用户名: 密码: 验证码:
软土中盾构隧道的长期非线性固结变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对软土盾构隧道的研究主要集中于开挖造成的短期地表及隧道沉降、施工扰动,及盾构开挖对隧道支护内力的影响。然而对已建成地铁盾构隧道的现场监测表明:软土地铁盾构隧道的长期沉降量很大,达到沉降稳定状态所需的时间亦十分漫长,且沉降在隧道纵向呈现出很大的不均匀性。地铁隧道长期沉降的影响因素十分复杂,其中初始超孔隙水压力分布、隧道衬砌和周边土体的相对渗透性等对地铁长期沉降造成的影响尤为显著。对于埋置于深厚软土地区的地铁隧道而言,列车荷载的长期作用会引起隧道周边饱和软土应力、应变和孔隙水压力变化,导致土的刚度降低、强度衰减、变形加剧。本文采用解析方法,结合已有工程实测数据,对渗漏隧道周边土体长期非线性固结过程中稳定渗流状态、超孔隙水压力消散、地表沉降等问题展开研究,主要创新工作如下:
     1.采用经典的e-lgσ'和e-lg k经验公式模拟土体非线性固结过程中体积压缩性和渗透性的变化,根据土体自由应变和连续性条件得到了土体非线性固结控制方程。
     2.将隧道衬砌透水条件理想化为完全透水及完全不透水极端边界条件,从而得到了隧道作为一个排水边界时,对土体非线性固结过程中超孔压消散、固结度增长、地面沉降发展影响的上下限。并进一步采用Li(1999)提出的半渗透边界条件将存在局部渗漏通道的隧道衬砌等效为均质透水体,建立局部渗漏边界条件,求解隧道周边土体的非线性固结本构方程,得出了不同程度的衬砌局部渗漏条件下的隧道周边软土非线性固结解析解。进而对衬砌不同程度渗漏对隧道周边土体长期固结、超孔隙水压力压力消散、长期沉降的影响进行了分析。
     3.通过将列车荷载等效为矩形循环荷载,求得了列车荷载作用下理想化渗漏隧道周边土体非线性固结解析解。通过等效矩形循环荷载参数的调整,分析了列车荷载对土体固结、地表沉降的影响规律,以及列车荷载与衬砌渗漏情况的耦合作用。
     4.采用Merchant三元件模型模拟土体长期变形的粘弹性,建立隧道周边土体粘弹性流变固结控制方程,并引入e-lg k关系考虑土体渗透性在固结过程中的非线性变化,并采用迭代递推的办法获得了列车荷载作用下局部渗漏隧道周边土体的长期沉降解析解。
     5.以上海地铁1号线和2号线为工程背景,通过本文得到的解析解预测值和上海地铁三个测点实测沉降数据的对比验证了本文非线性固结解析解以及粘弹性流变固结解析解的合理性。
Many theoretical and field studies have been performed on tunneling induced response of surrounding soil and interaction of soil-structure, yet most of these studies are concerned with short-term response by tunnel construction. However, many field measurements comfirmed that long-term deformation of surrounding soft soil of shield tunnels could be very large and last for a long time after construction, and the longitudinal settlement of shield tunnel is uneven. In the various factors that affect the long-term settlement of metro tunnel, the initial excess pore pressure induced by tunneling, partially sealed lining, and relative permeability of soil-lining are more significant. Meanwhile, for shield tunnel buried in deep soft soil, train loading during long-term operation after construction could induce the variation of stress, strain, and pore pressure, leading to reduction of soil stiffness, enlarging of soil deformation. In this dissertation, steady seepage state, dissipation of excess pore pressure, and land subsidence of soil around shield tunnel are systematically studied by both analytical method and field study. The main original work of this dissertation includes:
     1. The empirical e-lg σ' and e-lg k relation are introduced to simulate nonlinear behavior of soil during long-term consolidation. Then based on the free strain assumption and continuity equation, the governing equation of two-dimensional nonlinear consolidation of soil around shield tunnel is derived.
     2. The linings of shield tunnel are idealized as completely permeable or completely impermeable, which represents the upper and lower limits of the induced soil consolidation behavior. Then the partial sealed linings of tunnel are idealized as a homogeneous body by introducing a relative parameter of soil-lining permeability κ which is first proposed by Li(1999). The analytical solutions of governing equation of nonlinear consolidation are derived by introducing the partially permeable condition κ to discuss the influence on soil consolidation, dissipation of excess pore pressure, and long-term consolidation settlement.
     3. The train loading is simplified as equivalent rectangular cyclic loading q to obtain the analytical solution of nonlinear consolidation of soil around shield tunnel with both idealized sealed linings and partially sealed linings. By the adjusting of equivalent rectangular cyclic loading and relative parameter of soil-lining permeability, the influence of train loading and coupled effects of both partially sealed lining and train loading on soil consolidation, ground settlement, and settlement rate are discussed.
     4. Merchant model is employed to simulate the visco-elastic deformation of soil, and the governing equation of consolidation of visco-elastic soil around shield tunnel with partially sealed linings is established. Then a recursive method is used to introduce e-lg k relation to consider the variation of soil permeability during consolidation. The analytical solution of long-term ground settlement of shield tunnel in creep soil under train loading is obtained.
     5. Three case studies from Shanghai metro line No.l and No.2are simulated to investigate the behavior of nonlinear consolidation of soil around shield tunnel. The rationality of analytical solutions of nonlinear consolidation and visco-elastic model are verified by the comparison between predicted and observed long-term settlements。
引文
[1]Abbasi, N., Rahimi, H., Javadi, A. A., et al.. Finite difference approach for consolidation with variable compressibility and permeability. Computers and geotechnics,2007,34(1):41-52.
    [2]Aiban, S. A., Znidarcic, D.. Evaluation of the flow pump and constant head techniques for permeability measurements. Geotechnique, 1989,39(4): 655-666.
    [3]Albers, B.. On results of the surface wave analyses in poroelastic media by means of the simple mixture model and the Biot model. Soil Dynamics and Earthquake Engineering, 2006,26(6-7):537-547.
    [4]Anagnostou, G.. The influence of tunnel excavation on the hydraulic head. International journal for numerical and analytical methods in geomechanics, 1995,19(10):725-746.
    [5]Arjnoi, P.. Effect of drainage conditions on porewater pore water distributions and lining stresses in drained tunnels. Tunnelling and Underground Space Technology,2009,24(6):376-389.
    [6]Arjnoi P, Jeong J H, Kim C Y, et al. Effect of drainage conditions on porewater pressure distributions and lining stresses in drained tunnels. Tunnelling and Underground Space Technology, 2009,24(4):376-389.
    [7]Arnod, S., Battaglio, M., Bbllomo, N.. Nonlinear models in soils consolidation theory parameter sensitivity analysis. Mathematical and computer modelling, 1996,24(3):11-20.
    [8]Attewell, P. B., Farmer, I. W.. Ground disturbance caused by shield tunnelling in a stiff, overconsolidated clay. Engineering Geology, 1974,8(4):361-381.
    [9]Bardon, L., Berry, P. L.. Consolidation of normally consolidated clay. Journal of the Soil Mechanics and Foundation Division, ASCE,1965,91(SM5):15-35.
    [10]Biot, M. A.. General theory of three-dimensional consolidation. Journal of applied physics, 2004,12(2):155-164.
    [11]Biot, M. A.. General solutions of the equations of elasticity and consolidation for a porous material. J. appl. Mech, 1956,23(1):91-96.
    [12]Brown, S. F., Lashine, A. K. F., Hyde, A. F. L.. Repeated load triaxial testing of a silty clay. Geotechnique, 1975,25(1):95-114.
    [13]Cai, Y. Q., Geng, X. Y., Xu, C. J.. Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings. Computers and Geotechnics,2007,34(1):31-40.
    [14]Carter J P, Booker J R. Elastic consolidation around a deep circular tunnel. International journal of Solids and Structures,1982,18(12):1059-1074.
    [15]Carter J P, Booker J R. Creep and consolidation around circular openings in infinite media. International Journal of Solids and Structures, 1983,19(8): 663-675.
    [16]Carter J P, Booker J R. Elastic consolidation around a lined circular tunnel. International journal of solids and structures, 1984,20(6):589-608.
    [17]Chai, J. C., Miura, N., Zhu, H. H.. Compression and consolidation characteristics of structured natural clay. Canadian geotechnical journal, 2004, 41(6):1250-1258.
    [18]Chisyaki T. A study on confined flow of ground water through a tunnel. Groundwater, 1984,22(2):162-167.
    [19]Chou, W. I., Bobet, A.. Predictions of ground deformations in shallow tunnels in clay. Tunnelling and Underground Space Technology, 2002,17(1):3-19.
    [20]Clough, G. W., Schimdt, B.. Design and Performance of excavations and tunnels in geotechnical engineering 20.Elsevier Scientific Publishing Company, Amsterdam, Netherland,1977,567-634.
    [21]Cooper M L, Chapman D N, Rogers C D F, et al. Movements in the Piccadilly Line tunnels due to the Heathrow Express construction. Geotechnique, 2002, 52(4):243-257.
    [22]Cornetti, P., Battaglio, M.. Nonlinear consolidation of soil modeling and solution techniques. Mathematical and computer modelling, 1994,20(7):1-12.
    [23]Davis, E. H., Raymond G. P.. A Nonlinear theory of consolidation. Geotechnique, 1965,15(2):161-173.
    [24]Delory F A, Crawford A M, Gibson M E M. Measurements on a tunnel lining in very dense till. Canadian Geotechnical Journal, 1979,16(1):190-199.
    [25]Deng, Y. E, Xie, H. P., Huang, R., et al. Law of nonlinear flow in saturated clays and radial consolidation. Applied Mathematics and Mechanics, 2007,28: 1427-1436.
    [26]Domenico, P.A., F.W. Schwartz.. Physical and Chemical Hydrogeology. New York: John Wiley and Sons,1990
    [27]Duncan, J. M.. Limitation of conventional analysis of consolidation settlement (27th Terzaghi Lecture). Journal of Geotechnical Engineering Divesion, ASCE, 1993,119(9):1333-1359.
    [28]Eberhardt, E.. Numerical modelling of three-dimension stress rotation ahead of an advancing tunnel face. International Journal of Rock Mechanics and Mining Sciences,2001,38(4):499-518.
    [29]El Tani, M.. Circular tunnel in a semi-infinite aquifer. Tunnelling and Underground Space Technology,2003.18 (1):49-55.
    [30]Fang, Y. S., Lin, S. J.,Lin, J. S.. Time and settlement in EPB shield tunnelling. Tunnels and Tunnelling, 1993,25(11):27-28.
    [31]France, J. W., Sangrey, D. A.. Effects of drainage in repeated loading of clays. Journal of the Geotechnical Engineering Division, 1977,103(7):769-785.
    [32]Freeze, R.A., Cherry, J.A.. Groundwater. New Jersey: Prentice-Hall Inc, 1979
    [33]Geng, X., Xu, C., Cai, Y.. Non-linear consolidation analysis of soil with variable compressibility and permeability under cyclic loadings. International journal for numerical and analytical methods in geomechanics, 2006,30(8): 803-821.
    [34]Goodman, R. E., Moye D. G., Van, Schalkwyk, A., et al.. Ground water inflows during tunnel driving. Engineering Geology, 1965,2(2):39-56.
    [35]Gourvenec S M, Mair R J, Bolton M D, et al. Ground conditions around an old tunnel in London Clay. Proceedings of the ICE-Geotechnical Engineering, 2005,158(1):25-33.
    [36]Hashash, Y. M. A., Whittle, A. J.. Ground movement prediction for deep excavations in soft clay. Journal of Geotechnical Engineering, 1996,122(6): 474-486.
    [37]Hurrell, M. R.. The empirical prediction of long-term surface settlements above shield-driven tunnels in soil[C]//Proceedings of the Second International Conference of Ground Movements and Structures. London: Pub. Pentech Press. 1984:161-170.
    [38]Kaynia, A. M., Madshus, C., Zackrisson, P.. Ground vibration from high-speed trains:prediction and countermeasure. Journal of Geotechnical and Geoenvironmental Engineering, 2000,126(6):531-537.
    [39]Kolymbas, D. C., Wagner, P.. Groundwater ingress to tunnels-the exact analytical solution. Tunnelling and Underground Space Technology, 2007, 22(1):23-27.
    [40]Koutsoftas, D. C. Effect of cyclic loads on undrained strength of two marine clays. Journal of the Geotechnical Engineering Division,1978,104(5):609-620.
    [41]Koutsoftas, D. C., Fischer, J. A.. Dynamic properties of two marine clays. Journal of the Geotechnical Engineering Division, 1980,106(6):645-657.
    [42]Lamcellotta, R., Preziosi, L.. A general nonlinear mathematical model for soil consolidation problems. International journal of engineering science,1997, 35(10):1045-1063.
    [43]Laver, R. G.. Long-term behaviour of twin tunnels in London clay. Ph.D. dissertation, 2011, Cambridge University.
    [44]Lee, K. M., Ji, H. W., Shen, C. K., et al. Ground response to the construction of Shanghai metro tunnel-line 2. Soils and Foundations, 1999,39(3):113-134.
    [45]Lei, S.. An Analytical Solution for Steady Flow into a tonnel. Ground water, 1999,37(1):23-26.
    [46]Lekha, K. R., Krishnaswamy N R, Basak P. Consolidation of clays for variable permeability and compressibility. Journal of geotechnical and geoenvironmental engineering, 2003,129(11):1001-1009.
    [47]Li, X.. Stress and displacement fields around a deep circular tunnel with partial sealing. Computers and Geotechnics,1999,24(2):125-140.
    [48]Li, X, Flores-Berrones R. Time-dependent behavior of partially sealed circular tunnels. Computers and Geotechnics,2002,29(6):433-449.
    [49]Lo, K. Y.. Discussion on Rowe, measurement of the coefficient of consolidation of lacustrine clay. Geotechnique, 1960,10(1):36-39.
    [50]Loganathan, N., Poulos, H. G., Stewart, D. P.. Centrifuge model testing of tunnelling-induced ground and pile deformations. Geotechnique,2000,50(3): 283-294.
    [51]Mair R.J. Ground movement around shallow tunnels in soft clay[J]. Tunnels and Tunneling, 1982(6):323-328.
    [52]Mair, R.J.. Tunnelling and geotechnics:new horizons. Geotechnique, 2008, 58(9):695-736.
    [53]Mair, R.J., Taylor R. N.. Bored tunnelling in the urban environment: State-of-the-art report and theme lecture. Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Press of Balkema, Hamburg, 1997,2353-2385.
    [54]Meiri, D.. Unconfined groundwater flow calculation into a tunnel. Journal of Hydrology, 1985,82(1):69-75.
    [55]Mesri, G., and Rokhsar, A.. Theory of consolidation of clays. Journal of the Geotechnical Engineering Division, ASCE, 1974,100(GT8):889-903,
    [56]Mohamed, E. T.. Circular tunnel in a semi-infinite aquifer. Tunnelling and underground space technology, 2003,18(1):49-55.
    [57]Monismith,C.L.,Ogawa,N.,Freeme,C. R.. Permanent deformation characteristics of subgrade soils due to repeated loading. [C]//Transp. Res. Rec. No.537. Transportation Research Board. Washington, D. C.,1975.
    [58]O'Reilly, M. P., Mair, R. J., Alderman, G. H.. Long-term settlements over tunnels:an eleven-year study at Grimsby[C]//Proceedings of Conference Tunnelling. London:Instition of Mining and Metallurgy,1991:55-64.
    [59]Palmer, J. H. L., Belshaw, D. J.,. Deformations and pore pressure in the vicinity of a precast, segmented, concrete-lined tunnel in clay. Canadian Geotechnical. 1980,17(2):174-184.
    [60]Pane, V., Schiffman, R. L.. A note on sedimentation and consolidation. Geotechnique,1985,35(1).
    [61]Park, K. H., Owatsiriwong, A., Lee, J. G.. Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer:a revisit. Tunnelling and Underground Space Technology, 2008,23(2):206-209.
    [62]Peck, R. B.. Deep excavations and tunnelling in soft ground. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Sociedad Mexicana de Mecanica Press, Mexico City, 1969,225-290.
    [63]Peck, R.B., Hendron, Jr.A.J., Mohraz, B.. State of the art of soft-ground tunneling. Proceedings of the 1 st Rapid Excavation and Tunneling Conference. Chicago, 1972,1:259-286.
    [64]Polubarinova-Kochina, P. Y.. Theory of ground water movement. Princeton University Press,1962.
    [65]Poskitt, T. J., The consolidation of saturated clay with variable permeability and compressibility.Geotechnique,1969,19(2):234-252.
    [66]Qiao, J., Liu, J., Guo, W.. Artificial neural network to predict the surface maximum settlement by shield tunneling[M]//Intelligent Robotics and Applications. Springer Berlin Heidelberg, 2010:257-265.
    [67]Rowe, R.K., Lee, K.M.. Subsidence owing to tunneling. Ⅱ: Evaluation of a prediction technique. Canadian Geotechnical Journal, 1992,29:941-954.
    [68]Sangrey, D. A., Henkel, D. J., Esrig, M. I.. The effective stress response of a saturated clay soil to repeated loading. Canadian Geotechnical Journal, 1969, 6(3):241-252.
    [69]Seed, H. B., Chan, C. K.. Effect of duration of stress application on soil deformation under repeated loading[C]//Proceedings 5th international congress on soil mechanics and foundations.1961,1:341-345.
    [70]Samarasinghe, A. M., Huang, Y. H., Drnevich, V. P.. Permeability and consolidation of normally consolidated soils. Journal of the Geotechnical Engineering Division, 1982,108(6):835-850.
    [71]Shin, J. H.. Analytical and combined numerical methods evaluating pore water pressure on tunnels. Geotechnique, 2009,60(2):141-145.
    [72]Shin, J. H.. Numerical study of the effect of groundwater movement on long-term tunnel behaviour. Geotechnique, 2002,52(6):391-403.
    [73]Shin, J. H., Potts, D. M., Zdravkovic, L.. The effect of pore-water pressure on NATM tunnel linings in decomposed granite soil. Canadian geotechnical journal, 2005,42(6):1585-1599.
    [74]Shirlaw, J.N.. Observed and calculated pore pressure and deformations induced by an earth balance shield: discussion. Canadian Geotechnical,1995,32(1): 181-189.
    [75]Skempton, A. W.. The pore-pressure coefficients A and B. Geotechnique, 1954, 4(4):143-147.
    [76]Tal, A., Dagan G.. Flow Toward Storage Tunnels Beneath a Water Table: 2. Three-Dimensional Flow. Water resources research,1984,20(9):1216-1224.
    [77]Tavenas F, Leblond P, Jean P, et al. The permeability of natural soft clays. Part I:Methods of laboratory measurement. Canadian Geotechnical Journal,1983, 20(4):629-644.
    [78]Tavenas F, Jean P, Leblond P, et al. The permeability of natural soft clays. Part Ⅱ:Permeability characteristics. Canadian Geotechnical Journal,1983,20(4): 645-660.
    [79]Terzaghi, K.. Shield tunnels of Chicago subway. J. Boston Soc. Civil Eng., 1942,392(3):67-114
    [80]Verruijt, A., Booker, J,.R,. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique, 1996,46(4):753-756.
    [81]Verruijt, A.. A complex variable solution for a deforming circular tunnel in an elastic half-plane. Numerical and Analytical Methods in Geomechanics,1997, 21(2):77-89.
    [82]Verruijt A. Deformations of an elastic half plane with a circular cavity. International Journal of Solids Structures,1998,35(21):2795-2804
    [83]Verruijt, A., Booker, J.R., Complex Variable Analysis of Mindlin's Tunnel Problem[M]. Development of Theoretical Geomechanics. Balkema, Sydney, 2000,3-22.
    [84]Wongsaroj, J., Soga, K., Mair, R. J.. Modelling of long-term ground response to tunnelling under St James's Park, London. Geotechnique, 2007,57(1):75-90.
    [85]Ward, W. H., Thomas, H. S. H.. The development of earth loading and deformation in tunnel linings in London Clay. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, University of Toronto Press, Montreal,1965,432-436.
    [86]Ward, W. H., Pender, M. J.. Tunnelling in soft ground:General report. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Press of Balkema, Stockholm,1981,261-275.
    [87]Wang,M. B., Wang, G.. A Modified Stress-Displacement Solution for a Pressure Tunnel with a Permeable Liner in an Elastic Porous Medium Based on a New Model. Rock Mechanics and Rock Engineering,2013,46(2):259-268.
    [88]Wongsaroj, J.. Three-dimensional finite element analysis of short and long-term ground response to open-face tunnelling in stiff clay. Ph.D. dissertation, 2005, Cambridge University.
    [89]Wu, H. N., Xu, Y. S., Shen, S. L.Chai, J. C. Long-term settlement behavior of ground around shield tunnel due to leakage of water in soft deposit of Shanghai. Frontiers of Architecture and Civil Engineering in China,2011,5(2):194-198.
    [90]Xie, K. H., Qi, T., Dong, Y.. Nonlinear analytical solution for one-dimensional consolidation of soft soil under cyclic loading. Journal of Zhejiang University SCIENCE A,2006,7(8):1358-1364.
    [91]Xie, K., Liu, G., Shi, Z.. Dynamic response of partially sealed circular tunnel in viscoelastic saturated soil. Soil Dynamics and Earthquake Engineering, 2004, 24(12):1003-1011.
    [92]Xie, K. H., Li, B. H., Li, Q. L.. A nonlinear theory of consolidation under time-dependent loading[C]//Proceedings of 2nd International Conference on Soft Soil Engineering. Nanjing: Hohai University Press. 1996:193-198.
    [93]Xie, K. H., Xie, X. Y., Jiang, W.. A study on one-dimensional nonlinear consolidation of double-layered soil. Computers and Geotechnics, 2002,29(2): 151-168.
    [94]Zhu, G., Yin, J. H.. Design charts for vertical drains considering construction time. Canadian geotechnical journal, 2001,38(5):1142-1148.
    [95]Zhuang, Y. C., Xie, K. H.. Study on one-dimensional consolidation of soil under cyclic loading and with varied compressibility. Journal of Zhejiang University SCIENCE A,2005,6(2):141-147.
    [96]Zhuang, Y. C., Xie, K. H., Li, X. B.. Nonlinear analysis of consolidation with variable compressibility and permeability. Journal of Zhejiang University SCIENCE A, 2005,6(3):181-187.
    [97]包鹤立.衬砌局部渗漏条件下软土盾构隧道的长期性态研究.硕士学位论文,2008,上海:同济大学.
    [98]陈宗基.固结及次时间效应的单向问题.土木工程学报,1958,5(1):1-10.
    [99]程斌.车致振动下地铁隧道位移规律的研究.上海:同济大学,2003.
    [100]鄂建,陈刚,孙爱荣.考虑低速非Darcy渗流的饱和黏性土一维固结分析.岩土工程学报,2009,31(7):1115-1119.
    [101]付龙龙,宫全美,周顺华,等.列车荷载作用下有砟轨道轨面沉降与路基不均匀沉降间的相关关系.振动与冲击,2013,32(14):23-28.
    [102]甘友文,王志亮,郑华..地基沉降预测中的双曲线模型修正.水文地质工程地质,2004(1):98-100.
    [103]高广运,徐大为,张先林,等.地铁循环荷载作用下上海软土路基的长期沉降计算.桂林理工大学学报,2012,32(3):370-374.
    [104]高文华.流变软土地基模型的时效分析与刚度计算.岩土力学,1998,19(4):25-30.
    [105]耿雪玉.复杂条件下软黏土地基多维固结分析.博士学位论文,2008.
    [106]耿雪玉,徐长节,蔡袁强.循环荷载作用下饱和软粘土非线性一维固结.岩石力学与工程学报,2004,23(19):3353-3358.
    [107]龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    [108]侯学渊,廖少明.盾构隧道沉降预估.地下工程与隧道,1993,4:24-32.
    [109]胡亚元,王立忠,陈云敏.多层地基二维Biot固结的理论解答.岩土工程学报,1998,20(5):17-21.
    [110]黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性.岩土工程学报,2006,28(7):891-895.
    [111]黄宏伟,刘印,张冬梅.盾构隧道长期渗水对地表沉降及管片内力的影响.中国铁道科学,2012,33(6):36-43.
    [112]姜洲,高广运,赵宏,陈功奇.软土地区地铁行车荷载引起的隧道长期沉降分析.岩土工程学报,2013,35(zk2):301-307.
    [113]蒋洪胜,侯学渊.盾构掘进对隧道周围土层扰动的理论与实测分析.岩石力学与工程学报,2003,22(9):1514-1520.
    [114]蒋军,陈龙珠.长期循环荷载作用下粘土的一维沉降.岩土工程学报,2001,23(3):366-369.
    [115]纠永志,刘忠玉,乐金朝,等.考虑非Darcy渗流和自重应力的一维固结分析.同济大学学报:自然科学版,2012,40(4):541-548.
    [116]李冰河,谢康和.初始有效应力沿深度变化的非线性一维固结半解析解.土木工程学报,1999,32(6):47-52.
    [117]李冰河,谢康和.变荷载下软粘土非线性一维固结半解析解.岩土工程学报,1999,21(3):288-293.
    [118]李传勋,谢康和,胡安峰,刘兴旺,王玉林.基于指数形式渗流下的软土一维非线性固结分析.中南大学学报(自然科学版),2012,43(7):2789-2795.
    [119]李进军,黄茂松,王育德.交通荷载作用下软土地基累积塑性变形分析.中国公路学报,2006,19(1):1-5.
    [120]李翔宇,刘国彬,刘铭,冯庆高。考虑半渗透边界的隧道周围超孔隙水压力消散解.岩土工程学报,2014,36(1):75-82.
    [121]李西斌.软土流变固结理论与试验研究. 博士学位论文,2005,杭州:浙江大学.
    [122]刘保健,谢永利.公路软基在变荷载条件下的沉降计算.中国公路学报,2000,13(4):21-25.
    [123]刘峰.软土地区地铁隧道长期沉降及对地铁安全的影响.硕士学位论文,2013,南京:南京大学
    [124]刘干斌,谢康和,施祖元,等.横观各向同性土中深埋圆形隧道的应力和位移分析.岩土工程学报,2003,25(6):727-731.
    [125]刘干斌,谢康和,施祖元.饱和土体中压力隧洞衬砌一土相互作用解析研究.应用力学学报,2004,21(4):56-61
    [126]刘干斌.软土隧道固结性状及相互作用理论研究.博士学位论文,2004,杭州:浙江大学.
    [127]刘加湾,魏纲,陈伟军.软土地层中盾构隧道工后沉降的幂多项式预测与分析.市政技术,2010,28(1):102-104.
    [128]刘建航,侯学渊.盾构法隧道.北京:中国铁道出版社,1991.
    [129]刘明,黄茂松,李进军.地铁荷载作用下饱和软粘土的长期沉降分析.地下空间与工程学报,2006,2(5):813-817.
    [130]刘明,黄茂松,柳艳华.车振荷载引起的软土越江隧道长期沉降分析.岩土工程学报,2009,31(11):1703-1709.
    [131]刘铭,王志良.盾构施工扰动引起隧道固结沉降的估算方法.铁道学报,2012,34(11):115-121.
    [132]刘印,张冬梅,黄宏伟.盾构隧道局部长期渗水对隧道变形及地表沉降的影响分析.岩土力学,2013,34(1):290-304
    [133]刘忠玉,孙丽云,乐金朝,等.基于非Darcy渗流的饱和黏土一维固结理论.岩石力学与工程学报,2009,28(5):973-979.
    [134]刘忠玉,纠永志,乐金朝.基于非Darcy渗流的饱和黏土一维非线性固结分析.岩石力学与工程学报,2010,29(11):2348-2355.
    [135]刘祚秋,富明慧,周翠英.变荷载下任意层地基一维非线性固结的数值分析.中山大学学报:自然科学版,2007,46(5):1-4.
    [136]梁尧篪.水工压力隧道的渗透动水压力.岩土工程学报,1984,6(1):85-90.
    [137]凌建明,王伟.行车荷载作用下湿软路基残余变形的研究.同济大学学报:自然科学版,2002,30(11):1315-1320.
    [138]林志.盾构隧道施工引起的超孔隙水压力规律研究.公路隧道,2008(4):46-53.
    [139]林志斌,李元海,赵耀强,时林坡.地下水对软土盾构隧道施工的影响规律分析.地下空间与工程学报,2012,8(2):375-381.
    [140]马崇武,刘忠玉..考虑饱和黏土埋深影响的一维非线性固结.岩石力学与工程学报,2007,26:4372-4372.
    [141]马龙祥,张冬梅.软土盾构隧道稳定渗流分析.地下空间与工程学报,2013,9(1):38-41.
    [142]缪林昌,王非,吕伟华.城市地铁隧道施工引起的地面沉降.东南大学学报:自然科学版,2008,38(2):293-297.
    [143]潘旦光,楼梦麟.变参数土层一维固结的半解析解.工程力学,2009,26(1):58-73.
    [144]齐添,谢康和,胡安峰,等.萧山黏土非达西渗流性状的试验研究.浙江大学学报:工学版,2007,41(6):1023-1028.
    [145]齐添.软土一维非线性固结理论与试验对比研究.博士学位论文,2008,杭州:浙江大学.
    [146]齐添,谢康和,李西斌.软土的一维非线性固结计算参数及其测定.浙江大学学报:工学版,2006,40(8):1388-1392.
    [147]璩继立.盾构施工引起的地面长期沉降研究.博士学位论文,2002,上海:同济大学.
    [148]单涛涛,楼梦麟,贾宝印.关于上海地铁一号线轨道高低不平顺问题的探讨.振动与冲击,2012,12:53-58.
    [149]商卫东,白冰,蔡文雅.荷载随时间变化情况下非线性固结问题的求解方法.水利与建筑工程学报,2010,8(1):27-29.
    [150]宋锦虎,缪林昌,戴仕敏,等.盾构施工对孔压扰动的三维流固耦合分析.岩土工程学报,2013,35(2):302-312.
    [151]孙钧,侯学渊.地下结构.北京:科学出版社,1987.
    [152]孙丽云,刘忠玉,乐金朝,等.考虑非Darcy渗流时循环荷载下饱和黏土一维固结分析.岩土力学,2010,31(z1):62-68.
    [153]唐益群,黄雨,叶为民.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析.岩石力学与工程学报,2003,22(9):1566-1570.
    [154]唐益群,栾长青,张曦,等.地铁振动荷载作用下隧道土体变形数值模拟.地下空间与工程学报,2008,4(1):105-110.
    [155]童磊.软土浅埋隧道变形,渗流及固结性状研究.博士学位论文,2010,杭州:浙江大学.
    [156]童磊,谢康和,卢萌盟,等.半无限含水层中带衬砌隧洞渗流解析研究.岩土力学,2011,32(1):304-308
    [157]王俊,雷宏武,徐芬,王静.变渗透系数软土一维非线性固结沉降数值模拟.地下水,2010,32(2):155-157.
    [158]王志良,刘铭,谢建斌,等.盾构施工引起地表固结沉降问题的研究.岩土力学,2013,34(Z1):127-133..
    [159]魏纲.盾构施工引起地面长期沉降的理论计算研究.岩石力学与工程学报,2008,27(Z1):2960-2960.
    [160]魏纲,袁曦.盾构隧道地面长期沉降的时间序列预测.市政技术,2008,26(4):317-319.
    [161]魏纲,张金菊,魏新江.数学模型在盾构地面长期沉降预测中的应用.地下空间与工程学报,2009,5(3):542-545.
    [162]魏纲,周洋,魏新江.盾构隧道施工引起的工后地面沉降研究.岩石力学与工程学报,2013,32(A01):2891-2896.
    [163]魏汝龙.整理压缩试验资料的一种新方法.水利水运科学研究,1980(3):90-93.
    [164]魏新江,陈伟军,魏纲.盾构隧道施工引起的土体初始超孔隙水压力分布研究.岩土力学,2012,33(7):2103-2109.
    [165]韦凯,宫全美,周顺华.基于蚁群算法的地铁盾构隧道长期沉降预测.铁道学报,2008,30(4):79-83.
    [166]吴怀娜,胡蒙达,许烨霜,等.管片局部渗漏对地铁隧道长期沉降的影响规律.地下空间与工程学报,2009,5(A02):1608-1611.
    [167]肖立,张庆贺,朱继文.盾构施工引起的超孔隙水压力解析解.同济大学学报:自然科学版,2011,39(002):194-198.
    [168]肖立,张庆贺,朱继文,等.盾构施工引起超孔隙水压力变化分析研究.地下空间与工程学报,2010,6(5):1039-1043.
    [169]谢康和,齐添,胡安峰,夏建中.基于GDS的黏土非线性渗透特性试验研究.岩土力学,2008,29(2):420-424.
    [170]谢康和,郑辉,李冰河,等.变荷载下成层地基一维非线性固结分析.浙江大学学报:工学版,2003,37(4):426-431.
    [171]谢康和,周瑾,董亚钦.循环荷载作用下地基一维非线性固结解析解.岩石力学与工程学报,2006,25(1):21-26.
    [172]谢康和.双层地基一维固结理论与应用.岩土工程学报,1994,16(5):24-35.
    [173]谢康和,潘秋元.变荷载下任意层地基一维固结理论.岩土工程学报,1995,17(5):80-85.
    [174]徐方京.软土中盾构隧道与深基坑开挖的孔隙水压力与地层移动分析.博士学位论文,1991,上海:同济大学.
    [175]许宏发,钱七虎,吴华杰等.确定软土流变模型参数的回归反演法.岩土工程学报,2003,25(3):365-367.
    [176]许烨霜.考虑地下构筑物对地下水渗流阻挡效应的地面沉降性状研究.博士学位论文,2010,上海:上海交通大学.
    [177]杨泽飞,魏纲,林磊磊,张世民.盾构法隧道施工工后横向地表总沉降研究.岩土力学,2013,34(Z2):338-343
    [178]杨敏,黄炬,孙庆,刘侃,曾英俊.黏土中隧道开挖引起的地表及地表以下土体长期沉降计算方法.岩土工程学报,2012,34(2):217-221.
    [179]姚兆明,张明慧,陈军浩.饱和软黏土循环累积孔压模型及地铁隧道路基长期沉降计算.铁道学报,2012,34(9):87-92.
    [180]詹美礼,钱家欢,陈绪禄.粘弹性地基中洞周土体固结问题的解析解.河海大学学报,1993,21(2):54-60.
    [181]张冬梅,黄宏伟,王箭明.软土隧道地表长期沉降的粘弹性流变与固结耦合分析.岩石力学与工程学报,2003,22(Z1):2359-2362.
    [182]张冬梅,黄宏伟,杨峻.衬砌局部渗流对软土隧道地表长期沉降的影响研究.岩土工程学报,2006,27(12):1430-1436.
    [183]张学钢,黄阿岗,郭旺军.列车荷载长期作用下隧道地基固结变形的数值分析.铁道工程学报,2011(4):22-26.
    [184]赵维炳,施健勇.软土固结与流变.南京:河海大学出版社,1996
    [185]赵春彦,周顺华,袁建议.地铁荷载作用下叠交隧道长期沉降的半解析法.铁道学报,2010,32(004):141-145.
    [186]庄丽,张银屏.软土地层盾构隧道渗漏水量与沉降关系的模拟分析.中国建筑防水,2006(6):13-15.
    [187]张磊,孙树林,龚晓南,张杰..循环荷载下双曲线模型修正土体一维固结解.岩土力学,2010,31(2):455-460
    [188]郑永来,李美利,王明洋,等.软土隧道渗漏对隧道及地面沉降影响研究.岩土工程学报,2005,27(2):243-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700