用户名: 密码: 验证码:
高速铁路预应力箱梁收缩徐变和温度时变效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路预应力箱梁的收缩徐变变形会影响轨道的平顺性,严重时甚至可能造成扣件破坏,进而威胁行车安全。温度效应产生的结构应力是预应力混凝土梁发生裂纹的主要原因,严重的温度裂缝会损害桥梁耐久性和安全性,特别是对于混凝土箱形梁,温度荷载起控制作用。收缩徐变和温度效应都是随时间变化的,作用机理比较复杂,影响因素也很多,并且还存在相互耦合作用。为满足高速铁路长期运营使用对安全性和轨道高平顺性的要求,对无砟轨道预应力混凝土简支箱梁的收缩徐变、温度等时变效应进行分析研究是非常必要的。
     本文以沪杭客运专线桐乡梁场的制梁工程为依托,对高速铁路32m预应力混凝土箱梁的收缩徐变效应和温度效应展开一系列的现场测试、理论研究和模拟仿真分析。全文主要工作概括如下:
     (1)基于ACI209(1992)收缩徐变预测模型,通过修正钢筋约束影响系数、强度影响系数、塌落度影响系数,提出了具有一定精度的适用于高性能混凝土预应力箱梁的收缩徐变预测模型。
     (2)通过试验综合比选,推荐了适用于不同环境条件的客运专线箱梁的养护制度,对于3种环境温度水平给出相应的自然养护方法。研究了不同养护制度下箱梁早期温度场、温度应力的分布规律以及对后期徐变变形的影响。
     (3)通过对沪杭客运专线的一批二期恒载加载时间为60d、90d、120d的预应力混凝土箱梁的收缩徐变变形进行测试,得出结论二期恒载加载时间对箱梁徐变上拱有显著影响,混凝土龄期60~120d都是比较合理的加载时间。
     (4)基于湿度、温度、理论厚度三个因素相互独立的假定,建立了0~90℃范围内,温度与徐变的耦合作用模型。并将该模型与有限元软件相结合,较好地模拟了水化热和季节温度荷载作用下,预应力混凝土箱梁的内力和变形。
     (5)通过相似模型试验的方法,比较研究了预应力张拉批次、张拉时间、预应力筋数量和控制应力对客运专线预应力箱梁徐变的影响规律。两次张拉成型工艺较一次张拉成型工艺的更为合理;适当降低张拉控制应力可以有效减小后期变形和结构内力;延后终张拉时间至28d龄期,对于预应力梁长期变形的控制有积极作用。
The shrinkage and creep deformation of PC bridge can affect the smoothness of rail track, and even cause serious damage to fasteners, which may result in serious threat to traffic safety. The temperature effect is the main reason of cracking in the PC beam. The temperature cracks will damage the durability and safety of bridge, especially the concrete box girder. Shrinkage, creep and temperature effects are all time-depended, and also have mutual coupling effect.
     A series of tests, theoretical study and simulation analysis on the effects of the shrinkage, creep and temperature on32m PC box girder were conducted, on basis of beam production process in Tongxiang Beam Plant of Shanghai Hangzhou passenger dedicated line. The main work of the paper is summarized as follows:
     (1) Based on the creep and shrinkage prediction model of ACI209(1992), the creep and shrinkage prediction model for high performance concrete in passenger dedicated railway bridges was appropriately proposed by introducing the influence coefficients of reinforced constraint, concrete strength and slump of fresh concrete.
     (2) An economic curing system for box girder of passenger dedicated line was presented applicably to different environmental conditions, depended on comparative experimental study. Natural curing methods corresponding to three different temperature levels were given out. The distribution of the temperature field and thermal stress in box-girder bridge in early age was studied under different curing methods.
     (3) Tests on shrinkage and creep deformation of box girders in Shanghai-Hangzhou passenger dedicated line was carried out. The results showed that the loading-age of secondary dead load had a significant influence on creep camber of box girder, and the age of60d-120d seemed to be a reasonable loading time.
     (4) A coupling model of temperature and creep in the range of0℃-90℃was established, on the assumption that humidity, temperature and thickness were three independent factors. The model combined with the finite element software, is applied to simulate the internal force and deformation of prestressed concrete box beam under the temperature loads.
     (5) The creep camber of PC box girder is seriously affected by prestressed tension program:such as tension batch, tension time, quantity of prestressed tendons and the controlled stress, according to a similarity model test carried in this paper. Prestressed tension divided into two batches was more properly than completed in a one-time. It does make sense to delay the final tension time to28d age, in controlling the long-term deformation of PC beam.
引文
[1]李坤.高墩大跨连续刚构桥在温度作用下的轨道高低不平顺及对列车的动力影响[D].成都:西南交通大学,2008.
    [2]国家发展和改革委员会交通运输司.综合交通网中长期发展规划[J].交通运输系统工程与信息[J],2008,1(8):17-28.
    [3]国家发展和改革委员会交通运输司.中长期铁路网规划(2008年调整方案)[J].铁道知识,2008,6:5-7.
    [4]张曙光.高速列车设计方法研究[M].北京:中国铁道出版社,2005.
    [5]石现峰王澜万家.无碴轨道混凝土桥梁的徐变变形研究.[J].石家庄铁道学院学报,2007,1(20):61-63.
    [6]辛学忠.德国铁路无碴轨道技术分析及建议[J].铁道标准设计,2005,2:1-5.
    [7]郑健.中国高速铁路桥梁建设关键技术[J].中国工程科学,2008,7(10):18-27.
    [8]江成范佳王继军.高速铁路无碴轨道设计关键技术[J].中国铁道科学,2004,2(25):42-47.
    [9]曹建安.无碴轨道大跨度预应力混凝土桥梁后期徐变变形和控制方法研究[D].长沙:中南大学,2011.
    [10]罗林.高速铁路轨道必须具有高平顺性[J].中国铁路,2000,10:8-11.
    [11]罗浩.高速铁路大跨度预应力混凝土连续梁徐变变形形对车桥系统耦合振动的影响研究[D].中南大学,2011.
    [12]薛凯.武广客运专线试验段32m简支梁徐变测试与预测[D].长沙:中南大学,2009.
    [13]陈夏新.客运专线桥梁结构类型选择与探讨[C].武汉:2005.
    [14]陈良江.京沪高速铁路常用跨度桥梁的技术特征及选型探讨[J].铁道标准设计,2003(10):15-18.
    [15]铁道部.铁运[2007]44号.既有线提速200-250km/h线桥设备维修规则[S].2007.
    [16]京沪高速[2009]166号.京沪高速铁路无砟轨道梁面质量验收管理实施细则[S].2009.
    [17]朱伯芳,许平.碾压混凝土重力坝的温度应力与温度控制[J].水利水电技术,1996(4):18-25.
    [18]徐丰.混凝土箱梁桥温度效应关键因素研究[D].武汉:华中科技大学,2009.
    [19]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [20]发改委.国家发展改革委关于新建上海至杭州铁路客运专线项目建议书的批复(发改基础[2008]3043号)[G].2008.
    [21]铁道部发展计划司.关于报送新建沪杭甬铁路客运专线上海至杭州段项目建议书的函(铁计[2007]1389号)[G].2007.
    [22]中铁第四勘测设计集团有限公司.新建上海至杭州铁路客运专线指导性施工组织设计[G].
    [23]中铁第四勘测设计集团有限公司.新建上海至杭州铁路客运专线初步文件[G].
    [24]潘钻峰,吕志涛,刘钊,等.高强混凝土收缩徐变试验及预测模型研究[J].公路交通科技,2010(12):10-15.
    [25]杨小兵.混凝土收缩徐变预测模型研究[D].武汉:武汉大学,2004.
    [26]JTG 023-85公路钢筋混凝土及预应力混凝土桥涵设计规范[S].1985.
    [27]JTG D62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].
    [28]TB 1002.3-99.铁路桥涵钢筋混凝土和预应力混凝土结构设计规范[S].
    [29]TB 10002.3-2005铁路钢筋混凝土和预应力混凝土结构设计规范[S].
    [30]Neville A M, Dilger W H, Brooks J J. Creep of plain and structural concrete[M]. London and New York:Construction Press,1983.
    [31]铁建设[2007]47号.新建时速300~350公里客运专线铁路设计暂行规定[S].2007.
    [32]铁建设[2006]158号.客运专线铁路无砟轨道铺设条件评估技术指南[S].2006.
    [33]TB 10020-2009.高速铁路设计规范[S].2009.
    [34]铁建设[2005]160号.客运专线铁路桥涵工程施工质量验收暂行标准[S].2005.
    [35]科技基.铁科技函[2004]120号.客运专线预应力混凝土预制梁暂行技术条件[S].2004.
    [36]铁建设函[2005]754号.客运专线无砟轨道铁路设计指南[S].2005.
    [37]铁建设[2006]158号.客运专线铁路无碴轨道条件铺设评估技术指南[S].2006.
    [38]Bazant Z P, Cusatis G, Cedolin L. Temperature effect on concrete creep modeled by microprestress-solidification theory [J]. Journal of engineering mechanics,2004, 130(6):691-699.
    [39]Bazant Z P, Hauggaard A B, Baweja S. Microprestress-solidification theory for concrete creep. II:Algorithm and verification[J]. Journal of engineering mechanics, 1997,123(11):1195-1201.
    [40]Bazant Z P, Hauggaard A B, Baweja S, et al. Microprestress-solidification theory for concrete creep. I:Aging and drying effects[J]. Journal of Engineering Mechanics, 1997,123(11):1188-1194.
    [41]Vitek J L. Long-term deflections of large prestressed concrete bridges[J]. CEB Bulletin d Information,1997(235):215-227.
    [42]Bazant Z P, Li G, Yu Q, et al. Explanation of excessive long-time deflections of collapsed record-span box girder bridge in Palau[C]. The Maeda Engineering Foundation, Ise-Shima, Japan,2008.
    [43]Takacs P F. Deformations in concrete cantilever bridges:observations and theoretical modelling[D]. Norwegian University of Science and Technology,2002.
    [44]Li X, Robertson I N. Long-term performance predictions of the north Halawa valley viaduct[J]. USA:UHM/CEE/03-04, University of Hawaii,2003:160.
    [45]姚玲森.混凝土斜张桥的徐变与收缩内力计算[J].中南公路工程,1982(01):54-73.
    [46]刘孝平,周义武.预应力混凝土构件的徐变损失与变形计算[J].重庆交通学院学报,1983(03):15-26.
    [47]周履,诸林,黎锡吾.长跨度预应力混凝土铁路连续梁的收缩徐变计算[J].桥梁建设,1984(04):59-72.
    [48]范立础,杜国华,鲍卫刚.桥梁结构徐变次内力分析[J].同济大学学报(自然科学版),1991(01):23-32.
    [49]石现峰,梁志广.几种常用混凝土收缩徐变模式的比较分析[J].石家庄铁道学院学报,1998,11(1):8-13.
    [50]胡狄.预应力混凝土桥梁时变效应分析的钢筋约束影响系数法[J].工程力学,2006.
    [51]胡狄.预应力混凝土桥梁徐变效应分析[D].长沙:中南大学,2003.
    [52]胡狄,陈政清.从短期试验结果预测新建预应力混凝土梁收缩和徐变的长期效应[J].中国铁道科学,2003.
    [53]胡狄,陈政清.预应力混凝土桥梁徐变分析的全量形式自动递进法[J].工程力学,2004.
    [54]胡荻,陈政清.预应力混凝土桥梁收缩与徐变变形试验研究[J].土木工程学报,2003.
    [55]王巍,薛伟辰.高速客运专线轨道梁徐变变形研究进展[J].铁道科学与工程学报,2005,2(4):39-44.
    [56]薛伟辰,胡于明,王巍,等.1200d预应力高性能混凝土梁长期性能试验研究[J].同济大学学报:自然科学版,2008,36(8):1018-1023.
    [57]薛凯.武广客运专线试验段32m简支梁徐变测试与预测[D].武汉:中南大学,2009.
    [58]邵旭东,张伟,彭聪,等.二次预应力梁的徐变和承载力试验研究[J].土木工程学报,2006(08):81-86.
    [59]汪剑.大跨预应力混凝土箱梁桥非荷载效应及预应力损失研究[D].长沙:湖南大学,2006.
    [60]叶梅新,钱淼,刘杰.无碴轨道预应力混凝土桥梁徐变变形控制方法研究[J].铁道标准设计,2009(2):92-94.
    [61]秦煜.早龄期混凝土桥梁时变耦合效应研究[D].西安:长安大学,2012.
    [62]Luo J L, Xu Z S, Zhao D. Review of Long-Term Deformation of Recycled Coarse and Fine Aggregate Concrete[J]. Applied Mechanics and Materials,2014, 448:734-737.
    [63]Luo J L, Xu Z S, Li J, et al. Study on Prediction Model of Shrinkage and Creep of Prestressed Concrete Beam in Passenger Dedicated Line[J]. Advanced Materials Research,2011,255:3998-4002.
    [64]李军,范超远,杨基好,等.客运专线32m箱梁徐变效应研究[J].石家庄铁道大学学报(自然科学版),2012,25(03):42-47.
    [65]Zuk W. Thermal behavior of composite bridges-insulated and uninsulated [J]. Highway Research Record,1965(76).
    [66]Zuk W. Thermal and shrinkage stresses in composite beams[C].1961.
    [67]Priestley N M J. Design of concrete bridges for temperature gdients[S]. 1978:75,209-217.
    [68]Priestley M J N. Thermal gradients in bridges some design considerations[Z]. 1972:27,228-233.
    [69]Cooke N, Priestley N M J, Thurston J S. Analysis and design of partially prestressed concrete bridges under thermal loadings[J]. PCI Joumal,1984,3(29): 94-115.
    [70]Thurston S J, Priestley M J N, Cooke N. Design of concrete bridge for temperature gradients.[J]. Conerete International, ACI,1984,8(6):36-43.
    [71]Ghali A, Elbadry M M. Manual of Computer Program Crack [R]. Research Report No. CE85-1, Department of Civil Engineering, The University of Calgary. Program is available on diskettes for IBM microcomputers,1985.
    [72]Elbadry M M, Ghali A. Manual of Computer Program CPF:Cracked Plane Frames in Prestressed Concrete[R]. Research Report No. CE85-2, Department of Civil Engineering, The University of Calgary,1985.
    [73]Elbadry M M, Ghali A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering,1983,109(10):2355-2374.
    [74]Elbadry M M, Ghali A. User's manual and computer program FETAB:Finite element thermal analysis of bridges[J]. Research Rep. No. CE-82,1982,10.
    [75]Hoffman P, Mcclure R, West H. Temperature Problem in a Prestressed Box-Girder Bridge[J]. Tranportation Research Record,1984(982):42-50.
    [76]Hoffman P, Mcclure R, West H. Temperature study of an experimental semental concrete bridge.[J]. Journal of the Prestressed Concrete Institute,1983,3(28):78-97.
    [77]Potgieter I C, Gamble W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. PCI JOURNAL,1989,4(34):80-103.
    [78]Aashto. Bridge Design Specifications (SI Units)[S].2004.
    [79]Moorty S, Roeder C. Temperature-dependent bridge movements[J]. Journal of Structural Engineering,1992,118(4):1090-1105.
    [80]E M, J C. Thermal stresses in composite bridge according to BS 5400 and EC1.[J]. Proceedings of the ICE-Structures and Buildings,1997,122(3):281-292.
    [81]Fu H, Ng S, Cheung M. Thermal behavior of composite bridges[J]. Journal of Structural Engineering,1990,116(12):3302-3323.
    [82]Froli M, Hariga N, Nati G, et al. Longitudinal thermal behaviour of a concrete box girder bridge[J]. Structural Engineering International,1996,4(6).
    [83]Chang S P, Im C K. Thermal behaviour of composite box-girder bridges. Proceedings of the ICE[J]. Structures and Buildings,2000,2(140):117-126.
    [84]Silveira A P, Branco F A, Castanheta M. Statistical analysis of thermal actions for concrete bridge design[J]. Structural engineering international,2000,10(1):33-38.
    [85]Li D M, Maes M A, Dilger W. Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge[J]. Canadian Journal of Civil Engineering,2004,30(5):813-825.
    [86]Lucas J M, Berred A, Louis C. Thermal actions on a steel box girder bridge[J]. Proceedings of the ICE-Structures and Buildings,2003,156(2):175-182.
    [87]Lucas J M, Virlogeux M, Louis C. Temperature in the box girder of the normandy bridge[J]. Structural engineering international,2005,15(3):156-165.
    [88]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,1986(01):44-54.
    [89]刘兴法.预应力混凝土箱形梁的日照温度应力与位移计算[J].桥梁建设,1980(01):32-38.
    [90]朱宇锋.大跨径预应力混凝土连续刚构桥温度效应与收缩徐变效应分析[D].长沙:湖南大学,2008.
    [91]盛洪飞.混凝土箱形截面桥梁日照温度应力简化计算[J].哈尔滨建筑工程学院学报,1992(01):78-84.
    [92]李立峰,邵旭东,程翔云.混凝土箱形梁桥的温度梯度研究[J].中南公路工程,2001(04):38-40.
    [93]邵旭东,李立峰,鲍卫刚.砼箱形梁横向温度应力计算分析[J].重庆交通学院学报,2000(04):5-10.
    [94]王毅.预应力混凝土连续箱梁温度作用的观测与分析研究[D].南京:东南大学交通学院,2006.
    [95]叶见曙,贾琳,钱培舒.混凝土箱梁温度分布观测与研究[J].东南大学学报(自然科学版),2002(05):788-793.
    [96]彭友松.混凝土桥梁结构日照温度效应理论及应用研究[D].成都:西南交 通大学,2007.
    [97]康为江.钢筋混凝土箱梁日照温度效应研究[D].长沙:湖南大学,2001.
    [98]王林.大跨径预应力混凝土桥梁温度、徐变效应的分析研究[D].杭州:浙江大学,2005.
    [99]刘开元.三维方位各向异性分析及裂缝检测[D].成都:成都理工大学,2011.
    [100]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报,2004(01):53-56.
    [101]周记国.湖南湘中地区东西向PC箱梁温度场观测[D].长沙:湖南科技大学,2012.
    [102]管敏鑫.混凝土箱形梁温度场、温度应力和温度位移的计算方法[J].桥梁建设,1985(01):40-49.
    [103]Wilson E L. The Determination of Temperatures Within Mass Concrete Structures [M]. University of California, Structural Engineering Laboratory,1968.
    [104]Wilson E L, Nickell R E. Application of the finite element method to heat conduction analysis[J]. Nuclear Engineering and Design,1966,4(3):276-286.
    [105]Wilson E L, Bathe K J, Peterson F E. Finite element analysis of linear and nonlinear heat transfer [J]. Nuclear Engineering and Design,1974,29(1):110-124.
    [106]Zia P, Caner A. Cracking in Large-Sized Long-Span Prestressed Concrete AASHTO Girders[M].1993.
    [107]Issa M A. Investigation of cracking in concrete bridge decks at early ages[J]. Journal of Bridge Engineering,1999,4(2):116-124.
    [108]Cervera M, Faria R, Oliver J. Numerical modelling of concrete curing, regarding hydration and temperature phenomena[J]. Computers and structures,2002, 80(18):1511-1521.
    [109]Aparicio A C, Ramos G, Casas J R. Externally prestressed high strength concrete viaduct[J]. [J]. Journal of Bridge Engineering,2000,5(4):337-343.
    [110]Myers J J, Carrasquillo R L. Influence of hydration temperature on durability and mechanical property performance of prestressed and precast high-performance concrete beams [J]. Transportation Research Record:Journal of the Transportation Research Board,2000,1696(1):131-142.
    [111]Lebet J P. Measurements during construction and launching of a 130 m span length composite bridge[C]. ASCE,2006.
    [112]Sofi M, Mendis P A, Lie S. Early Age Concrete Thermal and Creep effects: Relevance to Anchorage Zones of Post-tensioned Members[J]. Electronic Journal of Structural Engineering,2008(8):90-96.
    [113]Sofi M, Mendis P A, Lie S, et al. Early Age Concrete Thermal and Creep effects:Relevance to Anchorage Zones of Post-tensioned Members[J]. Electronic Journal of Structural Engineering,2008,8:90-96.
    [114]朱伯芳.混凝土的弹性模量,徐变度与应力松弛系数[J].水利学报,1985,9:54-61.
    [115]朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利学报,1983,5(1).
    [116]朱伯芳.大体积混凝土温度应力与温度控制[M].中国电力出版社,1999.
    [117]叶见曙,阮静,钱培舒,等.混凝土箱梁的水化热温度分析[J].桥梁建设,2000(04):7-9.
    [118]程俊瑞,季文玉,卢文良,等.预应力混凝土箱梁水化热温度及应变的试验研究[J].公路交通科技,2003(06):76-79.
    [119]雷家艳,季文玉,卢文良.秦沈客运专线箱梁水化热温度、应变变化及裂缝控制[J].北方交通大学学报,2002(01):85-87.
    [120]冯德飞,卢文良.混凝土箱梁水化热温度试验研究[J].铁道工程学报,2006(08):62-67.
    [121]杨孟刚,文永奎,陈政清.混凝土箱梁的水化热温度监测及裂缝控制[J].长沙铁道学院学报,2001(03):40-44.
    [122]李敏霞.大型混凝土箱梁蒸汽养护工艺与温度场研究[D].西安:西安建筑科技大学,2006.
    [123]陈衡治,谢旭,张治成,等.混凝土箱梁浇筑养护方案数值评估研究[J].浙江大学学报:工学版,2006,40(2):276-280.
    [124]秦观,魏颂,王志国.混凝土箱梁蒸养温度场及温度应力有限元分析[J].中国港湾建设,2010(01):11-13.
    [125]曾志长.32m双线预制整孔箱梁蒸养温度场及温度裂缝控制研究[J].铁道标准设计,2009(03):72-75.
    [126]陈保国,丁锐,郑俊杰,等.预应力混凝土箱梁温度场及温度应力现场测试研究[J].华中科技大学学报(城市科学版),2007(04):83-87.
    [127]汪建群.大跨预应力混凝土箱梁桥早期开裂和远期下挠控制[D].长沙:湖南大学,2011.
    [128]陈长华.考虑钢筋作用的水工结构施工期温度场与温度应力分析[D].南京:河海大学,2006.
    [129]陈肇元,崔京浩,朱金铨,等.钢筋混凝土裂缝机理与控制措施[J].工程力学,2006(S1):86-107.
    [130]Nasser K W, Neville A M. Creep of concrete at elevated temperatures[C]. ACI,1965.
    [131]Xu Q, Burgoyne C. Thermal-creep analysis of concrete bridges[J]. Proceedings of the ICE-Bridge Engineering,2005,158(3):107-115.
    [132]Bradford M A. Generic modelling of composite steel-concrete slabs subjected to shrinkage, creep and thermal strains including partial interaction[J]. Engineering Structures,2010,32(5):1459-1465.
    [133]Briffaut M, Benboudjema F, Torrenti J M, et al. Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures[J]. Engineering structures,2011,33(4):1390-1401.
    [134]朱伯芳.外界温度按简谐变化时徐变对混凝土结构物种温度应力的影响[J].水力发电,1958(04):14-16.
    [135]董福品,朱伯芳.碾压混凝土坝温度徐变应力的研究[J].水利水电技术,1987(10):22-30.
    [136]刘宁,刘光廷.大体积混凝土结构随机温度徐变应力计算方法研究[J].力学学报,1997(02):62-75.
    [137]韩重庆,冯健,吕志涛.大面积混凝土梁板结构温度应力分析的徐变应力折减系数法[J].工程力学,2003(01):7-14.
    [138]邢万里,时旭东,倪健刚.基于试验的混凝土高温短期徐变计算模型[J].工程力学,2011(04):158-163.
    [139]秦煜,刘来君,张柳煜,等.混凝土箱梁水化热温度徐变应变分析[J].中南大学学报(自然科学版),2012(08):3250-3256.
    [140]秦煜.早龄期混凝土桥梁时变耦合效应研究[D].西安:长安大学,2012.
    [141]李凤兰,罗俊礼,赵顺波.不同骨料高强混凝土自收缩试验研究[J].港工技术,2009,46(01):35-37.
    [142]李凤兰,罗俊礼,赵顺波.不同骨料的高强混凝土早期徐变性能研究[J].长江科学院院报,2009,26(02):45-47.
    [143]罗俊礼,徐志胜,申永江.再生混凝土长期变形性能的优化途径综述[J].安全与环境学报,2013,13(05):212-217.
    [144]罗俊礼,徐志胜,谢宝超.不同骨料等级再生混凝土的收缩徐变性能[J].中南大学学报(自然科学版),2013,44(09):3815-3822.
    [145]铁道部科技司.科技基[2005]101号.客运专线高性能混凝土暂行技术条件.[S].2005.
    [146]张元海.箱形梁桥剪滞效应和温度效应理论研究及其应用[D].成都:西南交通大学,2009.
    [147]管敏鑫.混凝土桥梁的日照温度荷载、温度应力的计算与裂纹[J].中国铁道科学,1986(02):27-34.
    [148]姜全德,蒋鸿.钢筋混凝土箱形梁桥日照温度场和温度应力平面有限元数值分析方法[J].桥梁建设,1990(03):34-48.
    [149]彭波.蒸养制度对高强混凝土性能的影响[D].武汉:武汉理工大学,2007.
    [150]马明.(108+2×185+115)m连续刚构收缩与徐变变形试验研究[J].铁道工程学报,2010(10):67-73.
    [151]Hannant D J. Strain behaviour of concrete up to 95℃ under compressive stresses[Z]. London:196757-71.
    [152]Browne R D. Properties of concrete in reactor vessels[Z]. London:196711-31.
    [153]Kommendant G J, Polivka M, Pirtz D. Study of concrete properties for prestressed concrete reactor vessels,[R]. Berkeley:Department of Civil Engineering, University of California,1976.
    [154]黄国兴,惠荣炎,王秀军.混凝土的徐变与收缩[M].北京:中国电力出版社,2012.
    [155]Brnason D E. Deofmration of Coneret Structures [M]. New York:McGrwa Hill Book Company,1997.
    [156]苏清洪.加筋混凝土收缩徐变的试验研究[J].桥梁建设,1994(04):11-18.
    [157]张运涛,孟少平,惠卓.配筋高性能混凝土收缩徐变试验研究[J].建筑科学,2010(3):1-5.
    [158]潘钻峰,吕志涛,孟少平.配筋对高强混凝土收缩徐变影响的试验研究[J].土木工程学报,2009(2):11-16.
    [159]罗俊礼,徐志胜,熊伟.再生骨料高性能混凝土收缩徐变对比试验研究[J].工业建筑,2014(01):79-83.
    [160]DL-T 5150-2001水工混凝土试验规程[S].2001.
    [161]Rilem. Creep and shrinkage prediction model for analysis and design of concrete structures model B3[Z],1995.
    [162]TZ213-2005客运专线铁路桥涵工程施工技术指南[S].2005.
    [163]杨基好,赵永军,罗俊礼,等.沪杭客专32m箱梁徐变试验相似模型设计方法研究[J].铁道科学与工程学报,2010,7(05):75-80.
    [164]石挺丰,狄胡,陈政清.预应力混凝土桥梁徐变模型试验相似关系研究[J].华东交通大学学报,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700