用户名: 密码: 验证码:
镁合金轮毂模态分析与铸—挤复合成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮毂作为车辆主要承力构件,同时也是高速转动构件,使用镁合金实现其轻量化,将取得较大的节能减排效果,具有十分重要实用价值。目前,镁合金轮毂设计处于半经验和半理论状态,缺乏可靠的设计准则。以铸造工艺为主的镁合金轮毂,轮辐力学性能低,性能均一性和稳定性差;而镁合金锻造工艺能够提高其力学性能高,满足轮毂使用要求,但是镁合金变形能力差,成形困难;锻造成形轮毂工序多,成形效率低,制造成本高。因此,急需开发一种镁合金轮毂结构科学的设计方法和成形技术。因此,本文针对镁合金轮毂现状,开展镁合金轮毂模态分析与铸-挤复合成形技术研究,通过性能测试分析和成形验证,研究开发一种镁合金轮毂结构设计方法和新的成形理论和技术。
     首先,通过镁合金轮毂模态与受力特征仿真分析,提出一种采用模态分析和等效静力韧度相等相结合的设计准则,进行了轮毂结构优化设计。以约化强度、等效静力韧度为选材依据,进行了材料选用研究,并确定AZ91D镁合金为轮毂制造材料。
     其次,通过热/力模拟实验,基于动态材料模型建立了AZ91D镁合金的二维加工图,确定了较为合理的变形温度和应变速率。研究了镁合金压缩动态再结晶过程,建立了AZ91D镁合金发生动态再结晶临界应力模型,并通过平面应变压缩试验,研究了AZ91D镁合金成形组织和力学性能响应,为镁合金构件组织和性能控制成形提供参考。
     第三,借助于数值仿真技术,研究了AZ91D镁合金低压铸造成形过程缺陷形成规律,在此基础上,优化了低压铸造模型和工艺参数,为镁合金低压铸造成形的工艺参数制定和模具设计提供参考。以形变均匀性因子为评价指标,着重研究了变形温度、变形程度和变形速度参数和坯料结构参数对变形均匀性影响,建立了形变均匀性因子和变形“三度”工艺参数、结构参数之间的关系模型,为镁合金构件成形坯料结构设计和均匀变形控制提供理论依据。
     本文首次提出镁合金轮毂铸件,采用局部变形改性的铸-挤复合成形方法,性能达到使用要求,提高了生产效率和材料利用率,降低了生产成本。建立了形变均匀性因子、变形“三度”工艺参数和结构参数之间的关系模型,实现了镁合金构件均匀变形控制成形,保证了成形构件性能的均一性和稳定性。
     最后,设计制造各工序的成形工装,进行了AZ91D镁合金轮毂铸-挤压复合成形验证试验。成功试制出性能满足使用要求的镁合金轮毂,实验证明以模态分析为基础,采用等效静力韧度相等的设计准则,较传统的半经验半理论设计方法更加科学合理。为镁合金轮毂铸—挤复合成形技术的工程化应用奠定基础。
Wheels are main load-bearing and high-speed rotating components.It is very important significance for saving energy and reduction emission, using magnesium alloy to manufacture wheels with light weight. The design methods for magnesium alloy wheel are in the state of half experience and half theory,and are not reliable criteria for wheels designs.Casting is main forming technology for magnesium alloy wheels.and the casting properities is poor.It is difficult to guarantee the performance uniformity and stability by casting.The mechnical properities of forged magnesium alloy are perfect for wheels. But because of bad deformation ability,it is difficulty for forging.There are need many processes for wheels foging and the forming efficiency is low. It also is difficulty to reduce the costs. So, the new design methold and forming technology are need urgently for magnesium alloy wheels.
     Aiming at the deficiency design method、low peroperities of casting spoke、bad peroperities of uniformity and reliablty of casting technology and low efficiency and many processes of forging technology for magnesium alloy wheel forming. the present study researched on the modal analysis and casting-extrusion compound forming technology for magnesium alloy wheels.On the base of results of the forming verification testingand and properities testing,studied the new design methold and forming Principle and technology.for magnesium alloy wheels.
     Firstly, the results of the dynamic/static characteristics studing of magnesium alloy wheels using numerical simulation technology are references foe materials selection and the structures optimization. The basies of reduction strength and equivalent static toughness were used for mateiral selection. The AZ91D magnisium alloy was selected as wheels manufacturing material. Optimized the structure of wheel by using design criteria by using modal analysis and equivalent static toughness matching. The results of materials and structure parameters are reference for magnesium alloy wheels forming by casting-extrusion technology.
     Secondly, based on dynamic material model, this trail-manufacture experiment established a two-demensional processing map of AZ91D magnesium alloy using the thermal and force simulation experiment. The processing map are the reference for parameters selection. Studied the process of dynamic recrystallizatin during compression and established the dynamic recrystallization critical stress model of AZ91D. Studied the forming microstructures and mechanical properties response by plane strain compression tests. Providing the reference for microstructures and microstructures and mechanical properties controlling for magnesium components.
     Thirdly, the rule of defects formation of AZ91D was studied during process of low pressure casting by numerical simulation technology.The results of optimized parameters of low pressure casting model and process were the reference for dies dedsigning and forming process parameters selection. Using deformation homogeneity factor as evaluation index, studied effect on the deformation uniformity by deformation temperature、deformation velocity、deformation amount and structure factor. The model of relationship between deformation homogeneity factor an deformation temperature、deformation velocity、 deformation amount and structure factor was extablished. Providing the reference for billet structure desiging and deformation uniformity controlling for magnesium alloy components forming.
     The prent put forward method of lacation plastic deformation to improve the properties of the casting components for using, enhancing production efficiency and material utilization, reducing the production costs.The structure of magnesium alloy wheel was optimized using design criteria of modal analysisand matching equivalent static toughness. Compared with the traditional semi-empirical and emi-theory design methold, the prent methold is more scientific and reasonable. Established the model of relationship between deformation homogeneity factor an deformation temperature、deformation velocity、deformation amount and structure factor. Using the model, the billet strcture design became moe scientific.The magnesium alloy components forming became easier to be controlled. The formed structure mechanical properities uniformity and stability can be guaranteed. Put forward csting-extrusion compound technology for magnesium ally wheels,solved the problem of traditional forming process, improved the production efficiency, reduced the manufacturing cost of magnesium alloy wheels.
     At last, Designed the forming devices and studied the verification test for AZ91D magnesium alloy wheelusingcasting-extrusion compound thchnology.the properities of formed wheelare welland laid the foundation for engineering applications for magnesium alloy wheel using casting-extrusion compound forming technology.
引文
[1]马鸣图,柏健仁.汽车轻量化材料及其相关技术发展现状[J].新材料工业.2006,6:37-42.
    [2]李双寿,金鑫焱,唐靖林等.铸造镁合金轮毂研究应用现状中国压铸、挤压铸造、半固态加工学术年会专刊.2005:60-63.
    [3]张守元,沈磊,郁强.整车NVH研发结构噪声设计研究[J].轻型汽车技术.2010,9:8-12.
    [4]Y.Kojima,S.Kamado.Fundamental magnesium research in Japan[J]. Materials science forum.2005,488:9-16.
    [5]陈振华.变形镁合金[M].北京:化学工业出版社,2005:3-4.
    [6]康明,褚东宁,敖炳秋.北美汽车材料的研究与应用动态[J].汽车工程.2003,25.4:315-321.
    [7]刘正,王越.镁基轻质材料的研究与应用[J].材料研究学报.2000,14.5:449-456.
    [8]祁庆琚,刘勇兵,杨晓红等.镁合金的研究及其在汽车工业中的应用与展望[J].汽车工程.2002,24.2:94-100.
    [9]张永忠,张奎,樊建中等.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金.1999,3:54-56.
    [10]Claudio Mus. Magnesium Die Casting, History, Principles and State of the Art [J]. Magnesium Industry.2001,2:21-25.
    [11]Eliezer D,Aghion E,etal. Magnesium science, technology and application [J]. Advanced Performance Materials.1998,5:201-202.
    [12]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术.2001,29.7:6-10.
    [13]陈振华等.镁合金[M].北京:化学工业出版社.2004,89-1944
    [14]齐丕骧.挤压铸造[M].北京:国防工业出版社,1984.
    [15]邢志媛,王进华,周莉等.中国压铸、挤压铸造、半固态加工学术年会专刊,2007:296-297.
    [16]张占领,张艳琴,阎峰云等.镁合金摩托车轮毂挤压铸造生产研究[J].热加工工艺.2007,36.13:91-94.
    [17]张占领,徐春华,阎峰云.镁合金轮毂反挤压铸造成形工艺研究[J].特种铸造及有色合金.2011,2.31:145-148.
    [18]武增臣,龙思远,徐绍勇.镁合金轮毂的异种新型挤压铸造方法[J].铸造.2005,9:878-880.
    [19]周翔,池成忠,魏云龙等.汽车用镁合金车轮的液态模锻成形研究[J].锻压装备与制造技术.2009,44.2:66-69.
    [20]宫克强.特种铸造[M].北京:机械工业出版社,1981.
    [21]彭颖红,王迎春,李大永.镁合金轮毂低压铸造工艺数值模拟[J].中国机械工程.2006,19.17:2034-2037.
    [22]邱克强,王磊,刘彬等.镁合金汽车轮毂低压铸造数值模拟[J].铸造.2011,12.
    [23]蔡锁岐,崔尔信.镁合金汽车车轮重力铸造研究[J].铸造技术,2001(5):8-10
    [24]Barnett M R. Recrystallization during and following hot working of magnesium alloy AZ31 [J]. Mater Sci Forum,2003,419-422:503-508
    [25]Shen-Zhang Hong, Zhen-Peng Zeng. Anaiysis and calculation of the forming pressure for the production of a shock-absorber tube by liquid extrusion. Journal of Materials Processing Technology.2005:15-18
    [26]于海朋,王峰,于宝义等.镁合金轮毂压铸成形研究.第四届中国国际压铸会议论文集.2005,162-166
    [27]Schemme.K, Lowak.H. Manufacturing of light weight wheels by forging and flow-forming, in:H.D. Kunze (ed), Competitive Advantages by Near-Net-Shape Manufacturing, DGM-Informationsgesells chaft, Frankfurt/Main 1997,115-120.
    [28]Makoto Fujita, Yukio Yamamoto, Nobuo Sakate, Shoji Hirabara. Method of Manufacturing a Forged Magnesium alloy, US 5409555.
    [29]殷银银,杨永顺,郭俊卿.镁合金轮毂等温挤压与胀形工艺研究[J].锻压技术.2010,35.1:56-59.
    [30]王德林.AZ31镁合金轿车轮毂温成形工艺研究.硕士学位论文.太原:中北大学,2005.
    [31]曹亚强,张治民,王强等.AZ3I镁合金多次变形工艺及其在汽车轮毂上的应用[J].热加工工艺.2006,35.9:57-60.
    [32]陈刚.AZ80镁合金负重轮温挤压成形工艺研究.硕士学位论文.太原:中北大学,2009.
    [33]马春生,张治民,郭玉明.汽车镁合金轮毂等温挤旋成型工艺优化与试验[J].农业机械学报.2012,43.3:223-229.
    [34]大野笃美著.金属的凝固—理论、实践与应用[M].邢建东译.北京:冶金工业出版社,1986:19-27.
    [35]吴树深,柳玉起.材料成形原理[M].第二版.北京:机械工业出版社,2008:87-89.
    [36]崔忠圻主编.金属学与热处理[M].北京:机械工业出版社,1999:54-59.
    [37]孔祥谦.有限单元法在传热学中的应用[M].第三版.北京:科学技术出版社,1998.
    [38]李景湧.有限元法[M].北京:北京邮电大学出版社,1999.
    [39]解锦婷.金属凝固过程中的界面传热系数研究与应用.硕士学位论文.天津:天津理工大学.2007.
    [40]牛晓峰,梁伟,赵宇辉等.基于FDM/FEM的挤压铸造收缩缺陷数值模拟[J].热加工工艺.2011,40.15:40-43.
    [41]韩志强,朱维,柳百成.挤压铸造凝固过程热-力耦合模拟(Ⅰ)数学模型及求解方法[J].金属学报.2009,45.3:356-362.
    [42]朱维,韩志强,柳百成.挤压铸造凝固过程热-力耦合模拟(Ⅱ)模拟计算及实验验证[J].金属学报.2009,45.3:363-368.
    [43]李甲,曹韩学,赵东林等.AZ81镁合金挤压铸造铸件的缺陷分析[J].热加工艺,2011,40.3:197-203.
    [44]徐宏,侯华,赵宇宏等.铸件凝固模拟液态孤立多熔池动态判定及缩孔预测[J].铸 造技术.2003,23.4:319-320.
    [45]I mafuku I, Chijiiwa K.Application and Consideration of the Shrinkage Cavity Predication Method [J]. AFS Transactions.1983,463-474.
    [46]张玉萍,钱灵.铸铁件铸造缺陷的有限元分析[J].机械设计.2006,23.7:25-26.
    [47]大中逸雄.计算机传热凝固解析入门[M].许云祥,译.北京:机械工业出版社,1985.
    [48]杨秀萍,张波,王鹏林等.工作台铸件温度场数值模拟及缺陷预测[J].铸造.2004,24.10:823-825.
    [49]赵良毅,靳红梅.频率因子在预测铸件凝固收缩缺陷中的应用[J].特种铸造及有色合金.1993,4:6-7.
    [50]曾礼,赵建华,宋刚.利用Niyama判据预测重力铸造铝合金摩托车车轮缺陷[J].特种铸造及有色合金.2011,31.9:807-911.
    [51]赵维民,李海鹏,胡爱文等.铸件凝固过程的温度场模拟及缩孔、变形和热裂缺陷的预测[J].中国铸造装备与技术.2003,1:1-4.
    [52]崔吉顺,李文珍.铸件缩孔缩松多种预测判据的应用[J].清华大学学报(自然科学版).2001,41.8:5-8.
    [53]程军和柳百成.铸钢件缩孔缩松形成过程的数值模拟[J].清华大学学报(自然科学版).1991,31.2:24-32.
    [54]侯华,徐宏,程军.低压铸造缩孔缩松判据预测技术[J].铸造技术.2004,25.10:769-771.
    [55]历长云,崔红保,吴士平等.立式离心场下钛合金铸件缩孔缩松数值模拟[J].特种铸造及有色合金.2008,28.10:759-761
    [56]苏大为,赵玉涛.低压铸造铝合金轮毂充型和凝固过程模拟分析[J].特种铸造及有色合金.2007,7.9:682-684.
    [57]李尧主编.金属塑性成形原理.北京:机械工业出版社.2004.
    [58]贾明久,贾微.轴对称正挤压变形力的主应力法新解[J].锻压技术.1996.3:12-15.
    [59]林启权,彭大署,张辉等.轴对称正挤压的简化滑移线解[J].塑性工程学报.2002,9.3:9-13.
    [60]刘元文.用平衡微分方程求解圆柱体粗糙平板间不均匀镦粗的鼓形方程[J].金属成形工艺.1994,12.1:37-39.
    [61]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1982.
    [62]Shen-Zhang Hong, Zhen-Peng Zeng. Anaiysis and calculation of the forming pressure for the production of a shock-absorber tube by liquid extrusion[J]. J.Mater.Proc.Technol,2005,21:15-18.
    [63]N.R.Chitkara, A.Aleem. Axi-symmetric tube extrusion/piercing using die-mandrel combinations:some experiments and a generalized upper bound analysis[J]. International Journal of Mechanical Sciences.2001,431:685-709.
    [64]王孝培.冲压手册[M].北京:机械工业出版社,1990.
    [65]于沪平、阮雪榆和李绍林.镦挤复合变形力的理论解[J].模具技术.1998,2:15-19.
    [66]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社.1997.
    [67]李仕华.用光塑性法确定圆柱体(H/D>1)在普通平板间镦粗时应力场.博士学位论文.上海:中国科学院冶金研究所.2000.
    [68]韩建渠.用变形功法和主应力法联合求模锻力[J].锻压技术.1985,6:26-30.
    [69]黄早文,徐开东,张志坤等.管坯镦锻工艺仿真及优化[J].锻压技术.2006,31.6:19-21.
    [70]赵国群,王广春,春贾玉玺等.材料塑性成形过程最优化设计—有限元灵敏度分析方法[J].塑性工程学报.1999,6.2:1-7.
    [71]Zhenyan Gao,Ramana V.Grandhi. Microstructure optimization in design of forging processes[J].International Journal of M achine tools&Manufacture.2000,40:691-711.
    [72]赵新海,赵国群,王广春等.锻造毛坯形状优化设计的研究[J].锻压技术.2002,2:3-5.
    [73]周凤佳,汤禹成,周雄辉.基于移动最小二乘响应曲面的挤压件毛坯优化[J].锻压技术.2007,32.5:77-85.
    [74]龚小涛,杨帆,郭红星.复杂异形环件毛坯优化设计方法研究[J].锻压技术.2012,37.2:75-78.
    [75]Zhou Wenjing,Sun Zhichao,Zuo Shupeng et al.Shape Optimization of Initial Billet for TA15 Ti-Alloy Complex Components Preforming[J].RareMetal Materials and Engineering.2011, 40.6:951-956.
    [76]张睿,刘东,赵兴东等.钛合金叶片坯料的响应面(RSM)优化方法[J].热加工工艺.2012,41.13:18-23.
    [77]蔡军,李付国.一种基于三维静电场模拟的预制坯设计新方法[J].机械科学与技术.2009,28.10:1364-1368.
    [78]蔡军,李付国,张鹏.基于三维静电场的TC4合金叶片预制坯设计[J].航空材料学报.2009,29.5:66-69.
    [79]王广春.基于微观组织优化的锻造工艺预成形及毛坯形状优化设计[J].塑性工程学报.2007,14.2:69-72.
    [80]王强,张治民.空心坯料反挤压省力成形方法及应用研究[J].塑性工程学报.2010,17.3:22-26.
    [81]刘太盈,李庆华,李付国等.大型盘件辗轧工艺及坯料设计[J].材料科学与工艺.2012,20.1:124-124.
    [82]杨明,张秀良,闫浩.模态分析理论在汽轮发电机试验中的应用[J].吉林电力.2004,6:48-50.
    [83]李曙生.CL250T摩托车车架动态特性的试验模态分析[J].机械设计与制造.2005,11:38-40.
    [84]孙红梅.轿车铝合金车轮模态计算和优化设计.硕士学位论文.秦皇岛:燕山大学.2007.
    [85]朱志远.机载雷达框架刚强度分析[J].机械与电子.2009,5:65-67.
    [86]洪长满,段勇军.机载雷达天线座结构的刚强度性能评估[J].现代雷达.2011,33.6:72-75.
    [87]王亮,商霖,李炳蔚等.基于灵敏度分析技术与优化设计的导弹模型修正方法[J].导弹与航天运载技术.2013,1:49-52.
    [88]王飞朝,周克洪,王克军.基于有限元技术的模态分析在雷达结构设计中的应用. 电子机械工程[J].2006,22.1:14-16.
    [89]吴佳.某车载雷达天线结构分析.雷达与对抗.2010,20.4:59-63.
    [90]莫丽,黄岗,何霞等.2500型五缸压裂泵整机模态分析及结构优化[J].石油机械.2012,40.7:67-70.
    [91]张平,雷雨成等.轿车车身模态分析及结构优化设计[J].汽车技术.2006,4:5-9.
    [92]裴宝浩,张为春,马兵兵等.起重机车架结构的优化及模态分析.起重运输机械.2012,9:67-69.
    [93]陈雷,吕泉,马艳玲等.表面完整性对航空发动机零件疲劳寿命的影响分析[J].航空精密制造技术.2012,48.5:47-50.
    [94]朱剑月,沈培德.B2型地铁车辆铝合金车体模态分析[J].城市轨道交通研究[J].2005.8.1:35-37.
    [95]王国军,王锴,岳译新等.B型地铁铝合金车体模态优化设计[J].电力机车与城轨车辆.2012.35.6:31-33.
    [96]潘玉田,马新谋,马昀.履带式自行火炮负重轮轮毂轻量化技术研究[J].火炮发射与控制学报.2009,2:41-49.
    [97]张津,章宗和等.镁合金及其应用[M].北京:化学工业出版社.2004.
    [98]闫丽媛.热挤压工艺对AZ91D镁合金组织性能的影响.硕士学位论文.太原:中北大学,2009.
    [99]周铁成.机械设计选材与强度刚度评估[J].机械工程材料.1996,20.4:40-42.
    [100]张治民,张星,王强等.重型车辆传动行动构件轻量化设计研究[J].机械工程学报.2012,48.18:69-71.
    [101]朱有利,刘开亮,黄元林等.应力集中和表面完整性对平尾大轴抗疲劳性能的影响[J].机械工程学报.2012,93-97.
    [102]陈雷,吕泉,马艳玲等.表面完整性对航空发动机零件疲劳寿命的影响分析[J].航空精密制造技术.2012,48.5:47-50.
    [103]张士林,任翁赞.简明铝合金手册[M],上海:上海科学技术文献出版社.2001.
    [104]杨君刚,赵美娟,蒋百灵.均匀化退火对AZ91D镁合金组织与性能的影响[J].热处 理学报.2008,29.4:69-73.
    [105]史学彬.AZ91D镁合金热压缩变形行为研究.硕士硕士论文.太原:太原理工大学,2008.
    [106]郭强,严红革,陈振华,张辉.铸态AZ80镁合金高温热变形行为研究[J].塑性工程学报,2006,13(5):26-33.
    [107]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998:6.
    [108]王迎新Mg-A1合金晶粒细化、热变形行为及加工工艺的研究.博士学位论文.上海:上海交通大学,2006.
    [109]SellarsCM/Tegart W J M.Hot workability[J].IntMetallurg Rev,1972,17:1224.
    [110]Ryan N D,McQueen H J.Dynamic recovery and strain hardening in the hot deformation of type 317stainless steel[J].Materials Science and Engineering.1986,81. 12:259-272.
    [111]H.Watanabe, T.Mukai, M.Kohzu. Effect of Temperature and Grain Size on the Dominant Diffusion Process for Superplastic Flow in an AZ61 Magnesium Alloy. Acta Mater. 1999,47.14:3753-3758.
    [112]周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术.2005,24.2:212-216.
    [113]S.Ghosh. Interpretation of microstructural evolution using dynamic materials modeling [J]. Metallurgical and Materials Transactions A.2000,31.11:2973-2974.
    [114]F. Montheillet, J. J. Jonas, K. W. Neale. Modeling of dynamic material behavior:a critical evaluation of the dissipator power cocontent approach[J]. Metallurgical and Materials Transactions A.1996,27A:232-236.
    [115]SRINIVASAN N,PRASAD YVRK,RAO P R.Hot deformation behavior of Mg-3AI alloy —A study using processing map[J].materials Science and Engineering A.2008,47:146-156.
    [116]李玲.基于预成形的锻造过程微观组织模拟与优化设计方法及应用[D].山东:山东大学,2005.
    [117]欧阳德来,鲁世强,崔霞.应用加工硬化率研究TA15钛合金β区变形的动态再 结晶临界条件[J].航空材料学报.2010,30.2:17-23.
    [118]杨永顺,杨明郭,俊卿.AZ80镁合金动态再结晶研究[J].热加工工艺.2011,40.24:82-88.
    [119]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社.1999,173
    [120]张治民,王强,李保成.AZ31镁合金温变形对其性能影响的研究.材料科学与工艺.2005.6:637-639.
    [121]张金玲,祁小叶,王社斌等.T4和T6热处理参数对AZ91+x%La镁合金组织和性能的影响.材料热处理学报.2011,32:57-60.
    [122]张建民,马泽飞,张宝红.T6热处理对变形AZ91D镁合金的强化作用.热加工工艺.2010,39.16:136-137.
    [123]罗庚生,张志忠等.低压铸造[M].北京:国防工业出版社,1989.
    [124]唐多光.21世纪低压铸造技术的展望[J].特种铸造及有色合金.1998,(4):28-31
    [125]柳百成等.铸造工程的数值仿真与质量控制[M].北京:机械工业出版社,2001
    [126]胡德林,张帆.三元合金相图[M].西安:西北工业大学出版社.1995:177-178.
    [127]徐春杰,张忠明,郭学锋等.热挤压AZ91D镁合金的组织与力学性能[J].西安理工大学学报,2005,21.4:356-360.
    [128]张妍,王宁,李峰等.工艺参数和热处理对挤压铸造AZ91D力学性能的影响[J].轻合金加工技术.2006,34.12:23-25.
    [129]王智祥,王建,乐雅婷等.工艺参数对AZ91镁合金挤压组织及性能的影响[J].轻金属.2011,5:43-47.
    [130]乐启炽,欧鹏,吴跃东等.AZ91D镁合金近液相线铸造研究[J].金属学报.2002,38.2:219-224.
    [131]张丁非,张红菊,刘荣燊等.AZ91D镁合金凝固过程分析[J].材料导报.2007,21.5A:385-386.
    [132]赵新海,赵国群,王广春等.基于变形均匀性的锻造预成形优化系统集成[J].机械 科学与技术.2005,24.1:42-44.
    [133]翟福宝,林新波,张质良等.有限元模拟在金属塑性成形中的应用[J].锻压机械.2000,3:46-47.
    [134]赵柏森,王怀建,李海峰.金属塑性成形工艺有限元数值模拟技术[J].热加工工艺.2010,39.7:86-88.
    [135]乔端,钱银根.非线性有限元及其在塑性加工中的应用[M].北京:冶金工业出版社,1990:23-27.
    [136]陈欣如,胡忠民.塑性有限元及其在金属成形领域中的应用[M].重庆:重庆大学出版社,1989:36-62.
    [137]Mc Meeking R M.Finite element formulation for problems of large elastic plastic deformation[J].Solids.Struct.1995,20.11:601-603.
    [138]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.1997:32-41.
    [139]X. Q. Zhang, Y. H. Peng et al. Simulation of Cylindrical Upsetting of Porous Materials by Finite Element Method. Trans. Nonferrous Met. Soc.China,1998,8.1:24-25.
    [140]Lee E H,Kobayashi S.New solution to rigid-plastic deformation^problems using a method[J].Trans,ASME,J.Engr.Ind.1993,95:865-866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700