用户名: 密码: 验证码:
车辆主动安全系统关键预测算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代汽车安全技术的主流趋势已经由被动安全系统转为主动安全系统。车辆主动安全系统能够在交通冲突发生的早期对驾驶员进行提示或者介入车辆的操控,从而避免交通冲突的进一步恶化而引发事故。从保证安全的角度而言,当存在交通冲突风险时,车辆主动安全系统应该尽早的作出辨识。从时间序列而言,如果能够使用车辆的现有行驶状态表征参数对车辆下一步的运动状态进行预测,则可以对“即将到来”的交通冲突进行预先准备,从而进一步提高车辆主动安全系统的生效时间。车辆的行驶状态表征参数纵多,同时车辆行驶交通环境类型也不一样,因此,如何利用现有参数对车辆行驶状态和交通环境进行预测是车辆主动安全系统在算法设计时需要重点考虑的问题。
     针对车辆主动安全系统对于参数预测的关键技术需求,本文利用多类型传感器搭建了车辆行驶过程中的表征参数同步采集试验平台,实现了车载环境下多车辆行驶车速、交通环境参数的同步采集。利用上述试验平台对10名被试在不同道路环境下开展了真实驾驶试验,获取了大量的车辆行驶状态真实参数。考虑车辆主动安全系统在线运行的真实特点,在对国内外现有技术进行分类总结的情况下,主要完成了以下的研究内容:
     1、提出了基于几何分析方法的车辆换道过程中越线时间预测模型。通过使用车辆与车道线距离数据,分析了车辆换道过程中的几何特性。并结合车-路几何模型,提出了车辆换道过程中的车辆偏航角估计理论。针对直道路段和弯道路段,并考虑车辆换道方向与道路弯道方向,分别提出了车辆在直道路段和弯道路段换道过程中的越线时间预测模型。采用真实数据对预测模型的精度进行验证,结果表明,模型整体预测误差较小,且绝大部分的误差分布于零点附件。所进行的检验结果中,直道路段预测误差绝对值小于等于0.1s的比例达到了78.3%,弯道路段相应的比例达到了80.8%,且两种模型的预测误差均符合正态分布规律。
     2、通过建立车-路之间的几何关系模型,并采用车速与横摆角速度对道路曲率进行估计,提出并建立了ACC系统对有效目标、潜在有效目标和无效目标的辨识理论与模型。对辨识模型分别进行了单目标追踪、多目标追踪以及多目标状态切换追踪的检验,结果表明,本文所建立的模型能够有效的区分三类目标。在此基础上,利用模糊加权评价方法,采用目标车的速度、目标车跟车时距、目标车横向运动状态等参数建立了前方车辆状态切换的预测模型。采用真实试验数据对预测模型进行检验,结果表明,该模型对目标车不同状态的切换预测准确率均超过了90%。
     3、针对车辆运行过程中对于自车运动状态参数的预测需求,以线性二自由度车辆模型为研究对象,采用模糊Petri理论建立了车辆运行轨迹模型,将车身横向、纵向加速度、俯仰以及侧倾角速度作为输入变量建立了车辆运行状态预测模型,分别实现了对自车运行速度、横摆角速度、运行轨迹等参数的预测。针对单纯BP神经网络模型在对车辆运动状态预测过程中存在的不足,本文提出采用贝叶斯滤波器对BP神经网络模型的结果进行优化,检验结果表明,该方法将预测准确率由83.6%提高到了92.4%。
     本研究得到了国家自然科学基金项目(51178053和61374196)和教育部长江学者和创新团队发展计划项目(IRT1286)的资助。
Vehicle active safety system was used more frequently in different vehicles then passivevehicle safety system. During the process of traffic conflict, vehicle active system can warnthe driver or control vehicle at early stage, so severity traffic conflict or accidents can beavoid. For vehicle safety, when existing traffic conflict, vehicle active safety system shoulddistinguish it as early as possible. From a time sequence view, if the next running state ofvehicle can be predicted by uding present state, then the coming soon traffic conflict can bepredicted. Based on this, the operation time of vehicle active system can improved. Runningstate characterization parameters of vehicle and traffic environment were different acoordingto time or others, so how to predict vehicle running state and traffic environment was a keytechnology while design vehicle active safety systems.
     Aming at the parameters predict requirements of vehicle active safety system, differentkinds of sensors were used to establish a test vehicle for data capture, vehicle speed and otherparameters can be captured in-phase. Ten drivers were called to drving this test vehicle indifferent road conditions, and large amout of vehicle running state data were obtained.Considering the real requirement of vehicle active system, the main reaserch content of thispaper were list as following:
     1. Time to line crossing (TLC) predict model during lane change process was bringingforward base on geometry analysis. Distance between vehicle and lane line was used toanalyzing the geometry characteristic duing lane change. By using vehicle-road geometrymodel, yaw angle predict method of vehicle during lane change was established. Aiming atstraight road and curve road, and considering lane change direction and curve direction, TLCpredict model of straight road and curve road was obtained. Real road test data was used toanalyzing the predict accuracy. Test results shows that the predict error was limited around0.Among all test results, predict error of straight road equal or less than0.1seconds achived78.3%, the similar result of curve road was80.8%. Predict error of two models meets thenormal distribution.
     2. By establishing vehicle-road geometry model, speed and yawrate were used to estimatethe road curvature. Based on this, distinguish model among availability target, latency availability target, and inefficacy target of ACC system was obtained. Single target test,Multi-target test, and multi-target state exchange test were carried out to test the accuracy ofthis model. Test result shows that the model can distinguish three types target accurately.Based ont this, fuzzy weighted evaluated model of target state exchange were estblished byuding target vehicle speed, target vehicle head time, target vehicle lateral moveing and otherparameters. Test results shows that the predict accuracy of different target state exchangeexceed90%.
     3. Aiming at the predict requrment of own vehicle, two degrees of freedom linear vehiclemodel was used. Fuzzy Petri net theory was used to estblishe vehicle running trajectorypredict model. Vehicle lateral moving, portrait moving state, pitching angle speed, and listangle speed were treated as input variables to obtaining vehicle running state predict model.Own vehicle speed, yawrate and running trajectory and other parameters were predict. Amingat the predict shortage of BP NN model, Bayesian filters was used to optimizing the predictresults, and the predict accuracy was improved from83.6%to82.4%.
     The research was sponsored by National Natural Science Foundation (51178053and61374196), Chang Jiang Scholars and Innovative Team Development Plan Program of theMinistry of Education (IRT1286).
引文
[1] Talmadge S, Chu R, Eberhard C, et al. Development of Performance Specifications for CollisionsAvoidance Systems for Lane Change Crashes[R]. Washington, D.C.: National Highway Traffic SafetyAdmin.(NHTSA),2000.
    [2] ISO.17387Intelligent transport systems-Lane change decision aid systems (LCDAS)-Performancerequirements and test procedures[S].2008.
    [3] Yoshida T, Kuroda H, Nishigaito T. Adaptive driver-assistance systems[J]. HITACHI REVIEW,2004,53(4):212-216.
    [4] W. van Winsum, K.A. Brookhuis b, D. de Waard. A comparison of different ways to approximatetime-to-line crossing (TLC) during car driving [J]. Accident Analysis and Prevention,2000,32:47-56.
    [5] Tideman M, van Der Voort M C, van Arem B, et al. A review of lateral driver supportsystems[C]//Intelligent Transportation Systems Conference,2007. ITSC2007. IEEE. IEEE,2007:992-999.
    [6] Andreas Eidehall, Jochen Pohl, Fredrik Gustafsson. Joint road geometry estimation and vehicle tracking[J]. Control Engineering Practice2007, Volume15, Issue12:1484–1494.
    [7] Chiu-Feng Lin, A. Galip Ulsoy. Calculation of the time to lane crossing and analysis of its frequencydistribution[C]. Proceedings of the1995American control conference, Part5,1995:3571-3575.
    [8] Mammar S, Glaser S, Netto M. Time to line crossing for lane departure avoidance: A theoretical study andan experimental setting[J]. Intelligent Transportation Systems, IEEE Transactions on,2006,7(2):226-241.
    [9] Glaser S, Mammar S, Netto M, et al. Experimental time to line crossing validation[C]//IntelligentTransportation Systems,2005. Proceedings.2005IEEE. IEEE,2005:791-796.
    [10] Glaser S, Labayrade R, Mammar S, et al. Validation of a vision based time to line crossingcomputation[C]//Intelligent Vehicles Symposium,2006IEEE. IEEE,2006:200-205.
    [11] Shin kato, Kohji tomita, Sadayuki tsugawa. Lane departure detection with and onboard vision system [C].1998IEEE International Conference on Intelligent Vehicle. NJ: IEEE Press,1998.
    [12] Yoshihiro Nishiwaki, Chiyomi Miyajima, Norihide Kitaoka, et al. Generating Lane-Change Trajectories ofIndividual Drivers[C]. Proceedings of the2008IEEE International Conference on Vehicular Electronicsand Safety Columbus, OH, USA,2008:271–275.
    [13] Nelson, W., Continuous-Curvature Path for Autonomous Vehicles[C], IEEE International Conference onRobotics and Automation, May1989:1260-1264.
    [14] Nathaniel Hawthorne Sledge, Jr., B.S., M.S.E. An Investigation of Vehicle Critical Speed and Its Influenceon Lane-Change Trajectories [D]. University of Texas at Austin.1997.
    [15] Eshelman, R.L., Desai, S.D., Articulated Vehicle Handling[R].National Highway Traffic SafetyAdministration, DOT-HS-800-674,1972.
    [16] Fett, I.H.C., Simulation of Lane Change Manenuers on Intersection Approaches[D], University of Texas atAustin,1974.
    [17] Zellner, J.W., Weir, D.H., Teper, G., Development of Handling Test Procedures for Motorcycles[J].Motorcycles Dynamics and Rider Control, SAE780314,1978:91-100
    [18] Kanayama, Y., Miyake, N., Trajectory Generation for Mobile Robots[C].Third International Symposiumon Robotics Research, Gouvieux,France, MIT Press,1985:333-340.
    [19] de Boor, C., A Practical Guide to Splines[M]. Springer-Verlag, New York,1978.
    [20] Nathaniel Hawthorne Sledge, Jr., B.S., M.S.E. An Investigation of Vehicle Critical Speed and Its Influenceon Lane-Change Trajectories [D]. University of Texas at Austin.1997
    [21]裴玉龙,张银.车道变换期望运行轨迹仿真[J].交通与计算机,2008,26(4):68-71.
    [22]徐慧智,裴玉龙,程国柱.基于期望运行轨迹的车道变换行为安全性分析[J].中国安全科学学报,2010,1:90-95.
    [23]高越,杨得军,宗长富,等.汽车轨迹测量的速度积分方法及其实施技术[J].汽车技术,2002.9:22-24.
    [24]任殿波,张继业,张京明,等.智能车辆弯路换道轨迹规划与横摆率跟踪控制[J].中国科学:技术科学,2011,41(3):306-317.
    [25]游峰.智能车辆自动换道与自动超车控制方法的研究[D].长春:吉林大学,2005.
    [26]李玮,高德芝,段建民.智能车辆自由换道模型研究[J].公路交通科技,2010,27(1):119-123.
    [27] Zomotor, Z., Franke, U., Sensor fusion for improved vision based lane recognition and object trackingwith range-finders[C]. Proceedings of the IEEE conference on intelligent transportation systems,1997:595–600.
    [28] Dickmanns E D, Zapp A. A curvature-based scheme for improving road vehicle guidance by computervision[C]//Cambridge Symposium_Intelligent Robotics Systems. International Society for Optics andPhotonics,1987:161-168.
    [29] Ioannou P A, Chien C C C. Autonomous intelligent cruise control[J]. Vehicular Technology, IEEETransactions on,1993,42(4):657-672.
    [30] Dellaert, F., Thorpe, C., Robust car tracking using Kalman filtering and Bayesian templates[C]. InProceedings of the SPIE conference on intelligent transportation systems,1997, vol3207.
    [31] Blackman, S. S., Multiple-target tracking with radar applications [M]. Dedham, MA, Artech House, Inc.,1986
    [32] Andreas Eidehall, Fredrik Gustafsson. A new approach to lane guidance systems[C]. Proceedings ofIntelligent Transportation Systems,2005:108–112.
    [33] Kiefer, R., LeBlanc, D., Palmer, M., et al. Development and validation of functional definitions andevaluation procedures for collision warning/avoidance systems[R]. NHTSA Technical Report, Washington,DC: DTNH22-95-H-07301,1999.
    [34] Rainer M¨obus, Mato Baotic, Manfred Morari. Multi-object Adaptive Cruise Control[J]. ComputerScience,2003, Volume2623/2003:359-374.
    [35] Dongwook Kim, Seungwuk Moon, Jaemann Park, et al. Design of an Adaptive Cruise Control/CollisionAvoidance with Lane Change Support for Vehicle Autonomous Driving[C]. ICCAS-SICE,2009:2938–2943.
    [36] S. Vacek, S. Bergmann, U. Mohr, et al. Fusing image features and navigation system data for augmentingguiding information displays[C]. Proc. IEEE MFI, Heidelberg, Germany,2006:323–328.
    [37] J. Melo, A. Naftel, A., Bernardino, et al. Detection and classification of highway lanes using vehiclemotion trajectories[C]. IEEE Trans. Intell. Transp. Syst.,2006, vol7, no2:188–200.
    [38] S. Schroedl, K. Wagstaff, S. Rogers, et al. Mining GPS traces for map refinement[J]. Data Mining Knowl.Discov.,2004, vol9, no1:59–87.
    [39] Z. Kim. Realtime lane tracking of curved local road[C]. Proc. IEEE ITSC,2006:1149–1155.
    [40] E. D. Dickmanns, A. Zapp. Autonomous high speed road vehicle guidance by computer vision[C]. Proc.10th IFAC World Congress, SPIEE,1987:232–237.
    [41] S. Moon, I. Moon, K. Yi. Design, tuning, and evaluation of a full-range adaptive cruise control systemwith collision avoidance[C].Control Engineering Practice,2009, vol17, no4:442-455.
    [42] Maehlisch M, Ritter W, Dietmayer K. De-cluttering with integrated probabilistic data association formultisensor multitarget ACC vehicle tracking[C]//Intelligent Vehicles Symposium,2007IEEE. IEEE,2007:178-183.
    [43] Schubert R, Richter E, Wanielik G. Comparison and evaluation of advanced motion models for vehicletracking[C]//Information Fusion,200811th International Conference on. IEEE,2008:1-6.
    [44] Yilmaz A, Li X, Shah M. Contour-based object tracking with occlusion handling in video acquired usingmobile cameras[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2004,26(11):1531-1536.
    [45] Dongwook Kim, Seungwuk Moon, Jaemann Park, et al. Design of an Adaptive Cruise Control/CollisionAvoidance with Lane Change Support for Vehicle Autonomous Driving[C]. ICCAS-SICE,2009:2938–2943.
    [46] Sandberg A, Chen D J, L nn H, et al. Model-based safety engineering of interdependent functions inautomotive vehicles using EAST-ADL2[M]//Computer Safety, Reliability, and Security. Springer BerlinHeidelberg,2010:332-346.
    [47] Caveney D, Hedrick J K. Single versus tandem radar sensor target tracking in the adaptive cruise controlenvironment[C]//American Control Conference,2002. Proceedings of the2002. IEEE,2002,1:292-297.
    [48] Singh J P. Evolution of the radar target tracking algorithms: a move towards knowledge basedmulti-sensor adaptive processing[C]//Computational Advances in Multi-Sensor Adaptive Processing,20051st IEEE International Workshop on. IEEE,2005:40-43.
    [49] Moon I, Yi K, Caveney D, et al. A multi-target tracking algorithm for application to adaptive cruisecontrol[J]. Journal of mechanical science and technology,2005,19(9):1742-1752.
    [50] Miyahara S. A method for radar-based target tracking in non-uniform road condition[J]. SAE transactions,2003,112(7):1-9.
    [51] Miyahara S, Sielagoski J, Ibrahim F. Radar-based target tracking method: Application to real road[R].SAE Technical Paper,2005.
    [52] Zhang D, Li K, Wang J. Radar-based target identification and tracking on a curved road[J]. Proceedings ofthe Institution of Mechanical Engineers, Part D: Journal of automobile engineering,2012,226(1):39-47.
    [53]宋健,王伟玮,李亮,等.汽车安全技术的研究现状和展望[J].汽车安全与节能学报,2010,1(2):98-106.
    [54]陈虹,宫洵,胡云峰,等.汽车控制的研究现状与展望[J].自动化学报,2013,39(4):322-346.
    [55] Chen T L, You R Z. A novel fault-tolerant sensor system for sensor drift compensation[J]. Sensors andActuators A: Physical,2008,147(2):623-632.
    [56] Pastorino R, Richiedei D, Cuadrado J, et al. State estimation using multibody models and non-linearKalman filters[J]. International Journal of Non-Linear Mechanics,2013,53:83-90.
    [57] Hsieh C S, Chen F C. Modified stochastic Luenberger observers[J]. Automatica,2000,36(12):1847-1854.
    [58] Zhou L, She J, Wu M, et al. Design of a robust observer-based modified repetitive-control system[J]. ISAtransactions,2013,52(3):375-382.
    [59] Boulkroune A, Tadjine M, M’Saad M, et al. Design of a unified adaptive fuzzy observer for uncertainnonlinear systems[J]. Information Sciences,2013.
    [60] Desel J. Regular marked Petri nets[C]//Graph-Theoretic Concepts in Computer Science. Springer BerlinHeidelberg,1994:264-275.
    [61] Tao Y, Papadias D. The mv3r-tree: A spatio-temporal access method for timestamp and interval queries[J].2001.
    [62] Taheri H, Neamatollahi P, Naghibzadeh M. A hybrid token-based distributed mutual exclusion algorithmusing wraparound two-dimensional array logical topology[J]. Information processing letters,2011,111(17):841-847.
    [63] Yamasaki H. Normal Petri nets[J]. Theoretical computer science,1984,31(3):307-315.
    [64] Barzegar S, Davoudpour M, Meybodi M R, et al. Formalized learning automata with adaptive fuzzycoloured Petri net; an application specific to managing traffic signals[J]. Scientia Iranica,2011,18(3):554-565.
    [65]吴义虎,宋丹丹,侯志祥,等. C车辆横摆角速度的广义预测控制研究[C]//第二十六届中国控制会议论文集.2007.
    [66] Kanayama Y J.“Rotary vehicle” that moves with three degrees of freedom[C]//Advanced Robotics,1997.ICAR'97. Proceedings.,8th International Conference on. IEEE,1997:713-718.
    [67] Alvarez-Garcia J A, Ortega J A, Gonzalez-Abril L, et al. Trip destination prediction based on past GPS logusing a Hidden Markov Model[J]. Expert Systems with Applications,2010,37(12):8166-8171.
    [68] Jo S, Myung R, Yoon D. Quantitative prediction of mental workload with the ACT-R cognitivearchitecture[J]. International Journal of Industrial Ergonomics,2012,42(4):359-370.
    [69] Guo Z, Wu J, Lu H, et al. A case study on a hybrid wind speed forecasting method using BP neuralnetwork[J]. Knowledge-based systems,2011,24(7):1048-1056.
    [70] K.S.Ivanov. Comparison of Mechanical Systems with One and with Two Degrees of Freedom.2004[C].
    [71] Gaikwad J L, Dasgupta B, Joshi U. Static equilibrium analysis of compliant mechanical systems usingrelative coordinates and loop closure equations[J]. Mechanism and machine theory,2004,39(5):501-517.
    [72] Mukherjee S, Kar S. A Survey on Different Methods of Defuzzification[C]//Proceedings of the FirstInternational Conference on Uncertainty Theory.2010.
    [73] Jung C R, Kelber C R. Lane following and lane departure using a linear-parabolic model[J]. Image andVision Computing,2005,23(13):1192-1202.
    [74] Welch G, Bishop G. An introduction to the Kalman filter.1995.
    [75] Charniak E. Bayesian networks without tears[J]. AI magazine,1991,12(4):50.
    [76]宋花玲. ROC曲线的评价研究及应用[D].上海:第二军医大学,2006.
    [77] Ko ir A, Muj i A, Suljanovi N, et al. Noise variance estimation based on measured maximums ofsampled subsets[J]. Mathematics and Computers in Simulation,2004,65(6):629-639.
    [78] Liu C, Shui P, Li S. Unscented extended Kalman filter for target tracking[J]. Systems Engineering andElectronics, Journal of,2011,22(2):188-192.
    [79] Elsayed S M, Sarker R A, Essam D L. A new genetic algorithm for solving optimization problems[J].Engineering Applications of Artificial Intelligence,2014,27:57-69.
    [80] Daily, J., Fundamentals of Traffic Accident Reconstruction[D].University of North Florida,1988.
    [81]公安部交通管理局.中华人民共和国道路交通事故统计年报[R].北京:公安部交通管理局,2012
    [82]党睿娜,李升波,王建强,等.兼顾节能与安全的电动车ACC系统[J].汽车工程,2012,34(5):379-393.
    [83]罗莉华,龚李龙,李平,等.考虑驾驶员行驶特性的双模式自适应巡航控制设计[J].浙江大学学报(工学版),2011,45(12):2073-2077.
    [84]裴晓飞,刘昭度,马国成,等.汽车自适应巡航系统的多模式切换控制[J].机械工程学报,2012,10(5):96-102.
    [85]宗长富,胡丹,杨肖,等.基于扩展Kalman滤波的汽车行驶状态估计[J].吉林大学学报(工学版),2009,39(1):7-11.
    [86]李进,陈无畏,李碧春,等.自动导引车视觉导航的路径识别和跟踪控制[J].农业机械学报,2008,39(2):20-24.
    [87]刘佳熙,李升波,王建强,等.车辆智能巡航控制纵向动力学参数快速辨识方法[J].农业机械学报,2010,41(10):6-10.
    [88]李安贵,张志宏,孟艳,等.模糊数学及其应用[M].北京:冶金工业出版社,2005
    [89]巩在武.不确定模糊判断矩阵原理、方法与应用[M].北京:科学出版社,2011
    [90]胡宝清.模糊理论基础[M].武汉:武汉大学出版社,2004
    [91]张振良,张金玲,殷允强,等.模糊集理论与方法[M].武汉:武汉大学出版社,2010
    [92]武钧,张露,高清华.模糊评价在高速公路驾驶行为对交通事故影响中的应用[J].内蒙古农业大学学报,2009
    [93]王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究[J].公路交通科技,2005
    [94] Yoshihiro Nishiwaki, Chiyomi Miyajima, Norihide Kitaoka,etal. Generating Lane-ChangeTrajectories of Individual Drivers, Proceedings of the2008IEEE International ConferenceonVehicular Electronics and Safety Columbus,2008:271-275.
    [95]丁军,张佐,陈洪昕等.车辆轨迹数据的若干处理方法研究[J].交通信息与安全,2011,29(5):10-13.
    [96]于淑萍,李文锋.一种车载自组网中车辆轨迹推演算法[J].计算机应用与件,2012,29(10):264-266.
    [97]蒋屹新,林闯,曲扬等.基于Petri网的模型检测研究[J].软件学报,2004,15(9):1265-1275.
    [98]秦益霖,刘坤.基于随机Petri网的性能与可靠性评价[J].工矿自动化,2004(3):20-22.
    [99]吴文渊. Petri网系统的可达性研究[D].中国科学院成都计算机应用研究所,2013.
    [100]张鹏程,李人厚,秦明等.模糊着色Petri网及其在工作流建模中的应用[J].计算机辅助设计与图形学学报,2002,14(8):713-716.
    [101]M.米奇克.汽车动力学(第4版)[M].陈荫三,余强译.北京:清华大学出版社,2009.
    [102]高越,杨得军,宗长富等.汽车轨迹测量的速度积分方法及其实施技术[J].汽车技术,2002(9):23-25.
    [103]尹建华.广义极坐标变换、广义柱坐标变换、广义球坐标变换[J].承德民族师专学报,2000,20(2):9-11.
    [104]刘永,彭正洪.基于MATLAB的模糊逻辑控制系统的设计与仿真[J].武汉大学学报(工学版),2008,41(2):132-135.
    [105]兰璐恺,朱建伟,刘伟莉等.模糊逻辑遗传算法的新方法[J].计算机工程与设计,2008,29(14):3714-3718.
    [106]胡筱敏,马云峰,王宇佳等.基于CPNtools的环评工程分析信息化技术的研究[J].环境保护科学,2011(3):63-65.
    [107]彭洁,李淑芝,杨书新.基于CPNTools的网上购物系统建模及合理性分析[J].江西理工大学学报,2011,32(5):49-52.
    [108]Uzam M. Comment on A Deadlock Prevention Approach for Flexible Manufacturing Systems with UncontrollableTransitions in Their Petri Net Models. Asian Journal of Control.2012;14(4):1155-1158.
    [109]Liu Y, Fang S, Fang Z. Petri net model for supply-chain quality conflict resolution of a complex product. Kybernetes.2012;41(7):920-928.
    [110]Carlos Sun, Stephen G, Ritchie. Individual Vehicle Speed Estimation Using Single Loop Inductive Waveforms. J.Transp. Eng.1999;125(6):531-538.
    [111]Hamet J F, Besnard F, Doisy S, et al. New vehicle noise emission for French traffic noise prediction. AppliedAcoustics.2010;71(9):861-869.
    [112]Sanchez E N, Ricalde L J, Langari R, et al. Rollover Prediction and Control in Heavy Vehicles Via Recurrent HighOrder Neural Networks. Intelligent Automation&Soft Computing.2011;17(1):95-107.
    [113]Jaiganesh S, Kumar R K. Sequential estimation strategy based on sensitivity analysis for vehicle handling parameterestimation. International Journal of Advances in Engineering Sciences and Applied Mathematics.2012;4(4):269-278.
    [114]Yang K, Shin J, Sukkarieh S. Integrated Planning and Control of Rotary-wing Unmanned Aerial Vehicle Navigation.Journal of Aerospace Computing, Information, and Communication.2012;9(3):81-89.
    [115]Mirzaei M. A new strategy for minimum usage of external yaw moment in vehicle dynamic control system.Transportation Research Part C: Emerging Technologies.2010;18(2):213-224.
    [116]Maria Castro, Luis Iglesias, JoséA Sánchez. Vehicle speed measurement: Cosine error correction. Measurement.2012;45(8):2128-2134.
    [117]King Tin Leung, James F. Whidborne, David Purdy, Phil Barber. Road vehicle state estimation using low-costGPS/INS. Mechanical Systems and Signal Processing.2011;25(6):1988-2004.
    [118]M. Mirzaei. A new strategy for minimum usage of external yaw moment in vehicle dynamic control system.Transportation Research Part C: Emerging Technologies.2010;18(2):213-224.
    [119]Rafael Toledo-Moreo, Miguel A. Zamora-Izquierdo. Collision avoidance support in roads with lateral and longitudinalmaneuver prediction by fusing GPS/IMU and digital maps. Transportation Research Part C: Emerging Technologies.2010;18(4):611-625.
    [120]Zhang D, Xu J, Xu J, et al. Model for food safety warning based on inspection data and BP neuralnetwork[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(1):221-226.
    [121]孙书利,吕楠,白锦华等.多传感器时滞系统信息融合最优Kalman滤波器[J].控制理论与应用,2008,25(3):23-25.
    [122]宗长富,胡丹,杨肖等.基于扩展Kalman滤波的汽车行驶状态估计[J].吉林大学学报(工学版),2009,39(1):7-11.
    [123]付梦印,邓志红,阎莉萍.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2010:13-31.
    [124]严涛,王跃钢,杨波等.模糊自适应卡尔曼滤波算法在航位推算系统中的应用[J].计算机测量与控制,2012,20(3):774-776.
    [125]关永平,胡学平,千召里等.基于Matlab6.x的Kalman滤波器的设计与仿真[J].现代电子技术,2004,18(185):69-71.
    [126]王平军,侯波,李彦波等.基于遗传算法优化的舵机伺服系统模糊控制[J].计算机测量与控制,2011,19(10):2421-2423.
    [127]吉根林.遗传算法研究综述[J].计算机应用与软件,2004,21(2):69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700