003,10(3):1-5.
    [78]胡海萍,朱为昌.棒线材轧制的上限法解[J].钢铁研究学报,1997,9(6):16-19.
    [79]闫洪,林治平,吴禄慎,等.盒形件反挤压变形的上限分析[J].塑性工程学报,2000,7(1):26-30.
    [80]鲁素玲,韩鹏彪,张双杰,等.变截面管无芯棒开式冷挤压塑性变形分析[J].塑性工程学报,2004,11(3):27-30.
    [81]徐新成,赵中华,张水忠.矩形环挤压件半成品形状优化设计[J].塑性工程学报,2006,13(4):71-74.
    [82]杨海波,王家才,刘光涛.金属压力加工问题的流函数速度模式上限解[J].北京科技大学学报,1994,16(11):86-91.
    [83]韩鹏彪,鲁素玲,李军,等.开始冷挤压成形深小锥孔尺寸预测理论研究[J].塑性工程学报,2008,15(4):5-7.
    [84]黄翔,周儒荣.型材挤压过程的上限法分析[J].应用科学学报,1999,17(1):75-81.
    [85] Abrinia K., Fazlirad A. Three-dimensional analysis of shape rolling using a generalized upperbound approach[J]. Journal of Materials Processing Technology,2009,209:3264-3277.
    [86] Yeh W.C., Wu M.C. A variational upper-bound method for analysis of upset forging of rings[J].Journal of Materials Processing Technology,2005,61:392-402.
    [87] Cho H., Choi J., Min G., et al. An upper-bound analysis of the closed-die forging of spur gears[J].Journal of Materials Processing Technology,1997,67:83-88.
    [88] W. R. D. Wilson. A simple upper-bound method for axisymmetric metal forming problems [J].International Journal of Mechanical Sciences,1977,19(2):103-112.
    [89] Backofen W.A. Deformation Processing[M]. New Jersey: Addison-Wesley,1972
    [90] Xu S.G., Weinmann K.J., Yang D.Y., et al. Simulation of the hot ring rolling process by using athermo-coupled three-dimensional rigid-viscoplastic finite element method[J]. Journal ofManufacturing Science and Engineering,1997,119:542-549.
    [91] Kim K.H., Kim B.T., Suk H.G. Finite element analysis of externally round grooved profile ringrolling process[J]. Trans. Mater. Process,2003,12(7):631-639.
    [92] Kim K.H., Suk H.G., Huh M.Y. Development of the profile ring rolling process for large slewingrings of alloy steels[J]. Journal of Materials Processing Technology,2007,187-188:730-733.
    [93] Tszeng T.C., Altan T. Investigation of ring rolling by pseudo plane strain FEM analysis[J]. Journalof Materials Processing Technology,1991,27:151-161.
    [94] Joun M.S., Chung J.H., Shivpuri R. An asisymmetric forging approach to perform design in ringrolling using a rigid-viscoplastic finte element method[J]. International Journal of Machine Tools&Maufacture,1998,38:1183-1191.
    [95] Kim K.H., Suk H.G., Huh M.Y. Development of the profile ring rolling process for large slewingrings of alloy steels[J]. Journal of Materials Processing Technology,2007,187-188:730-733.
    [96] Lim T., Pillinger I., Hartley P. A finite-element simulation of profile ring rolling using a hybridmesh model[J]. Journal of Material Processing Technology,1998,80-81:199-205.
    [97] Rowe G.W., Sturgess C.E.N., Hartley P., et al. Finite-element plasticity and metal forminganalysis[M]. New York: Cambrige University Press,1991.
    [98] Hu Y.K., Liu W.K. ALE finite element formulation for ring rolling analysis[J]. InternationalJournal for Numerical Methods in Engineering,1992,33:1217-1236.
    [99] Davey K., Ward M.J. An efficient solution method for finite element ring rolling simulation[J].International Journal for Numerical Methods in Engineering,2000,47:1997-2018.
    [100] Davey K., Ward M.J. A practical method for finite element ring rolling simulation using the ALEflow formulation[J]. International Journal of Mechanical Sciences,2002,44:165-190.
    [101] Davey K., Ward M.J. The practicalities of ring rolling simulation for profiled rings[J]. Journal ofMaterials Processing Technology,2002,125:619-625.
    [102]钱东升,华林,左治江,等.环件轧制三维有限元模拟中质量缩放方法的运用[J].塑性工程学报,2005,12(5):86-91.
    [103] Allwood J.M., Kopp R., Michels D., et al. The technical and commercial potential of anincremental ring rolling process. CIRP Annals-Manufacturing Technology,2005,54:233-236.
    [104] Wang M., Yang H., Sun Z.C., et al. Dynamic explicit FE modeling of hot ring rolling process[J],Transaction of Nonferrous Metals Society of China,2006,16:1274-1280.
    [105] Wang M., Yang H., Sun Z.C., et al. Analysis of coupled mechanical and thermal behaviors in hotrolling of large rings of titanium alloy using3D dynamic explicit FEM[J], Journal of MaterialsProcessing Technology,2009,209:3384-3395.
    [106]张星联,王广科,江波,等. CL60车轮钢流变应力模型[J].安徽工业大学学报,2009,26(4):357-359.
    [107]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994.
    [108] Forouzan M.R., Salimi M., Gadala M.S., et al. Guide roll simulation in FE analysis of ringrolling[J]. Journal of Materials Processing Technology,2003,142:213-223.
    [109] Wang Z.W., Zeng S.Q., Yang X.H., et al. The key technology and realization of virtual ringrolling[J]. Journal of Materials Processing Technology,2007,182:374-381.
    [110] Yang D.Y., Kim K.H. Rigid-plastic finite element analysis of plane strain ring rolling[J].International Journal of Mechanical Sciences,1998,30(8):571-580.
    [111]康永林.轧制工程学[M].北京:冶金工业出版社,2004.6.
    [112] Sellars C.M. The physical metallurgy of hot working[A]. Hot Working and FormingProcesses[C]. Sellars C.M. and Davies G.(Eds), London: The Metal Society,1980:3-15.
    [113] Poliak E.I., Jonass J.J. A one-parameter approach to determining the critical conditions for theinitiation of dynamic recrystallization[J]. Acta Materialia,1996,44(1):127-136.
    [114] Jonas J.J., Quelennce X., Jiang L., et al. The avrami kinetics of dynamic recrystallization[J]. Actmaterialia,2009,57:2748-2756.
    [115] Wu H.Y., Du L.X., Liu X.H. Dynamic recrystallization and precipitation behavior of Mn-Cu-Vweathering steel[J]. J. Mater. Sic. Technol,2011,27(12):1131-1138.
    [116] Yue C.X., Zhang L.W., Liao S.L., et al. Research on the dynamic recrystallization behavior ofGCr15steel[J]. Materials Science and Engineering A,2009,499:177-181.
    [117] Hodson P.D. Microstructure modeling for property prediction and control[J]. Journal ofmaterials processing technology,1996,60:27-33
    [118] Maccagno T.M., Jonas J.J. Hodgson P.D. Spreadsheet modelling of grain size evolution duringrod rolling[J]. ISIJ International,1996,36:720-728.
    [119] Kuziak R., Glowacki M., Pietrzyk M. Modeling of plastic flow, heat transfer and microstructuralevolution during shape rolling[J]. Journal of material processing technology,1995,53:159-166.
    [120] Kuziak R., Glowacki M., Pietrzyk M. Modeling of plastic flow, heat transfer and microstructualevolution of rolling of eutectoid steel rods. Journal of materials processing technology,1996,60:589-596.
    [121] Kim S.I., Lee Y., Lee D.L., etc. Modeling of AGS and recrystallization fraction of microalloyedmedium carbon steel during hot deformation[J]. Materials science and engineering A,2003,355:384-393.
    [122] Yada, H. Prediction of microstrutural changes and mechanical properties in hot strip rolling[C].Proc. Symp. Accelerated cooling of rolled steel, Ruddle G.E. and Crawley, A.F.(eds), Winnipeg:Pergamon Press,1987,105-119.
    [123] Anan C., Nakajima S., Miyahara M., et al. A model for recovery and recrystallization of hotdeformed austenite considering structural heterogeneity[J], ISIJ Internationl,1992,32:261-266.
    [124] Nanba S., Kitamura M., Shimada M., et al. Prediction of microstructure distribution in thethrough-thickness direction during and after hot rolling in carbon steel[J]. ISIJ International,1992,32:377-386.
    [125] Siciliano F. Jr., Jonas J. J. Mathematical modeling of the hot strip rolling of microalloyed Nb,multiply-alloyed Cr-Mo, and plain C-Mn steels[J]. Metallurgical and materials transactions,2000,31A:511-530.
    [126] Sellars C.M. Modelling microstructural development during hot rolling[J]. Materials Scienceand Technology,1990,6:1072-1081.
    [127] Kumar A., Jha S., Ramaswamy V., et al. Modeling the microstructural evolution during hotcompression of low carbon steel[J]. Steel Research,1993,64:210-217.
    [128] Beladi H., Cizek P., Hodgson P.D. The mechanism of metadynamic softerning in austenite aftercomplete dynamic recrystallization[J]. Scripta Materialia,2010,62:191-194.
    [129] Hodgson P.D. Mathematical modeling of recrystallization processes during the hot rolling ofsteel[D]. PhD dissertation, Australia: University of Queensland,1993
    [130] Kliber J., Fabik R., Vitez I., et al. Hot forming recrystallization kinetics in steel[J]. Metalurgija,2010,49(1):67-71.
    [131] Suehiro M., Sato K., Yada, H., et al. Mathematical model for predicting microstructural changesand strength of low carbon steels in hot strip rolling[C]. Proc. THERMEC'88, Tamura I.(eds.), Tokyo:Iron Steel Institute of Japan,1988,791-798.
    [132] Kuziak R. Matematyczne modelowanie zmian mikrostrukturalnych podczas nagrzewania,przerobki cieplno-plastycznej I chlodzenia stali perlitycznych[J]. Prace IMZ,1997,49:3-54.(inPolish).
    [133] Hodgson P.D., Gibbs R.K. A mathematical model to predict the mechanical properties of hotrolled C-Mn and microalloyed steels[J]. ISIJ Int.1992,32:1329-1338.
    [134] Roberts W.L., Sandberg A., Siwecki T., et al. Prediction of microstructure development duringrecrystallization hot rolling of Ti-V steels[C]. Proc. Conf. HSLA steels, Technology and Applications,Philadelphia: ASM,1983,67-84.
    [135] Nanba S., Kitamura M., Shimada M., et al. Prediction of microstructure distribution in thethrough-thickness direction during and after hot rolling in carbon steels[J]. ISIJ Int.,1992,32:337-386.
    [136] Devadas C., Samarasekera I.V., Hawbolt E.B. The thermal and metallurgical state of steel stripduring hot rolling: Part Ⅲ Microstructural evolution[J]. Metallurgical Transactions A,1991,22A:335-349.
    [137] Ferguson D., Chen W., Bonesteel T., et al. A look at physical simulation of metallurgicalprocesses, past, present and future[J]. Materials Science and Engineering A,2009,499:329-332.
    [138]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999,9
    [139]何宜柱,陈大宏,雷廷权,等.形变Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报,2000,34(1):26-30.
    [140] Sellars C.M., Tegart W.J. McG. Hot workability[J]. International Metallurgical Reviews,1972,17:1-24.
    [141] McQueen H.J., Ryan N.D. Constitutive analysis in hot working[J]. Materials Science andEngineering A,2002,332:43-63.
    [142]金蕾,徐有容. C-Mn钢热变形行为及流变应力模型的研究[J].上海大学学报,1999,5(2):124~127.
    [143] Yue C.X., Zhang L.W., Liao S.L., et al. Research on the dynamic recrystallization behavior ofGCr15steel[J]. Materials Science and Engineering A,2009,499:177-181.
    [144] Zahiri S.H., Davies C.H., Hodgson P.D. A mechanical approach to quantify dynamicrecrystallizaiton in polycrystalline metals[J]. Scripta Materialia,2005,52:299-304.
    [145] Grosman F. Application of a flow stress function in programmes for computer simulation ofplastic working processes[J]. Journal of Materials Processing Technology,1997,64:169-180.
    [117] Hodson P.D. Microstructure modeling for property prediction and control[J]. Journal ofmaterials processing technology,1996,60:27-33
    [146]蔺永诚,陈明松,钟掘.42CrMo钢形变奥氏体的静态再结晶[J].中南大学学报(自然科学版),2009,40(2):411-416.
    [147] Medina S.F., Quispe A. Improved model for static recrystallization kinetics of hot deformedaustenite in low alloy and Nb/V microalloyed steels[J]. ISIJ International,2001,41:774-781.
    [148] Sun W.P., Hawbolt E.B. Comparison between static and metadynamic recrystallization anapplication to the hot rolling of steels[J]. ISIJ International,1997,37(10):1000-1009.
    [149] Ma B., Peng Y., Jia B., et al. Static recrystllization kinetics model after hot deformation oflow-alloy steel Q345B[J]. Journal of Iron and Steel Research, International,2010,17(8):61-66.
    [150]郑炀曾,赵国安.热变形条件下金属的力学行为与组织变化[J].机械工程材料,1981(5):27-31.
    [151]崔振山,刘才.热轧过程微观组织演变的数值预报与试验研究[J].机械工程学报,2000,36(7):92-95.
    [152]崔振山,徐秉业.热轧产品微观组织和力学性能的数学模拟[J],力学与实践,2002,24(5):15-21.
    [153]刘振宇,王国栋,张强. C-Mn钢板带钢热连轧生产过程中再结晶行为的模拟计算[J].钢铁研究学报,1995,7(6):27-31.
    [154] Lee S.J., Lee Y.K. Prediction of austenite grain growth during austenitization of low alloysteels[J]. Materials and Design,2008,29:1840-1844.
    [155] Ahlstrom J., Karlsson B. Modified railway wheel steels: Production and evaluation ofmechanical properties with emphasis on low-cycle fatigue behavior[J]. Metallurgical and MaterialsTransactions A,2009,40A:1557-1567.
    [156]曹志礼.我国高速轮轴研制问题的探讨[J].铁道车辆,1993,31(7):11-15.
    [157] Hyzak J.M., Bernstein I.M. The role of microstructure on the strength and toughness of fullypearlitic steels[J]. Metallurgical and Materials Transactions A,1976,7:1217-1224.
    [158] Park Y.J., Bernstein I.M. The process of crack initiation and effective grain size for cleavagefracture in pearlitic eutectoid steel[J]. Metallurgical and Materials Transactions A,1979,10:1653-1664.
    [159]张峰,陈刚.车轮断裂韧性与组织和性能的关系[J].理化检验-物理分册,2004,40(4):72-75.
    [160]李胜军,任学冲,高克玮,等.晶粒尺寸对车轮钢解理断裂韧性的影响[J].京科技大学学报,2011,33(9):1105-1110.
    [161]罗新民,王安东,陈彩凤.,不均匀因子与工具钢奥氏体晶粒长大的控制[J].金属热处理,1999,(12):13-16.
    [162]谢艳峰,仁学平,刘雅政,等.32Cr2MoV钢循环热处理特性的研究[J].金属热处理,2006,31(3):99-102.
    [163] Ralph B. Grain growth[J]. Materials Science and Technology,1990,6:1136-1144.
    [164] Cabrera J.M., Omar A.A., Prado J.M. Abnormal grain growth in a medium-carbon microalloyedsteel[J]. Journal of Materials Science,1996,31:1303-1309.
    [165]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [166] Cheng L.M., Hawbolt E.B., Meadowcroft T.R. Modeling of dissolution, growth and coarseningof aluminum nitride in low-carbon steels[J]. Metallurgical and Materials Transactions A,2000,31:1907-1916.
    [167] EN13262, Railway application-wheel stes and bodies wheels-product requirement[S].2004.
    [168] ASTM E399.90, Standard test method for plane-strain fracture toughness of metallicmaterials[S].1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700