用户名: 密码: 验证码:
季节性寒区隧道围岩温度场与变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着振兴东北老工业基地和西部大开发政策的实施,铁路和公路网正从东往西,从南向北发展,而这些地区都属于高纬度或高海拔地区,是季节性冻土区,在这些地方修建隧道将面临着冻害的威胁。本文以新疆玉希莫勒盖隧道为依托,采用现场监测、理论分析、数值模拟以及相似模拟试验等手段相结合,对季节性寒区隧道的温度场与变形进行了一系列的研究,对季节性寒区隧道的建设具有一定的指导意义。
     (1)通过在现场监测获得新疆天山玉希莫勒盖隧道的大气及围岩内的温度变化规律,并对大气的监测数据进行拟合分析,为之后的理论计算和数值模拟等相关分析提供基础数据;根据围岩中的温度监测结果可近似得到该隧道的冻结深度,为之后的围岩稳定性分析提供必要的参数,也可对温度场的数值模拟结果进行对比验证;此外通过对隧道不同断面的温度分析得到了现场需要铺设保温层的距离。
     (2)基于平面假设,并认为保温层起到良好的保温效果,建立了包括保温层、衬砌和围岩三层介质的寒区隧道温度场的数学模型;采用Laplace积分变换和DenIsger数值反演法对其求解;根据对现场温度监测结果的拟合,对玉希莫勒盖隧道的温度场进行了分析,得到了其相应的变化规律;结果显示现场铺设5cm保温层不足以防止冻害的发生,以衬砌外缘温度大于等于零为判别条件,经过试算确定了在不采取其他防护措施时玉希莫勒盖隧道不发生冻害至少需要19cm厚的保温层;对对流换热系数、年平均气温以及地层温度三个参数进行分析得到:对流换热系数对隧道温度场的影响较小,并分别得到不同的年平均气温或不同地层温度下玉希莫勒盖隧道所需要保温层的厚度。为该地区类似工程的建设提供一定的指导和理论依据。
     (3)采用Geo-studio软件中TEMP模块对玉希莫勒盖隧道在未铺设保温层和铺设5cm保温层两种情况下的温度场进行研究;当未铺设保温层时提取与现场相应位置的温度结果,发现两者规律基本一致,验证了所选参数的可靠性;当铺设5cm保温层时,发现虽然保温层能较好的阻止负温的传递,但是该厚度还不足以保证围岩不发生冻结,仍存在0.4m的冻结深度;通过对以上两种情况冻结锋面的移动情况进行整体拟合和分段拟合研究,整体拟合的相关系数虽然较高,但未能较好的包含冻结锋面的所有信息,现对不同材料分别进行线性拟合,得出以下结论:底板是冻结锋面发展最快的位置,拱肩次之,拱脚是发展最慢的位置;冻结锋面在衬砌中扩展的速度是围岩的8~10倍;冻结锋面在第二周期比第一周期扩展的范围要稍大一些。当铺设保温层后拱肩为冻结锋面发展最快、最远的位置,其次是底板。基于以上分析,将拱肩和底板都作为危险位置对玉希莫勒盖隧道所需保温层厚度进行分析,得到在不采取其他措施的情况下,需要铺设21cm厚的保温层方可保证隧道不发生冻害。
     (4)将冻胀应变看作为拉应变,并对已有冻结围岩本构方程中的不足进行修正,根据冻胀位移的方向认为存在冻结零位移点,并给出求解方法。基于修正后冻结围岩的本构方程首先求解了不等压条件下寒区隧道围岩应力场,分别分析了衬砌与围岩中在不同的侧压力系数和角度时应力场的规律。其次对静水压力场是围岩中可能出现的三种情况进行了分析,并对塑性半径小于冻结圈时进行了参数分析,从而更好地解释了各相关参数对围岩应力场和塑性区的发生的影响。最后,针对围岩中不发生塑性破坏这种最简单的情况建立冻结围岩融化的弹性模型,考虑冻结围岩融化后体积缩小的现象,得到了冻结融化后围岩应力场。根据以上分析对玉希莫勒盖隧道在冻结和融化时的围岩应力场和变形场的求解。
     (5)根据相似理论对季节性寒区隧道的温度场和冻胀力进行了相似模拟试验研究,整个试验装置包括模型主体、边界温度控制系统、大气温度模拟系统、温度控制系统和测试系统组成,分别进行了未铺设保温层和铺设5cm保温层两组试验,虽然试验结果温度的幅值偏低,但是仍然可以得出保温层能较好的阻止负温度传递,平均阻断率达86.5%,未铺设保温层时的冻结深度为2m,铺设保温层时的冻结深度缩小为0.5m。试验中衬砌壁后最大径向和环向冻胀力的平均值为0.29MPa和0.275MPa。通过底板最大的环向应变反算最大冻胀力为0.613MPa,其他三处反算的平均最大冻胀力为0.511MPa,该结果比压力盒的测试结果偏大,主要原因为压力盒厚度达1.1cm导致冻胀力测试结果偏小,另外应变反算的冻胀力是基于圆模型存在一定的偏差。
     (6)根据现场的温度监测结果,将其与数值模拟、模型试验和理论计算的结果进行对比分析,并分析其产生偏差的原因;另外,采用数值模拟和理论计算对铺设16cm保温层时衬砌外缘的温度曲线进行对比分析,得出最低温度的大小关系;最后对现场冻胀力和试验测试的冻胀力进行对比分析。
With the revitalization of the northeast industrial base and the implementation of westerndevelopment policy, the railway and road nets are expanding from east to west and from southto north. Yet the regions are almost high latitude or high elevation which belongs to seasonalfrozen soil region. The new challenge, freeze damage, will arise when the tunnel engineeringare built in these areas. This paper takes Yuximolegai tunnel as an example. A series ofresearches on temperature field and the stability analysis of surrounding rocks were carriedout for seasonal cold region using field test, analytical solution, physical test and numericalsimulation. The study can provide some guide significance for the construction of seasonalcold region tunnel.
     (1) The temperature laws of air and surrounding rocks of Yuximolegai tunnel areobtained by field measurement. The fitting analysis of temperature data of air can providebasic data for analytical calculation and numerical simulation. The frost depth can beapproximately obtained based on temperature measurement of surrounding rocks, which canprovide the necessary parameters for stability analysis of surrounding rocks. The temperaturemeasurement results can verify the numerical simulation results. The distance with insulationlayer can be determined by analyzing the temperature law of different sections.
     (2) The mathematic model of the temperature field of cold region tunnel is establishedbased on plane assumptions, which contains insulation layer, lining and surrounding rocks.The insulation layer is supposed to play a very good role. Then Laplace integral transfer andDenIsger inversion method are used to solve this model. The analysis for temperature field ofYuximolegai tunnel was carried out and the corresponding change law was obtainedaccording to the field measurement. The results show that the5cm thick insulation is notenough to stop frozen damage. The condition that the temperature at the outer edge of liningis greater than equal to zero is as the criterion. According to this criterion, if Yuximolegaitunnel is protected from frozen damage, at least19cm thick insulation layer is laid withoutother protective measures by trail calculation. Besides, the sensitivity analysis for heattransfer coefficient, annual average temperature and formation temperature is carried out andthe following conclusions are obtained: the effect of heat transfer coefficient on temperaturefield of tunnel is small; the thickness needed in Yuximolegai tunnel is determined underdifferent annual average temperature and formation temperature. The study can providecertain guide and theoretical basis.
     (3) Temp module in Geo-studio software is selected to calculate temperature field ofYuximolegai tunnel with and without insulation layer. The results of numerical simulation agree with field measurement in the same place when no insulation layer is installed. Thereliability of parameters is verified. When5cm insulation layer is installed, the calculationresults show that the effect of stopping the subzero temperature transfer is good, but thethickness is not enough to clear up frozen damage and the frozen depth is still0.4m. Based onthe whole and piecewise fitting results of freezing front of above two conditions, thecorrelation coefficient of whole fitting is large, but it can not contain all information offreezing front. The piecewise linear fitting is carried out for different materials, respectively.The following conclusions are obtained: the freezing front of the floor expands fastest. Thesecond is spandrel. And the slowest position is arch. The expanding speed of freezing front inlining is faster8~10times than that in surrounding rocks. The freezing range in the secondcycle is a little larger than that in the first cycle. When the insulation layer is installed, theexpanding speed of spandrel is fastest and its range is largest. According to above analysis,the spandrel and floor are both regarded as dangerous section to analyze the insulation layerthickness of Yuximolegai tunnel.21cm insulation layer can stop tunnels from frost damagewithout other measures.
     (4) Based on some assumption, the analytical solutions for stress and deformation ofseasonal cold-region tunnel are performed. The frost strain is regarded as tensile strain. Thedeficiencies of constitutive equation are improved. The no displacement position induced byfrost exists according to the direction of frost deformation and its iteration method is given.Firstly, based on the modified constitutive equation of frozen surrounding rocks, the stressfield of cold region tunnel is solved under no equal pressure. The stress fields of lining andsurrounding rocks are analyzed under different lateral pressure coefficients and angles,respectively. Then, the analysis of stress and deformation under hydrostatic pressure field ispreformed, including three possible situations. The sensitivity analysis is carried out whenplastic radius is smaller than frozen radius. The results can explain the influence of parameterson stress field and plastic zone. At last, the elastic melting model of frozen surrounding rocksis established according to the condition where no plastic zone occurs. The melting modelconsiders volume change and then the stress field of surrounding rocks is obtained aftermelting. Based on the above analysis, the stress and deformation of Yuximolegai tunnel aresolved when frost or melting happens.
     (5) According to similarity theory, the temperature field and frozen force of seasonalcold region tunnel are studied by physical test. The whole test device contains model body,boundary temperature control system, air temperature simulation system, temperature controlsystem and monitoring system. The tests are divided into two groups,5cm insulation and noinsulation. The temperature amplitude in test is lower than the measurement data, but it is still seen that insulation layer can stop subzero temperature transfer well and the average blockingrate reaches86.5%. When no insulation layer is laid, the frozen depth is about2m.While thefrozen depth is changed to0.5m. In test, the largest radial and circumferential frozen forcesare0.29MPa and0.275MPa, respectively. The largest circumferential strain is used tocalculate the largest frozen force,0.613MPa. The average largest frozen force in otherpositions is0.511MPa. The result is larger than the data monitored by stress tense. It is thereason that the thickness of stress tense reaching1.1cm causes the result to become small.Besides, the results calculated by strain are solved based on the assumption of circle section.
     (6) Temperature measured in field is compared with the results of numerical simulation,model test and analytical calculation, and the deviation is analyzed. Besides, the relationshipof the lowest temperature is obtained by analyzing the temperature at the outer edge of liningusing numerical simulation and analytical calculation. At last, the frost force in field iscompared with the result of model test.
引文
[1]周幼吾等.中国冻土[M].北京市:科学出版社,2000.
    [2]贺永年,刘志强.隧道工程[M].徐州市:中国矿业大学出版社,2002.
    [3]吴紫汪等.寒区隧道工程[M].北京市:海洋出版社,2003.
    [4]徐学祖等.冻土物理学[M].北京市:科学出版社,2001.
    [5]陈邵华.关角隧道斜井岩溶裂隙水处理技术探讨[J].现代隧道技术,2010,47(1):81-86.
    [6]张先军.青藏铁路昆仑山隧道洞内气温及地温分布特征现场试验研究[J].岩石力学与工程学报,2005,24(6):1086-1089.
    [7]吴满路,张春山,廖椿庭,等.风火山隧道地应力测量与工程稳定性分析[J].地球学报,2005,26(1):71-74.
    [8]刘永华.青海省G227线大坂山隧道病害整治设计[J].公路隧道,2010,(1):48-50.
    [9] Johansen N I, Huang S L, Aughenbaugh N B. Alaska's CRREL permafrost tunnel[J]. Tunnelling andunderground space technology,1988,3(1):19-24.
    [10]乜风鸣.寒冷地区铁路隧道气温状态[J].冰川冻土,1998,10(4):450-453.
    [11]王大为,金祥秋,吕康成.寒区公路隧道围岩温度测试与分析[C].全国公路隧道学术论文集,2001.
    [12]黄双林.昆仑山隧道施工期间围岩冻融圈的初步研究[J].冰川冻土,2003,25(z1):100-103.
    [13]张先军.青藏铁路昆仑山隧道洞内气温及地温分布特征现场试验研究[J].岩石力学与工程学报,2005,24(6):1086-1089.
    [14]陈建勋.隧道冻害防治技术的研究[D].长安大学桥梁与隧道工程,2004.
    [15]谢红强,何川,李永林.寒区公路隧道保温层厚度的相变温度场研究[J].岩石力学与工程学报,2007(2):4395-4401.
    [16]陈建勋,罗彦斌.寒冷地区隧道温度场的变化规律[J].交通运输工程学报,2008,8(2):44-48.
    [17]张德华,王梦恕,任少强.青藏铁路多年冻土隧道围岩季节活动层温度及响应的试验研究[J].岩石力学与工程学报,2007,26(3):614-619.
    [18]赖金星,谢永利,李群善.青沙山隧道地温场测试与分析[J].中国铁道科学,2007,28(5):78-82.
    [19] Bonacina C, Comini G, Fasano A, et al. Numerical solution of phase-change problems[J].International Journal of Heat and Mass Transfer,1973,16(10):1825-1832.
    [20] Conuni G, Guidice S, Lewis R W, et al. Finite element solution of nonlinear heat conduction problemswith special reference to phase change Int[J]. J. Num. Methods in Eng,1974,6(8):613-624.
    [21] Bansal N K, Sodha M S, Bharadwaj S S. Performance of earth air tunnels[J]. International Journal ofEnergy Research,1983,7(4):333-345.
    [22] Shamsundar N. Formulae for freezing outside a circular tube with axial variation of coolanttemperature[J]. International Journal of Heat and Mass Transfer,1982,25(10):1614-1616.
    [23] Lunardini V J. Heat transfer with freezing and thawing[J]. Applied Mechanics Reviews,1991,45(2):23-30.
    [24] Krarti M, Kreider J F. Analytical model for heat transfer in an underground air tunnel[J]. Energyconversion and management,1996,37(10):1561-1574.
    [25] Takumi K, Takashi M, Kouichi F. An estimation of inner temperatures at cold region tunnel for heatinsulator design[C]. Proceedings of Structural Engineering Symposium.2008:32-38.
    [26] R S. Transient thermal analysis of parallel translucent layers by using green′s functions[M]. NewYork:1999.
    [27] N O M. Heat conduction[M]. New York:1980.
    [28] Singh S, Jain P K, Rizwan-uddin. Analytical solution to transient heat conduction in polar coordinateswith multiple layers in radial direction[J]. International Journal of Thermal Sciences,2008,47(3):261-273.
    [29] Jain P K, Singh S. Analytical solution to transient asymmetric heat conduction in a multilayerannulus[J]. Journal of heat transfer,2009,131(1):1-7.
    [30] Lu X, Tervola P, Viljanen M. Transient analytical solution to heat conduction in multi dimensionalcomposite cylinder slab[J].2006,49(5):1107-1114.
    [31] Lu X S, Viljanen M. An analytical method to solve heat conduction in layered spheres with timedependent boundary conditions[J].2006,351(4):274-282.
    [32] Y-M.Lai, Z-W.Wu, Y-L.Zhu, et al. Nonlinear analysis for the coupled problem of temperature,seepage and stress fields in cold-region tunnels[J]. Numerical methods,1998,13(4):435-440.
    [33] Y-M.Lai, Z.Wu, Y.Zhu, et al. Nonlinear analysis for the coupled problem of temperature and seepagefield in cold regions tunnels[J]. Cold regions science and technology,1999,29(1):89-96.
    [34]赖远明,喻文兵,吴紫汪,等.寒区圆形截面隧道温度场的解析解[J].冰川冻土,2001,23(2):126-130.
    [35] Lai Yuanming, Liu Songyu, Wu Ziwang, et al. Approximate analytical solution for temperature fieldsin cold regions circular tunnels[J]. Cold regions science and technology,2002,34(1):43-49.
    [36] Xuefu Zhang, Yuanming Lai, Wenbing Yu, et al. Forecast analysis for the re-frozen of Feng Huoshanpermafrost tunnel on Qing-Zang railway[J]. Tunnelling and underground space technology,2004,19:45-46.
    [37] Xuefu Zhang, Yuanming Lai, Wenbing yu, et al. Nonlinear analysis for the freezing-thawing situationof the rock surrounding the tunnel in cold regions under the conditions of different constructionseasons, initial temperatures and insulations[J]. Tunneling and Underground Space Technology,2002,17(3):315-325.
    [38]张耀,何树生,李靖波.寒区有隔热层的圆形隧道温度场解析解[J].冰川冻土,2009,31(1):113-118.
    [39]张国柱,夏才初,殷卓.寒区隧道轴向及径向温度分布理论解[J].同济大学学报(自然科学版),2010,38(8):1117-1122.
    [40]夏才初,张国柱,肖素光.考虑衬砌和隔热层的寒区隧道温度场解析解[J].岩石力学与工程学报,2010,29(9):1767-1773.
    [41]冯强,蒋斌松.寒区隧道温度场Laplace变换解析计算[J].采矿与安全工程学报,2012,29(3):391-395.
    [42]张学富,王成,喻文兵,等.风火山隧道空气与围岩对流换热和围岩热传导耦合问题的三维非线性分析[J].岩土工程学报,2005,27(12):1414-1420.
    [43]杨旭,严松宏,马丽娜.季节性冻土区隧道温度场分析与预测[J].隧道建设,2012,32(1):57-61.
    [44]郝飞.寒区冻土公路隧道温度场特性研究[D].2012.
    [45]宁翠萍.寒区长大公路隧道温度特性研究[D].西安建筑科技大学,2012.
    [46]晏启祥,何川,曾东洋.寒区隧道温度场及保温隔热层研究[J].四川大学学报(工程科学版),2005,37(3):24-27.
    [47]王余富.寒区公路隧道温度场特征研究[D].长安大学,2006.
    [48]谢红强,何川,李永林.寒区公路隧道保温层厚度的相变温度场研究[J].岩石力学与工程学报,2007,26(曾2):4395-4401.
    [49]赖金星.高海拔复杂围岩公路隧道温度场特征与结构性能研究[D].长安大学,2008.
    [50]赵志忠.乌零一级公路隧道温度场特征及冻害防治措施研究[D].长安大学,2010.
    [51]张全胜,高广运,杨更社.寒区隧道温度场的三维有限差分分析[J].苏州科技学院学报(工程技术版),2006,19(3):15-20.
    [52]吴文丁.基于FLAC3D的季冻区隧道温度场分布规律数值模拟分析[J].北方交通,2012,(11):102-104.
    [53]吴文丁.季冻区隧道温度场分布规律及衬砌冻胀力分析[D].吉林大学,2009.
    [54]范东方,夏才初,韩常领.寒区隧道工程中隔热保温层的作用分析[J].西部交通科技,2012,12(1):1-6.
    [55] Xianjun Tan, Weizhong Chen, Guojun Wu, et al. Numerical simulations of heat transfer withice-water phase change occurring in porous media and application to a cold-region tunnel[J].Tunnelling and Underground Space Technology,2013,(38):170-179.
    [56] Xianjun Tan, Weizhong Chen, Diansen Yang, et al. Study on the influence of airflow on thetemperature of the sunnounding rock in a cold region tunnel and its application to insulation layerdesign[J]. Applied Thermal Engineering,2014,(67):320-334.
    [57]张耀,赖远明,张学富.寒区隧道隔热层设计参数的实用计算方法[J].中国铁道科学,2009,30(2):66-70.
    [58]郝飞,张全胜.寒区公路隧道温度场及保温层的研究[J].现代隧道技术,2012,49(1):39-44.
    [59]蒋斌松,王金鸽,周国庆.单管冻结温度场解析计算[J].中国矿业大学学报,2009,38(4):463-467.
    [60]蒋斌松,沈春儒,冯强.外壁恒温条件下单管冻结温度场解析计算[J].煤炭学报,2010,35(6):923-928.
    [61]吴礼舟,许强,黄润秋.冻土中冻结锋面移动的影响因素[J].湖南科技大学学报(自然科学版),2010,25(4):51-54.
    [62]陈长臻,杨维好,张涛,等.外壁恒温条件下单管冻结温度场发展规律[J].辽宁工程技术大学学报(自然科学版),2010,29(2):232-236.
    [63]周扬,周国庆.考虑未冻水单管冻结温度场解析解[J].煤炭学报,2012,37(10):1649-1654.
    [64]赖远明,吴紫汪,朱元林,等.寒区隧道冻胀力的粘弹性解析解[J].铁道学报,1999,21(6):70-75.
    [65]张全胜,杨更社,王连花,等.冻融条件下软岩隧道冻胀力计算分析[J].西安科技学院学报,2003,23(1):1-6.
    [66]张全胜.寒区隧道围岩损失试验研究和水分迁移分析[D].同济大学,2006.
    [67]吕书清.冻结状态下软岩隧道冻胀力分析[J].哈尔滨师范大学自然科学学报,2008,24(4):50-52.
    [68]白国权.高海拔严寒地区隧道温度场分布规律及衬砌冻胀力数值模拟研究[D].西南交通大学,2006.
    [69]肖建章,赖远明,张学富,等.青藏铁路旱桥冻胀力的弹塑性分析[J].铁道学报,2008,30(6):82-88.
    [70]仇文革,孙兵.寒区破碎岩体隧道冻胀力室内对比试验研究[J].冰川冻土,2010,32(3):557-562.
    [71]吴剑,陈礼伟,刘玉勇.冻土隧道冻胀力计算方法研究[J].隧道建设,2010,30(2):142-147.
    [72]吴楚刚,杨林.寒区冻土中冻胀力的计算[J].西部探矿工程,2011,(12):187-190.
    [73]顾博渊,姚红志.寒区隧道冻胀力计算分析[J].公路隧道,2012,(1):10-12.
    [74] G.Y. Gao, Q.S. Chen, Q.S. Zhang.Analytical elasto-plastic solution for stress and plastic zone ofsurrounding rock in cold region tunnels[J]. Cold regions science and technology,2012,(72):50-57.
    [75]马静嵘,杨更社.软岩冻融损伤的水-热-力耦合研究初探[J].岩石力学与工程学报,2004,23(z1):4373-4377.
    [76]陈飞熊,李宁,程国栋.饱和正冻土多孔多相介质的理论构架[J].岩土工程学报,2002,24(2):213-217.
    [77]张学富,喻文兵,刘志强.寒区隧道渗流场和温度场耦合问题的三维非线性分析[J].岩土工程学报,2006,28(9):1095-1100.
    [78] Neaupane K M, Yamabe T, Yoshinaka R. Simulation of a fully coupled thermo-hydro-mechanicalsystem in freezing and thawing rock[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(5):563-580.
    [79] Neaupane K M, Yamabe T. A fully coupled thermo-hydro-mechanical nonlinear model for a frozenmedium[J]. Computers and Geotechnics,2001,28(8):613-637.
    [80]徐光苗,刘泉声,张秀丽.冻结温度下岩体THM完全耦合的理论初步分析[J].岩石力学与工程学报,2004,23(21):3709-3713.
    [81]匡亮.室内单轴冻胀本构试验及冻土隧道冻胀力模型试验研究[D].西南交通大学,2006.
    [82]刘楠.岩石冻融力学实验及水热耦合分析[D].西安科技大学,2010.
    [83]仇文革,孙兵.寒区破碎岩体隧道冻胀力室内对比试验研究[J].冰川冻土,2010,32(3):557-561.
    [84]康永水,刘泉声,赵军,等.岩石冻胀变形特征及寒区隧道冻胀变形模拟[J].岩石力学与工程学报,2012,31(12):2518-2526.
    [85]何国梁,张磊,吴刚.循环冻融条件下岩石物理特性的试验研究[J].岩土力学,2004,25(曾2):52-56.
    [86]张慧梅,杨更社.冻融与荷载耦合作用下岩石损伤模型的研究[J].岩石力学与工程学报,2010,29(3):471-476.
    [87]李宁,张平,程国栋.冻结裂隙砂岩低周循环动力特性试验研究[J].自然科学进展,2001,11(11):1175-1180.
    [88]徐光苗,刘泉声,彭万巍,等.低温作用下岩石基本力学性质试验研究[J].岩石力学与工程学报,2006,25(12):2502-2508.
    [89]杨更社,奚家米,李慧军,等.三向受力条件下冻结岩石力学特性试验研究[J].岩石力学与工程学报,2010,29(3):459-464.
    [90]邓刚,王建宇,郑金龙.寒区隧道冻胀力学的约束冻胀模型[J].中国公路学报,2010,23(1):80-85.
    [91]谢鸿政,杨枫林.数学物理方程[M].北京:科学出版社,2008.
    [92]于涛.数学物理方程与特殊函数[M].北京:科学出版社,2008.
    [93]陈子萌.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994.
    [94]刘利强.Laplace反变换的一种数值算法[J].内蒙古工业大学学报,2002,21(1):47-49.
    [95]谢咏梅,胡娟,单华宁,等.Laplace变换的数值反演算法的研究[J].南京师大学报(自然科学版),2001,24(4):12-15.
    [96]贾乃文.几个粘塑性问题的Laplace变换解[J].华南理工大学学报(自然科学版),1992,20(1):74-81.
    [97]范天佑.Laplace变换的数值反演[J].数学的实践与认识,1987,17(3):68-75.
    [98]同登科,陈钦雷.关于Laplace数值反演stehfest方法的一点注记[J].石油学报,2001,22(6):91-92.
    [99] J. Toutain, J.-L. Battaglia, C. Pradere, et al. Numerical inversion of laplace transform for time resolvedthermal characterization experiment[J]. Journal of heat transfer,2011,(133):1-3.
    [100] Peter den iseger. Numerical transform inversion using Gaussian quadrature[J]. Probability in theengineering and information science,2006,(20):1-44.
    [101] GEO-SLOPE International Ltd. Thermal Modeling with TEMP/W2007[M]. Canada: GEO-SLOPEInternational Ltd,2008.
    [102]何川,谢红强.多场耦合分析在隧道工程中的应用[M].成都:西南交大出版社,2007.
    [103]郑颖人.地下工程围岩稳定分析与设计理论[M].北京:人民交通出版社,2012.
    [104]赖远明,张明义,李双洋.寒区工程理论与应用[M].北京:科学出版社,2009.
    [105]蒋斌松,陈伟.立井冻结壁初应力场分析[J].山东矿业学院学报,1995,14(2):111-115.
    [106]徐芝纶.弹性力学(第四版)[M].北京:高等教育出版社,2006.
    [107]蒋斌松,张强,贺永年,等.深部圆形巷道破裂围岩的弹塑性分析[J].岩石力学与工程学报,2007,26(5):982-986.
    [108]刘夕才,林韵梅.软岩巷道弹塑性变形的理论分析[J].岩土力学,1994,15(2):27-35.
    [109]孙金山,卢文波.非轴对称荷载下圆形隧道围岩弹塑性分析解析解[J].岩土力学,2007,28(曾2):327-333.
    [110]卞康,肖明.二向不等围压条件下考虑软化及剪胀的圆形隧洞弹塑性解[J].岩石力学与工程学报,2011,30(曾2):3831-3839.
    [111]吕爱钟,张路青.地下隧道力学分析的复变函数方法[M].北京:科学出版社,2007.
    [112] Lu, A.Z., Zhang, L.Q., Zhang, N. Analytical stress solutions for a circular pressure tunnel at pressureand great depth including support delay[J]. International journal of rock mechanics and mining science,48(3):514-519.
    [113] Wang, Y. Ground response of circular tunnel in poorly consolidated rock[J]. Journal of geotechnicalengineering,1996,122(9):703-708.
    [114]夏才初,黄继辉,卞跃威.融化作用下多年冻土隧道围岩的弹塑性解及其与支护的相互作用分析[J].岩土力学,2013,34(7):1987-1995.
    [115]唐雄俊.隧道收敛约束法的理论研究与应用[D].华中科技大学,2009.
    [116] Pierpaolo Oreste. The convergence-confinement mothod: Roles and limits in modern geomechanicaltunnel design[J]. American journal of applied sciences,2009(6):757-771.
    [117]扈世民.大断面黄土隧道围岩变形特征及控制技术研究[D].北京交通大学,2012.
    [118]王丰.相似理论及其在传热中的应用[M].北京:高等教育出版社,1990.
    [119]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982.
    [120]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700