用户名: 密码: 验证码:
同一截面焊接结构完整性理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着焊接工艺水平的提高,“一刀齐”总段合拢工艺已应用于国内大型船企民用船舶建造中。“一刀齐”对接工艺的采用,为分段无余量合拢提供了有利条件,极大的减轻了两段船体在船台上合拢的工作量,有效缩短了产品研制时间和生产周期。但是,采用“一刀齐”对接工艺后船体的强度、刚度、残余应力和焊接变形、疲劳寿命等是否会有较大影响,影响程度如何等关键技术并没有进行过深入的研究和探讨。
     本文在理论研究和试验对比的基础上,建立了典型焊接接头焊接残余应力数值预报方法,分析了典型焊接接头焊接残余应力的分布规律及其对结构极限强度的影响;基于多尺度理论拟合得出了含裂纹典型焊接接头极限强度计算公式;引入新R6失效评判图对典型焊接接头开展了失效评判,计算了典型焊接接头在某荷载下的临界裂纹长度;进行了不同初始裂纹长度下典型焊接接头的疲劳寿命预报;开展了典型焊接结构极限强度和疲劳强度试验研究。通过论文的系统研究,取得了一下主要研究成果:
     1)通过平板对接焊数值模拟和试验值的对比分析,建立了典型焊接接头焊接过程有限元数值模拟的方法和流程。进而开展了不同对接工艺典型焊接接头的焊接温度场、应力场的数值模拟研究,获得了不同对接工艺典型焊接接头的焊接温度场、应力场的分布规律和各自的特点。
     2)针对不同边界固定方式、不同焊材强度匹配对典型焊接接头焊接残余应力场和位移场的影响开展研究。研究结果表明,不同的边界固定方式会使不同对接工艺下的典型焊接接头的焊接残余应力场和位移场重新分布,但对于残余应力和焊接变形的最大值没有影响;采用不同焊材强度匹配对焊接残余应力有一定的影响,不同匹配间的最大差值为80MPa。
     3)把多尺度理论与有限元技术相结合的方法用于含微裂纹缺陷结构极限承载能力研究。利用本构逼近法,把含微裂纹缺陷结构极限承载能力研究过程划分成介观尺寸模型研究和宏观尺寸模型研究两部分进行研究;把含微裂纹介观尺寸模型作为典型焊接接头的宏观结构中区别于常规材料属性的部分嵌套至整体模型中参与计算,并建立了基于L4的正交表计算方案,开展典型焊接接头整体结构的极限强度计算。
     4)基于大量的算例,拟合得出了包含相对裂纹长度(RCL)、裂纹分布深度(CD)和裂纹分布比例(CRD)三个变量不同对接形式下典型焊接接头极限强度计算公式。基于极限强度拟合公式,分别开展了相对裂纹长度(RCL)、裂纹分布深度(CD)和裂纹分布比例(CRD)变量对典型焊接接头极限承载能力影响的研究。同时,也开展了焊接残余应力对结构极限强度的影响研究。
     5)利用新R6失效评定图的失效评定方法,对典型焊接接头进行了失效评定。通过失效评定,获得了典型焊接接头随初始裂纹长度变化的失效路径曲线。根据失效路径曲线可以得到不同对接形式的对接接头的临界初始裂纹长度。同时,针对第三章提出的焊接结构允许最小裂纹长度进行了失效评定研究,研究结果为结构的完整性评估提供了有力的参考。
     6)根据新R6失效评定图的方法,开展了典型焊接接头在167MPa、220MPa、335MPa和418MPa四种工作应力水平下的失效评定研究。通过失效评定研究,获得了四种工作应力水平下典型焊接接头的临界裂纹尺寸,并把获得的各评判点的裂纹临界尺寸与试验测试结果进行了对比分析,两者吻合较好。
     7)针对上述采用的微裂纹尺度,开展了含初始裂纹典型焊接接头的疲劳寿命预报。通过疲劳寿命预报,获得了初始裂纹长度与疲劳寿命的关系曲线,并根据典型焊接接头的疲劳试验结果与预报的疲劳寿命进行对比分析,获得了试验结构的初始裂纹长度。
With the improvement of the level of welding technology.“welded connection in-plane”block assembly technology has been applied to civil ship construction of domestic largeshipping enterprises. The use of “welded connection in-plane” assembly technology providesfavorable conditions for segment no allowance assembly, reduces the workload of two hullsassembling on the shipway greatly and shortens the product development time and productioncycle effectively. However, after adopting new technologies, whether the strength of the hull,stiffness, residual stress and welding deformation, fatigue life and so on will have greaterimpact later and how is the influence degree and so on have not been researched anddiscussed in depth.
     In this paper, on the basis of theoretical research and experimental comparison,numerical prediction method of residual stress of typical welded joint was established anddistribution rule and its impact on the ultimate strength of structure was also analyzed. Basedon the multi-scale theory, the formula of ultimate strength of typical welded joint with crackwas obtained through a large number of calculations. Failure evaluation on typical weldedjoint was carried out through introducing new R6failure judgment figure and the criticalcrack length was calculated. Fatigue life prediction under different initial crack lengths andthe ultimate and fatigue strength experimental research of typical welded joint were carriedout. Through the systematic study of the paper, the main research results are as follows:
     1) Through the comparison between numerical simualtion and experimental value ofplate butt welding, the finite element numerical simualtion method of the welding process oftypical welded joint was established. The numerical simualtion research on weldingtemperature field, stress field of typical welded joint under different docking technologies wascarried out and the distribution and characteristics of welding temperature field, stress field oftypical welded joint was obtained.
     2) The influence of different matches of boundary fixed way and welding materialstrength on residual stress and displacement fields was researched. Results show that residualstress and displacement fields of typical welded joint under different docking technologiesand boundary fixed ways will redistribute, but the maximum value of residual stress anddisplacement are not influenced. Different welding material strength matches has a certaininfluence on residual stress, between which the maximum difference value is80MPa.
     3) The method of combining multi-scale theory with finite element technology wasapplied to ultimate bearing capacity of defect structure with micro crack. Process of thisresearch was divided into two parts using constitutive approximation method, namelymesoscopic and macro size model. Using constitutive approximation method, mesoscopic sizemodel of plate with micro crack was as the part different from conventional material propertyin the macro structure of typical welded joint. Basic orthogonal table calculation scheme wasestablished and then ultimate strength of the overall structure was calculated.
     4) Formula of ultimate strength of typical welded joint under different docking formsincluding three variables of relative crack length(RCL), crack distribution depth(CD) andproportion(CRD)was obtained through a large number of calculations. Based on formula ofultimate strength, influence of relative crack length(RCL), crack distribution depth(CD) andproportion(CRD) on ultimate bearing capacity of typical welded joint were carriedrespectively. And the influence of welding residual stress on ultimate strength of structure wasresearched.
     5) Based on the failure evaluation results of new R6failure judgment figure, failureevaluation on typical welded joint was carried on. The failure path curve was obtained byfailure evaluation. According to the ailure path curve, the critical initial crack length of typicalwelded joint was obtained. The research on minimum crack length which proposed at chapterthree was carried on. The results of the study provides a powerful reference for structureintegrity assessment.
     6) Failure evaluation on typical welded joint under four stress levels of167MPa,220MPa,335MPa and418MPa was carried on based on new R6failure judgment method.Critical crack sizes of different working conditions were obtained by failure evaluation. Crackcritical size of evaluation point obtained from new R6failure judgment figure was comparedwith test result. It also coincides well with experimental result.
     7) According to the micro crack size adopted above, fatigue life prediction on typicalwelded joint with initial crack was carried out. Through the prediction, relation curve betweeninitial crack length and fatigue life was obtained. Initial crack length of the actual structurewas also obtained through the comparison between fatigue test result and fatigue lifeprediction value of typical welded joint.
引文
[1]史鑫涛.改善平行中体舷顶角区域焊接节点质量的措施[J].中国船检,2000,4:030.
    [2]霍立兴.焊接结构的断裂行为及评定[M].机械工业出版社,2000.
    [3]格尔内TR.焊接结构的疲劳断裂[J].北京:机械工业出版社,1982.
    [4]何家文,徐可为,李家宝.残余应力研究概况.国际学术动态,No.4,pp75-76.
    [5]张定铨. X射线应力测定基本知识第一讲残余应力的基本概念[J].理化检验(物理分册),2007,4:016.
    [6] Teng T L, Lin C C. Effect of welding conditions on residual stresses due to butt welds[J].International Journal of Pressure Vessels and Piping,1998,75(12):857-864.
    [7] Chidiac S E, Mirza F A. Thermal stress analysis due to welding processes by the finite elementmethod[J]. Computers&structures,1993,46(3):407-412.
    [8] Abdel-Tawab K, Noor A K. Uncertainty analysis of welding residual stress fields[J]. Computermethods in applied mechanics and engineering,1999,179(3):327-344.
    [9] Pearce S V, Linton V M, Oliver E C. Residual stress in a thick section high strength T-buttweld[J]. Materials Science and Engineering: A,2008,480(1):411-418.
    [10] Pagliaro P, Prime M B, Swenson H, et al. Measuring multiple residual-stress components usingthe contour method and multiple cuts[J]. Experimental mechanics,2010,50(2):187-194.
    [11] Zain-ul-abdein M, Nélias D, Jullien J F, et al. Finite element analysis of metallurgical phasetransformations in AA6056-T4and their effects upon the residual stress and distortion states of alaser welded T-joint[J]. International Journal of Pressure Vessels and Piping,2011,88(1):45-56.
    [12] Mackerle J. Finite element analysis and simulation of welding-an addendum: a bibliography(1996-2001)[J]. Modelling and Simulation in Materials Science and Engineering,2002,10(3):295.
    [13]郑敏荣,朱健斌.球罐焊缝错边及角变形引起应力集中的研究(Ⅰ),北京石油化工学院学报,Vol,8, No.2,pp40-44.
    [14] V.Sagalevich, S.Mezentseva, Calculation of Strains and Stresses in Circular Welds, var.Proiz.,Vol,9,pp7-10.
    [15]渡辺正紀,佐藤邦彦. Fundamental study on buckling of thin steel plate due to bead-welding[J].溶接学会誌,1958,27(6):313-320.
    [16] Shim Y, Feng Z, Lee S, et al. Determination of residual stresses in thick-section weldments[J].Welding Journal,1992,71(9):305-312.
    [17] UEDA Y, Nakacho K. Simplifying Methods for Analysis of Transient and Residual Stresses andDeformations due to Multipass Welding (WELDING MECHANICS, STRENGTH ANDDESIGN)[J]. Transactions of JWRI,1982,11(1):95-103.
    [18] Brickstad B, Josefson B L. A parametric study of residual stresses in multi-pass butt-weldedstainless steel pipes[J]. International Journal of Pressure Vessels and Piping,1998,75(1):11-25.
    [19] Ca as J, Picon R, Pariis F, et al. A simplified numerical analysis of residual stresses in aluminumwelded plates[J]. Computers&Structures,1996,58(1):59-69.
    [20] Hong J K, Tsai C L, Dong P. Assessment of numerical procedures for residual stress analysis ofmultipass welds[J]. WELDING JOURNAL-NEW YORK-,1998,77:372-s.
    [21] Mochizuki M, Hayashi M, Hattori T. Residual stress distribution depending on welding sequencein multi-pass welded joints with X-shaped groove[J]. Journal of pressure vessel technology,2000,122(1).
    [22] Mochizuki M. Control of welding residual stress for ensuring integrity against fatigue andstress–corrosion cracking[J]. Nuclear Engineering and Design,2007,237(2):107-123.
    [23] Miyazaki K, Mochizuki M, Kanno S, et al. Analysis of stress intensity factor due to surface crackpropagation in residual stress fields caused by welding[J]. JSME International Journal Series A,2002,45(2):199-207.
    [24] Lee C H, Chang K H. Prediction of residual stresses in high strength carbon steel pipe weldconsidering solid-state phase transformation effects[J]. Computers&structures,2011,89(1):256-265.
    [25] Karlsson L, Jonsson M, Lindgren L E, et al. Residual stresses and deformations in a weldedthin-walled pipe[C]//Proc. ASME Pressure Vessel and Piping Conf.(Hawaii, July1989).1989:7-11.
    [26] Masubuchi K. Prediction and control of residual stresses and distortion in welded structures[J].Transactions of JWRI,1996,25(2):53-67.
    [27] McDill J M J, Oddy A S, Reed R C. Predicting residual stress and distortion when weldingaeroengine alloys[J]. Canadian aeronautics and space journal,1998,44(2):68-72.
    [28] Bachorski A, Painter M J, Smailes A J, et al. Finite-element prediction of distortion during gasmetal arc welding using the shrinkage volume approach[J]. Journal of Materials ProcessingTechnology,1999,92:405-409.
    [29] Van der Aa E M. Local cooling during welding: prediction and control of residual stresses andbuckling distortion[J].2007.
    [30] Deng D, Murakawa H, Liang W. Numerical simulation of welding distortion in largestructures[J]. Computer methods in applied mechanics and engineering,2007,196(45):4613-4627.
    [31] Leggatt R H. Residual stresses in welded structures[J]. International Journal of Pressure Vesselsand Piping,2008,85(3):144-151.
    [32] Teng T L, Fung C P, Chang P H, et al. Analysis of residual stresses and distortions in T-jointfillet welds[J]. International journal of pressure vessels and piping,2001,78(8):523-538.
    [33] Zhu X K, Chao Y J. Numerical simulation of transient temperature and residual stresses infriction stir welding of304L stainless steel[J]. Journal of Materials Processing Technology,2004,146(2):263-272.
    [34] Teng T L, Chang P H, Tseng W C. Effect of welding sequences on residual stresses[J].Computers&structures,2003,81(5):273-286.
    [35]楼志文,童云生,闵行.瞬态温度埸和热弹塑性埸的有限元分析[J].西安交通大学学报,1981,6:001.
    [36]关桥,张崇显.动态控制的低应力无变形焊接新技术[J].焊接学报,1994,15(1):8-15.
    [37]唐慕尧,丁士亮,孟繁森.焊接过程力学行为的数值研究方法[J].焊接学报,1988,9(3):125-133.
    [38]朱援祥,王勤,赵学荣,等.基于ANSYS平台的焊接残余应力模拟[J].武汉理工大学学报,2004,26(2):69-72.
    [39]赵学荣,朱援祥,孙秦明.对接焊缝残余应力的有限元分析[J].焊接技术,2003,32(5):14-15.
    [40]朱援祥,张小飞,杨兵,等.基于有限元的多次补焊焊接残余应力的数值模拟[J].焊接学报,2002,23(1):65-68.
    [41]蔡志鹏,赵海燕,鹿安理,等.焊接数值模拟中分段移动热源模型的建立及应用[J].中国机械工程,2002,13(3):208-210.
    [42]蔡志鹏.大型结构焊接变形数值模拟的研究与应用[D].北京:清华大学机械工程系,2001.
    [43]蔡志鹏,赵海燕,吴甦,等.串热源模型及其在焊接数值模拟中的应用[J].机械工程学报,2001,37(4):25-28.
    [44]鹿安理,史清宇,赵海燕,等.焊接过程仿真领域的若干关键技术问题及其初步研究[J].中国机械工程,2000,11(1):201-205.
    [45]黄薇,黄志超,倪昀,等.焊接工艺参数对后桥壳残余应力影响的数值模拟[J].热加工工艺,2006,35(19):74-76.
    [46]程书力.基于温度和应力场的焊接残余应力数值分析[D].南昌大学,2007.
    [47]李冬林.焊接应力和变形的数值模拟研究[D].武汉:武汉理工大学,2003.
    [48]谢元峰,肖汉斌.基于ANSYS的焊接温度场和应力的数值模拟研究[D][D].武汉:武汉理工大学,2006.
    [49]李冬林.基于ANSYS软件焊接温度场应力场模拟研究[J][J].湖北工业大学学报,2005,20(5):81-83.
    [50]李冬林.焊接应力和变形的数值模拟研究[D].武汉:武汉理工大学,2003.
    [51]蒋文春,巩建鸣,陈虎,等.换热器管子与管板焊接接头残余应力数值模拟[J].焊接学报,2006,27(12):1-4.
    [52]徐琳,严仁军. T形焊接接头残余应力与变形的三维数值模拟[J].江苏船舶,2007,24(1):5-8.
    [53]朱援祥,王勤,赵学荣,等.基于ANSYS平台的焊接残余应力模拟[J].武汉理工大学学报,2004,26(2):69-72.
    [54]赵学荣,朱援祥,孙秦明.对接焊缝残余应力的有限元分析[J].焊接技术,2003,32(5):14-15.
    [55]蒋文春,巩建鸣,陈虎,等. SS304半管夹套焊接部位残余应力三维有限元模拟[J].焊接学报,2006,27(10):77-80.
    [56]张建强,张国栋,赵海燕,等.铝合金薄板焊接应力三维有限元模拟[J].焊接学报,2007,28(6):5-9.
    [57]张建强,岳红杰,张海泉,等.铝合金薄板焊接应力数值模拟[C]//第十一次全国焊接会议论文集(第2册).2005.
    [58]余正刚,姜勇,巩建鸣,等.不同异种钢管道焊接接头残余应力的数值模拟[J].焊接学报,2009,30(8):69-72.
    [59]邵园园,曾庆良,玄冠涛,等.基于ANSYS的钢铜异种金属焊接残余应力分析[J].矿山机械,2012,40(10):122-125.
    [60]游敏,郑小玲,余海洲.关于焊接残余应力形成机制的探讨[J].焊接学报,2003,24(2):51-54.
    [61]万正权,卞如冈,骆寒冰.高强度钢结构焊接残余应力估算方法,钢结构,Vol.23, No.115
    [62]邹增大,王新洪,曲仕尧.锤击消除焊接接头残余应力的数值模拟[J].中国机械工程,1999,4:466-468.
    [63]赵锐.焊接残余应力的数值模拟及控制消除研究[D].大连:大连理工大学,2006.
    [64]白庆华.随焊锤击应力场数值模拟的研究[D].河北农业大学,2012.
    [65]刘凯欣,张晋香,刘颖,等.爆炸法消除焊接接头残余应力的数值模拟[J].应用力学学报,2004,21(2):10-15.
    [66]李荣锋,祝洪川,李立军,等.爆炸处理消除X70管线环焊缝焊接残余应力的研究[J].焊管,2002,25(4):25.
    [67]李荣锋.爆炸处理消除100吨转炉壳体中腰环缝的焊接残余应力[J].冶金设备,2000,119(1):22-22.
    [68]洪江波,侯海量,朱锡,等.爆炸处理消除大型柱壳结构环焊缝残余应力实验研究[J].爆炸与冲击,2008,3:004.
    [69]徐秉汉,林吉如.建造工艺对舰船结构承载能力与疲劳寿命的影响[J].舰船科学技术,1995(1):16-21.
    [70] Hu Y, Zhang A, Sun J. Analysis on the ultimate longitudinal strength of a bulk carrier by using asimplified method[J]. Marine structures,2001,14(3):311-330.
    [71] Smith C S. Influence of local compressive failure on ultimate longitudinal strength of a ship’shull. PRADS77.1977:73-79P
    [72]黄洁琼,薛鸿祥,唐文勇,等.不同对接焊缝布置下舰体结构的疲劳强度和极限承载分析[J].舰船科学技术,2008,30(1):62-66.
    [73]王燕舞.考虑腐蚀影响船舶结构极限强度研究[D].上海:上海交通大学,2008.
    [74]黄迎春,杨平.破损散货船剩余极限强度的评估与分析[J].中国舰船研究,2008,3(6):34-37.
    [75]邓林峰,杨平.内河双壳船极限强度分析[J].船海工程,2009,37(6):33-35.
    [76]孙克淋.具有缺陷板的船体极限强度可靠性分析[D].哈尔滨工程大学,2008.
    [77]吴丽丽,雷飞龙,聂鑫.轴向拉伸作用下对接焊缝连接性能的试验研究[J].清华大学学报(自然科学版),2009,49(9):1446-149.
    [78]彭大炜.舰船新型甲板结构型式的极限强度研究[D].上海:上海交通大学,2010.
    [79]周海仲.船体结构极限强度的非线性有限元分析[D].哈尔滨工程大学,2010.
    [80]祁恩荣,张晓杰,滕蓓,等.大型液化天然气船船体极限强度研究[J].船舶力学,2010(1):66-73.
    [81]姜峰.基于非线性有限元方法的半潜式平台极限强度研究[D].哈尔滨工程大学,2010.
    [82]张晓丹,杨平.加筋板在轴向压力下的极限强度研究[J].武汉理工大学学报:交通科学与工程版,2011,35(2):305-308.
    [83]丁艳伟,杨平.船体桁材开孔后的极限强度研究[J].船海工程,2011,40(3):44-46.
    [84]祁恩荣,庞建华,吴东伟.半潜式平台极限强度可靠性研究[J].船舶力学,2011,15(4):371-376.
    [85]徐志亮,王德禹.腐蚀影响下半潜平台浮体时变极限强度[J].海洋工程,2011,29(4):81-86.
    [86]陈宏,李春祥.自升式平台逆“K”型桩腿节点的极限强度分析[J].中国海洋平台,2012(4):20-28.
    [87] Prawoto Y. Linear elastic fracture mechanics (LEFM) analysis of the effect of residual stress onfatigue crack propagation rate[J]. Practical Failure Analysis,2002,2(5):75-83.
    [88] Fricke W. Effects of residual stresses on the fatigue behaviour of welded steel structures[J].Materialwissenschaft und Werkstofftechnik,2005,36(11):642-649.
    [89]孙文彩,杨自春.含裂纹压力容器混合变量下疲劳剩余寿命分析[J].压力容器,2010,27(1):17-20.
    [90] Cheng X, Fisher J W, Prask H J, et al. Residual stress modification by post-weld treatment and itsbeneficial effect on fatigue strength of welded structures[J]. International Journal of Fatigue,2003,25(9):1259-1269.
    [91]郭宁生,徐胜利,王辉,等.焊接角度对焊接结构疲劳性能的影响[J].热加工工艺,2009,38(23):163-165.
    [92] John R, Jata K V, Sadananda K. Residual stress effects on near-threshold fatigue crack growth infriction stir welds in aerospace alloys[J]. International Journal of Fatigue,2003,25(9):939-948.
    [93] Xin Long. Finite element analysis of residual stress generation during spot welding and its affecton fatigue behavior spot welded joint [PDH thesis]. University of Missouri-Columbia,December.
    [94]田越. CTOD与BS7910结合的桥梁钢断裂韧度评定方法[J].中国铁道科学,2010,31(2):40-44.
    [95] Matos C G, Dodds Jr R H. Modeling the effects of residual stresses on defects in welds of steelframe connections[J]. Engineering Structures,2000,22(9):1103-1120.
    [96]徐勇,王少华,蒋旭君.贮氢压力系统缺陷分析及安全评定方法研究[J].机械,2010,37(010):20-22.
    [97] Iswanto P T, Nishida S, Hattori N. Effect of mean stress and residual stress on fatigue strengthimprovement of ferritic stainless steel[C]//Microtechnologies for the New Millennium2005.International Society for Optics and Photonics,2005:819-825.
    [98] A. Berkovits, D. W. Kelly, S. D. Considerations of the effect of residual stresses on fatigue ofwelded aluminium alloy structures. Fatigue&Fracture of Engineering Material&Structures,Vol,21, pp159-170.
    [99] C. Lachmann, Th. Nitschke-Pagel and H. Wohlfahrt. Characterization of residual stressrelaxation joints by X-ray diffraction and barkhausen noise method. Materials Science Forum,2000, Vol.s, pp347-349, pp374-379
    [100] Sonsino C M. Effect of residual stresses on the fatigue behaviour of welded joints depending onloading conditions and weld geometry[J]. International Journal of Fatigue,2009,31(1):88-101.
    [101] Sonsino C M. Multiaxial fatigue of welded joints under in-phase and out-of-phase local strainsand stresses[J]. International Journal of Fatigue,1995,17(1):55-70.
    [102]卢耀辉.铁道客车转向架焊接构架疲劳可靠性研究[D].西南交通大学,2011.
    [103]李娟.镁/铝合金焊接接头疲劳评定的热点应力法研究[D].太原理工大学,2011.
    [104]梁军,张涛,荆洪阳,等.含缺陷高压加热器疲劳评定及寿命预测[J].焊接技术,2011,40(10):49-52.
    [105]黄正凤.在役含缺陷T530零效蒸发器的失效分析及安全性评定[D].哈尔滨工业大学,2011.
    [106]张鼎.基于裂纹扩展的海洋结构物安全寿命评估方法研究[D].上海交通大学,2012.
    [107]陈飞宇.热点应力法及其在起重机金属结构中的应用[D].武汉科技大学,2012.
    [108]王文利.风力作用下桅杆结构拉耳焊接节点板裂纹萌生疲劳寿命的评估[D].武汉理工大学,2012.
    [109]夏子钰.高强钢焊接接头CTOD微观组织影响研究与BS7910缺陷评定[D].武汉理工大学,2012.
    [110]魏敏,王国珍,轩福贞,等.核压力容器接管安全端堆焊修复对失效评定曲线的影响[J].压力容器,2013,30(5):58-63.
    [111]孙洋洋,苗张木,苗婷,等.基于CTOD与SINTAP的海洋用钢断裂韧度评定[J].焊管,2013,36(9):11-14.
    [112] JEYAKUMAR M, CHRISTOPHER T.基于结构完整性评定方法和有限元分析并考虑焊接残余应力的焊接缺陷评估(英文)[J].中国有色金属学报:英文版,2013(5):1452-1458.
    [113]邵永波,宋生志,李涛.基于失效评定图(FAD)研究含疲劳裂纹T型圆钢管节点的安全性[J].工程力学,2013,30(9):184-193.
    [114]黄诚.焊接缺陷断裂的可靠性评定[D].大连理工大学,2002.
    [115]崔维成.船舶结构疲劳强度校核研究现状及我国的进展[J].船舶力学,1998,2(4):63-81.
    [116]唐昌德.焊接残余应力对半潜式海洋平台关键节点疲劳寿命影响研究[D].江苏科技大学,2014.
    [117]李良碧.高强度钢的焊接残余应力研究[D].江苏:中国船舶科学研究中心,2009.
    [118] weldability; welding suitability of general structural steels for fusion welding. DIN8528-2-1975德国标准化协会
    [119] ESI GROUP.SYS Weld2004Reference Manual[M].France,2004
    [120]张丽华.交变载荷作用下焊接残余应力场的特性研究[D].大连理工大学
    [121]李永正等.16Mn钢平板对接焊残余应力测试报告[R],江苏省重点实验室结题报告.
    [122] T.R.内格尔,焊接结构的疲劳[M],机械工业出版社,1988.
    [123]斯重遥,周振丰,钱百年.焊接手册(第2卷)[J].材料的焊接,1992.
    [124]唐伯钢,展望21世纪的我国焊接技术和焊接钢结构产业[J],钢结构,2001,21(56):43-45.
    [125]赵耀.裂纹损伤圆柱壳承载能力的实验研究[J][J].华中理工大学学报,1998,5.
    [126]王芳.具有裂纹损伤的船舶结构剩余极限强度分析[D].上海交通大学,2007.
    [127]孙正华,李兆霞,陈鸿天.结构行为一致多尺度有限元模型修正及验证[J].东南大学学报:自然科学版,2009,39(1):85-90.
    [128]周妍.多尺度有限元法在复合材料液态成型模拟中的应用[D].武汉理工大学,2009.
    [129]范颖,王磊,章青.多尺度有限元法及其应用研究进展[J].水利水电科技进展,2012,32(3):90-94.
    [130]孙戬.多尺度下裂纹断裂过程区力学特性分析[D].西安科技大学,2009.
    [131]郭雅芳,王崇愚.多尺度材料模型研究及应用[J].材料导报,2001,7:003.
    [132] Jivkov A P. Fatigue corrosion crack extension across the interface of an elastic bi-material[J].Engineering fracture mechanics,2004,71(7):1119-1133.
    [133] Jivkov A P, Stevens N P C, Marrow T J. A two-dimensional mesoscale model for intergranularstress corrosion crack propagation[J]. Acta materialia,2006,54(13):3493-3501.
    [134] Wenman M R, Trethewey K R, Jarman S E, et al. A finite-element computational model ofchloride-induced transgranular stress-corrosion cracking of austenitic stainless steel[J]. ActaMaterialia,2008,56(16):4125-4136.
    [135] Van Arsdell W W, Brown S B. Subcritical crack growth in silicon MEMS[J].Microelectromechanical Systems, Journal of,1999,8(3):319-327.
    [136] Siddiq A, Rahimi S. A multiscale constitutive model for intergranular stress corrosion cracking intype304austenitic stainless steel[C]//Journal of Physics: Conference Series. IOP Publishing,2013,451(1):012022.
    [137] Düber O, Künkler B, Krupp U, et al. Experimental characterization and two-dimensionalsimulation of short-crack propagation in an austenitic–ferritic duplex steel[J]. Internationaljournal of fatigue,2006,28(9):983-992.
    [138] Zhou S J, Beazley D M, Lomdahl P S, et al. Large-scale molecular dynamics simulations ofthree-dimensional ductile failure[J]. Physical Review Letters,1997,78(3):479.
    [139] Jivkov A P. Fatigue corrosion crack extension across the interface of an elastic bi-material[J].Engineering fracture mechanics,2004,71(7):1119-1133.
    [140] Paik J K, Thayamballi A K. Ultimate strength of ageing ships[J]. Proceedings of the Institution ofMechanical Engineers, Part M: Journal of Engineering for the Maritime Environment,2002,216(1):57-77.
    [141]胡勇,崔维成.具有裂纹缺陷的板和加筋板格在联合载荷作用下的剩余极限强度[J].船舶力学,2003,7(1):63-78.
    [142]王芳.具有裂纹损伤的船舶结构剩余极限强度分析[D].上海:上海交通大学,2007.
    [143]姜风春,刘瑞堂,张晓欣.船用945钢的动态力学性能研究[J].兵工学报,2000,21(3):257-260.
    [144]史鑫涛.改善平行中体舷顶角区域焊接节点质量的措施[J].中国船检,2000,4:030.
    [145]贲继南.船舶焊缝常见缺陷与对策[J].中国水运,2006(8):24-25.
    [146] Byklum E, Amdahl J. A simplified method for elastic large deflection analysis of plates andstiffened panels due to local buckling[J]. Thin-Walled Structures,2002,40(11):925-953.
    [147] Paik J K. Characteristics of welding induced initial deflections in welded aluminum plates[J].Thin-walled structures,2007,45(5):493-501.
    [148] Ok D, Pu Y, Incecik A. Computation of ultimate strength of locally corroded unstiffened platesunder uniaxial compression[J]. Marine Structures,2007,20(1):100-114.
    [149] Dexter R J, Pilarski P J. Crack propagation in welded stiffened panels[J]. Journal ofConstructional Steel Research,2002,58(5):1081-1102.
    [150] Cui W, Mansour A E. Effects of welding distortions and residual stresses on the ultimate strengthof long rectangular plates under uniaxial compression[J]. Marine structures,1998,11(6):251-269.
    [151] Nakai T, Matsushita H, Yamamoto N, et al. Effect of pitting corrosion on local strength of holdframes of bulk carriers (1st report)[J]. Marine structures,2004,17(5):403-432.
    [152] Sterjovski Z, Dunne D P, Ambrose S. Evaluation of cross-weld properties of quenched andtempered pressure vessel steel before and after PWHT[J]. International journal of pressurevessels and piping,2004,81(6):465-470.
    [153] Paik J K. Residual ultimate strength of steel plates with longitudinal cracks under axialcompression—nonlinear finite element method investigations[J]. Ocean Engineering,2009,36(3):266-276.
    [154] Wang F, Cui W C, Paik J K. Residual ultimate strength of structural members with multiplecrack damage[J]. Thin-Walled Structures,2009,47(12):1439-1446.
    [155] Paik J K, Lee J M, Ko M J. Ultimate compressive strength of plate elements with pit corrosionwastage[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal ofEngineering for the Maritime Environment,2003,217(4):185-200.
    [156] Paik J K, Satish Kumar Y V, Lee J M. Ultimate strength of cracked plate elements under axialcompression or tension[J]. Thin-Walled Structures,2005,43(2):237-272.
    [157]87G B.钢熔化焊对接接头射线照相和质量分级[S].
    [158]2007J G T.钢结构超声波探伤及质量分级方法[S].
    [159]周在杞.《钢结构超声波探伤及质量分级法》(JG/T203-2007)将于2007年11月1日起实施[J].无损检测,29(7):395-395.
    [160] CB/T3559-1994.船舶钢焊缝手工超声波探伤工艺和质量分级[S].
    [161]船舶制造工艺力学[M].国防工业出版社,2005.
    [162]方洪渊,焊接结构学[M].北京:机械工业出版社,2008.
    [163]冷建兴.XXX结构疲劳强度研究[D].中国船舶科学研究中心,2001.
    [164]张彦华,焊接强度分析[M].西安:西北工业大学出版社,2010.
    [165] Griffith A A.The Phenomena of rupture and flowed in solids.Phil.Trans.,Ser.A,1920,221:163-198.
    [166] Invin G R. Analysis of stresses and strains near the end of a crack transversing a plate. J. APPI.Meeh.,1957,24:361-364.
    [167]沈士明,周剑秋,朱立洪.压力管道缺陷评定方法的现状与发展[J].南京化工大学学报.1999:74-78.
    [168]朱瑞东,李伟,王艳如.国际压力容器缺陷评定规范评述[J].石油化工设备技术.1994:2-6.
    [169]俞树荣,王志文.压力容器评定的现代方法[J].化工机械.1995.22(3):176-179.
    [170]尹建成. J(IC)测试方法研究与某船体钢焊接结构的失效评定[D].哈尔滨工程大学,2005.
    [171] Newman Jr J C, Raju I S. Stress-intensity factor equations for cracks in three-dimensional finitebodies subjected to tension and bending loads[J]. Computational methods in the mechanics offracture,1986,2(S N):312-34.
    [172] McEvily A J, Ishihara S, Endo M. An analysis of multiple two-step fatigue loading[J].International journal of fatigue,2005,27(8):862-866.
    [173]孙文婷,万正权.对接焊残余应力的有限元分析[J].船舶力学,2007,11(1):94-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700