用户名: 密码: 验证码:
地下水电站热湿环境形成机理及节能调控策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国水电站建设处于高速发展期,大多数电站特别是大型电站都选择了地下形式。由于深埋地下,当热湿调控措施不当时,厂内容易产生潮湿、发闷、发霉、结露等现象。为了消除这种热湿环境,电站往往采用大容量的通风空调设备,但并未取得满意的效果。目前相关研究主要以厂内设备散热为出发点,侧重于热环境的研究,而对热、湿耦合状态下的环境研究较少,未深入揭示其热湿环境的形成机理,故很难保证调控策略的有效性。地下水电站的热湿环境受多种因素的综合影响,了解不同因素的影响机理是有效解决热湿环境问题、制定科学合理调控策略、降低通风空调系统能耗的关键。
     本课题对此开展了系统的研究,建立了地下电站热湿环境的模拟预测方法,揭示了厂内热湿环境的形成机理,同时分析了不同因素对热湿环境的影响过程及机理,并以此为基础,提出了合理制定厂内热湿环境调控策略的方法,为优化工程设计和运行调控提供科学支撑,为电力生产提供可靠的保障。本文的研究是在国家自然科学基金“深埋地下式水电站热湿环境形成机理与节能调控”(51178482)资助下完成的。
     通过分析,本文将地下水电站洞室群分为两大类,即大空间厂房和狭长进风洞,针对两种类型洞室,分别建立其围护结构内的热湿传递数学模型。模型均以液态水体积含湿量和温度作为驱动势,并首次将“单元分割”思想引入到模型求解过程中。通过对两个模型的热质传递控制微分方程进行离散,分别采用MATLAB编写了计算程序。为验证数学模型的正确性,本文建立了综合的验证方法,分别对反映热湿传递机理的数学模型的正确性及其在地下水电站应用中的适应性进行了验证。
     地下进风洞是空气进入厂房的预处理段,是分析厂房内热湿环境的前提,通过模拟计算,本文揭示了地下进风洞对气流的热湿处理规律、洞内结雾的位置及时段,并对地下进风洞对厂房环境、通风空调系统设计参数的影响进行了分析。为合理利用地下进风洞的自然资源、通风空调设备的选型设计和运行调节提供了科学支撑。
     围护结构表面的热、湿吸放过程与室内空气参数相互影响、相互耦合,单独对围护结构进行分析而忽略了室内空气参数的影响是无意义的,而目前的研究恰恰忽视了这一特性。本文以耦合性为切入点,对主厂房围护结构的动态热湿吸放进行了研究,揭示了空气参数与壁面热、湿吸放的内在联系;并以空气参数特征值为自变量,通过耦合关系,提出了围护结构全年动态热、湿吸放简化预测公式,为工程上计算壁面散热散湿、估算空调容量、调整通风策略提供了方便实用且较为准确的方法。同时对电站投产初期,围护结构内的施工余水的迁移过程进行了研究,同样以耦合关系为基础,分析了不同空气参数对余水迁徙的影响,提出了施工余水迁移速率、余水影响期及余水导致的壁面散湿量的简化动态计算公式,为工程上余水影响年限的估算、相应防潮措施的选择提供了较为实用的方法。
     由于工艺特性,地下水电站的热湿环境还受发电设备、引水发电系统、厂内气流组织等诸多因素的影响。针对发电设备,本文对其散热的强度、时间、空间特性进行了研究,对重点发热设备(发电机、变压器、母线)进行分析并获得了其相应的散热特性;对引水系统部分,首次建立了考虑引水管道的围护结构内部二维热湿传递模型,通过计算揭示了引水系统对厂内热湿环境的影响机理,确定了在引水管道影响下的壁面结露位置、时间以及其造成的附加传热量与传湿量;气流组织方面主要对壁面处空气流速与通风内循环进行了计算,提出在不同空气流速下围护结构壁面的热湿吸放特性及其对厂内的影响,同时建立了热、湿平衡方程,将内循环率引入计算过程,对不同内循环率下的厂内环境、围护壁面的热湿吸放进行了研究。通过对不同影响因素的研究,更加具体、综合、全面地揭示了厂内热、湿环境的形成机理,为整个厂房热湿环境调控提供了科学的支撑。
     最后以某巨型地下水电站为例,建立了厂内热湿环境模拟预测方法,该方法综合考虑了不同因素对厂内热湿环境的影响机理,通过模拟预测,得到了该电站地下厂房不同洞室的全年动态热湿环境参数,以此为基础并同时考虑不同因素的影响机理,完整地提出了制定地下水电站厂房热湿环境节能调控策略的方法。
     本文对地下水电站热湿环境的形成机理及相应的调控策略进行了较全面的研究,完善了地下水电站围护结构的热湿耦合传递模拟方法,深入解析了不同因素对热湿环境的影响机理,进一步推进了地下水电站热湿环境以及节能调控的研究。
In recent years, China’s hydropower station construction is gradually moving into ahigh-speed period. For some certain reasons, the underground form is mainly chosen.Because buried deeply underground, serious environmental issues, such as dampness,suffocation, fungus and condensation, can be easily found under inappropriate operationof ventilation system. To eliminate such issues, HVAC facilities with large capacity areusually adopted but still without satisfactory results. Current literatures mainly takeequipment heat load as the starting point and pay much more attention on heatenvironment rather than moisture environment. By ignoring the coupling relationshipbetween heat and moisture, it is impossible for current studies to reveal the formationmechanism of heat and moisture environment and take effective improvement actions.Environment in underground hydropower station is affected by multi-factors, fullunderstanding of the influence mechanism of different factors is the basis for solution ofenvironmental issues, establishment of controlling strategy and reduction of HVACenergy consumption.
     A systemic investigation is carried out in this paper. First, a prediction model aboutheat and moisture environment in underground hydropower station is established, theformation mechanism of this special environment is revealed after analysis of differentinfluential factors. Then the controlling strategy is proposed, which can effectively solveenvironmental issues and will be the basic foundation for the design and operation ofHVAC system. The work presented in this paper is financially supported by NationalNature Science Foundation of China titled by Formation mechanism of thermal andmoist environment in deeply buried underground hydropower station and it’senergy-saving control strategy (Project No.51178482).
     All the chambers in underground hydropower station can be divided into twocategories based on their shape and structural characteristics, that is large-space cavernand narrow tunnel. Two newly developed numerical models, which are suitable for thecalculation of heat and moisture transfer in different kind of chambers is proposed inthis paper. By applying “cell division” calculation method, the models are discretizedand the corresponding calculation code are written in MATLAB for numericalcomputation. Finally, the developed models are validated against the test results ofseveral experiments and field measurements.
     Underground tunnel, which can be considered as the pre-treatment section of theambient air before it entering power house, is the premise of environment analysis inunderground hydropower station. Through calculation, the paper reveals the heat andmoisture exchange features between tunnel and air stream as well as condensationphenomena. The impact of tunnel ventilation on power house environment and ACdesign parameters is also discussed. All the analysis about the heat and moistureexchange inside underground tunnel will provide an accurate reference for the rationalutilization of natural resources and scientific support for the design and operation of ACsystem.
     There is a coupling relationship between indoor air and surrounding envelope, thecurrent studies when dealing with underground structures always only focus onenvelope without consideration of this coupling characteristic, which is unreasonable.Therefore, by setting coupling relationship as the starting point, the paper launches afurther investigation on the heat and moisture transfer process of the envelope. Thenfinally the essence of this coupling property is revealed, by which the simplifiedformula using air parameters as independent variable is proposed, which can easilycalculate the dynamic heat and moisture exchange between envelope and indoor air.This simplified function can sharply reduce computation complexity and provideengineers a very practical way to determine heat and moisture transfer amount, evaluateAC capacity and adjust operation strategy. This paper also has an investigation onanother long-standing puzzle---construction water problem. Also starting from couplingrelationship, the influence degree of different factors is discussed and quantified. Then asimplified formula for the calculation of construction water transfer is proposed, whichcan provide a simple and reliable method for the estimation of construction waterinfluential period. Therefore, the reliable and practical damp-proofing method andstrategy can be easily got.
     Due to special geographical location and process characteristics, environment inunderground hydropower station is also affected by other special factors, includinggeneration facilities, water diversion system and airflow distribution. Therefore, thepaper carries out investigation on each different factors. For generation facilities, theheat releasing characteristics, such as intensity, time variation and spatial distribution,are discussed. Numerical modeling of important equipment, including generator,transformer as well as bus bar, is launched and then the heat releasing feature of eachequipment is got. For water division system, a two-dimension model with consideration of penstock is first established, by which the influential mechanism of water divisionsystem on environment is revealed. Also other heat and moisture issues caused by waterdivision system, such as condensation time and condensation place, are identified.While for the airflow distribution part, the influence of velocity and internal-circulationare discussed. Through the study of different influential factors, the revelation offormation mechanism of heat and moisture environment in underground hydropowerstation becomes more specific and comprehensive, which will provide scientific supportfor the entire HVAC system, including design, operation, optimization and energysaving control.
     Finally, taking an underground hydropower station as the example to analyze heatand moisture environment in different parts of the underground chambers, includingunderground tunnel, generator floor, bus bar floor, hydraulic turbine floor and volutefloor. Based on calculation results, the optimization method of HVAC system andcontrol strategy of heat and moisture environment is finally proposed.
     All-around investigation about the formation mechanism of undergroundenvironment and its control strategy are carried out in this paper. The results of thisresearch can greatly improve the application of coupled heat and moisture transfer inunderground constructions, and provide an important reference for further investigationon heat and moisture environment in underground hydropower station.
引文
[1]邓念元,巨型水电站建设简评(一):四川水力发电.1998.1.
    [2]邓念元,巨型水电站建设简评(二):四川水力发电.1998.2.
    [3]中国水力发电工程学会,中国水力发电科学技术发展报告(2012年版)[M],北京:中国电力出版社,2012.
    [4]杨述仁,周文铎,地下水电站厂房设计[M],北京:水利电力出版社,1991.
    [5]刘伟,范爱武,黄晓明,多孔介质传热传质理论与应用[M],北京:科学出版社.2006.
    [6]林瑞泰,多孔介质传热传质引论[M],北京:科学出版社.1995.
    [7] J.Bear, Dynamics of Fluids in Porous Media, American: Elesvier Publishing Comp.Inc.1972.
    [8]施明恒,虞维平,多孔介质传热传质研究的现状和展望[J].东南大学学报,1994.11.
    [9] Valen, M.S., Moisture Transfer in Organic Coating on Porous Materials[Doctoral Thesis],NORWAY: Dep. of Building and Construnction Engineering Norwegian University of Scienceand Technology,1998.
    [10] Luikov, A.V., Systems of differential equations of heat and mass transfer in capillary-porousbodies (review). International Journal of Heat and Mass Transfer,1975.18(1): p.1-14.
    [11] Philip, J.R.,D.A. De Vries, Moisture movement in porous materials under temperaturegradients. Transactions of the Americal Geophysical Union,1957.38(2): p.222-232.
    [12] De Vries, D.A., The theory of heat and moisture transfer in porous media revisited.International Journal of Heat and Mass Transfer,1987.30(7): p.1343-1350.
    [13] Whitaker, S., Simulation Heat Mass and Momentum Transfer in porous media: A Dry Theoryof Dry. Advances in Heat Transfer,1977.13: p.119-203.
    [14] Ilic, M.,I.W. Turner, Convective drying of a consolidated slab of wet porous material.International Journal of Heat and Mass Transfer,1989.32(12): p.2351-2362.
    [15] Nasrallah, S.B.,P. Perre, Detailed study of a model of heat and mass transfer duringconvective drying of porous media. International Journal of Heat and Mass Transfer,1988.31(5): p.957-967.
    [16] Peishi, C.,D.C.T. Pei, A mathematical model of drying processes. International Journal ofHeat and Mass Transfer,1989.32(2): p.297-310.
    [17] Wei, C.K., H.T. Davis, E.A. Davis, et al., Heat and mass transfer in water-laden sandstone:Microwave heating. AIChE Journal,1985.31(5): p.842-848.
    [18] Wei, C.K., H.T. Davis, E.A. Davis, et al., Heat and mass transfer in water-laden sandstone:Convective heating. AIChE Journal,1985.31(8): p.1338-1348.
    [19] Stanishl, M.A., S. G.S.,K. F, Amathematical model of drying for hygroscopic porous media.AIChE Journal,1986.32(8): p.957-967.
    [20] Lewis, R.B.,干燥原理及其应用[M],上海:上海科学技术文献出版社,1986.
    [21] Sherwood, T.K., The drying of solids-1, America: American Chemical SocietyPublications,1929.
    [22] Sherwood, T.K., The drying of solids-2, America: American Chemical SocietyPublications,1929.
    [23] Sherwood, T.K., Application of the theoretical diffusion equation to the drying of solids.AIChE Journal,1931.27: p.190-202.
    [24] King, C.J., Freeze Drying of Foods, London: CRC Express,1971.
    [25]陶智,康宁,建筑结构中的湿迁移[J].力学进展,1994.24(4): p.441-445.
    [26] KüNzel, H.M.,K. Kiessl, Calculation of heat and moisture transfer in exposed buildingcomponents. International Journal of Heat and Mass Transfer,1996.40(1): p.159-167.
    [27] Lu, X., Estimation of indoor moisture generation rate from measurement in buildings.Building and Environment,2003.38(5): p.665-675.
    [28] Budaiwi, I., R. El-Diasty,A. Abdou, Modelling of moisture and thermal transient behaviour ofmulti-layer non-cavity walls. Building and Environment,1999.34(5): p.537-551.
    [29] Ceaglske, N.H.,O.A. Hougen, Drying granular solids, America: American Chemical SocietyPublications,1936.
    [30] Keresteciogiu, A.,L. Gu, Theoretical and Computational Investigation of Simulation Heat andMoisture Transfer in Buildings:'Evaporation and Condensation' Theory. ASHRAETransaction,1990.96(2): p.455-463.
    [31] R.J.Liesen,C.O.Pedersen, Modelling the energy effects of combined heat and mass transfer inbuilding elements: part1-theory. ASHRAE Transaction,1999.105(2): p.941-953.
    [32] Henry, P.S.A., Diffusion in Absorbing Media, London: Proceedings of the Royal Society ofLondon,1939.
    [33]苏向辉,多层多孔材料结构内热湿传递耦合迁移特性研究[D],南京:南京航空航天大学博士学位论文,2003.
    [34] Lü, X., Modelling of heat and moisture transfer in buildings: I. Model program. Energy andBuildings,2002.34(10): p.1033-1043.
    [35] Mendes, N., P.C. Philippi,R. Lamberts, A new mathematical method to solve highly coupledequations of heat and mass transfer in porous media. International Journal of Heat and MassTransfer,2002.45(3): p.509-518.
    [36] H upl, P., J. Grunewald, H. Fechner, et al., Coupled heat air and moisture transfer in buildingstructures. International Journal of Heat and Mass Transfer,1997.40(7): p.1633-1642.
    [37]孔凡红,新建建筑围护结构干燥特性及其影响研究[D],哈尔滨:哈尔滨工业大学博士学位论文,2008.
    [38]张华玲,水电站地下厂房热湿环境研究[D],重庆:重庆大学博士学位论文,2007.
    [39] Liu, W., S.W. Peng,K. Mizukami, A general mathematical modelling for heat and masstransfer in unsaturated porous media: an application to free evaporative cooling. Heat andMass Transfer,1995.31(1-2): p.49-55.
    [40] Defraeye, T., B. Blocken,J. Carmeliet, Analysis of convective heat and mass transfercoefficients for convective drying of a porous flat plate by conjugate modelling. InternationalJournal of Heat and Mass Transfer,2012.55(1–3): p.112-124.
    [41] Sun, D.-W.,Z. Hu, CFD simulation of coupled heat and mass transfer through porous foodsduring vacuum cooling process. International Journal of Refrigeration,2003.26(1): p.19-27.
    [42] Hossain, M.A.,D.A.S. Rees, Combined heat and mass transfer in natural convection flowfrom a vertical wavy surface. Acta Mechanica,1999.136(3-4): p.133-141.
    [43] Zhu, Q.Y., M.H. Xie, J. Yang, et al., A fractal model for the coupled heat and mass transfer inporous fibrous media. International Journal of Heat and Mass Transfer,2011.54(7–8): p.1400-1409.
    [44] Neagu, M., Free convective heat and mass transfer induced by a constant heat and mass fluxesvertical wavy wall in a non-Darcy double stratified porous medium. International Journal ofHeat and Mass Transfer,2011.54(11–12): p.2310-2318.
    [45] Zambra, C.E., N.O. Moraga,M. Escudey, Heat and mass transfer in unsaturated porous media:Moisture effects in compost piles self-heating. International Journal of Heat and MassTransfer,2011.54(13–14): p.2801-2810.
    [46] Singh, B.B.,I.M. Chandarki, Integral treatment of coupled heat and mass transfer by naturalconvection from a cylinder in porous media. International Communications in Heat and MassTransfer,2009.36(3): p.269-273.
    [47] Dantas, L.B., H.R.B. Orlande,R.M. Cotta, An inverse problem of parameter estimation forheat and mass transfer in capillary porous media. International Journal of Heat and MassTransfer,2003.46(9): p.1587-1598.
    [48] Prabhu, S.M.,S. Krishnan, Nonlinear two-dimensional potential based study of coupled heatand mass transfer in a porous medium. Microporous and Mesoporous Materials,2006.95(1–3): p.241-247.
    [49] Lu, T.,S.Q. Shen, Numerical and experimental investigation of paper drying: Heat and masstransfer with phase change in porous media. Applied Thermal Engineering,2007.27(8–9): p.1248-1258.
    [50] Tsai, R.,J.S. Huang, Numerical study of Soret and Dufour effects on heat and mass transferfrom natural convection flow over a vertical porous medium with variable wall heat fluxes.Computational Materials Science,2009.47(1): p.23-30.
    [51] Hamdami, N., J.-Y. Monteau,A. Le Bail, Simulation of coupled heat and mass transfer duringfreezing of a porous humid matrix. International Journal of Refrigeration,2004.27(6): p.595-603.
    [52] Djongyang, N., R. Tchinda,D. Njomo, A study of coupled heat and mass transfer across aporous building component in intertropical conditions. Energy and Buildings,2009.41(5): p.461-469.
    [53] Moraga, N.O., F. Corvalán, M. Escudey, et al., Unsteady2D coupled heat and mass transfer inporous media with biological and chemical heat generations. International Journal of Heat andMass Transfer,2009.52(25–26): p.5841-5848.
    [54] Cheng, W.T.,C.H. Lin, Unsteady mass transfer in mixed convective heat flow from a verticalplate embedded in a liquid-saturated porous medium with melting effect. InternationalCommunications in Heat and Mass Transfer,2008.35(10): p.1350-1354.
    [55] wirska-Perkowska, J., Estimation of moisture superficial diffusivity in porous materials.International Journal of Heat and Mass Transfer,2011.54(1–3): p.692-697.
    [56] Sun, S.-H.,T.R. Marrero, Experimental study of simultaneous heat and moisture transferaround single short porous cylinders during convection drying by a psychrometry method.International Journal of Heat and Mass Transfer,1996.39(17): p.3559-3565.
    [57] Terrell Jr, W.,T.A. Newell, Experimental techniques for determining heat and mass transferdue to condensation of humid air in cooled, open cavities. Applied Thermal Engineering,2007.27(8–9): p.1574-1584.
    [58] Meissner, J.W., N. Mendes, K.C. Mendon a, et al., A full-scale experimental set-up forevaluating the moisture buffer effects of porous material. International Communications inHeat and Mass Transfer,2010.37(9): p.1197-1202.
    [59] Sandrolini, F.,E. Franzoni, An operative protocol for reliable measurements of moisture inporous materials of ancient buildings. Building and Environment,2006.41(10): p.1372-1380.
    [60] Drchalová, J.,R. erny, A simple gravimetric method for determining the moisture diffusivityof building materials. Construction and Building Materials,2003.17(3): p.223-228.
    [61]卢涛,毛细多孔介质干燥过程中传热传质模型研究及应用[D],大连:大连理工大学博士学位论文,2003.
    [62]钟辉智,多孔建筑材料热湿物理性能研究及应用[D],成都:西南交通大学博士学位论文,2007.
    [63] Roels, S.,J. Carmeliet, Analysis of moisture flow in porous materials using microfocus X-rayradiography. International Journal of Heat and Mass Transfer,2006.49(25–26): p.4762-4772.
    [64] Nizovtsev, M.I., S.V. Stankus, A.N. Sterlyagov, et al., Determination of moisture diffusivity inporous materials using gamma-method. International Journal of Heat and Mass Transfer,2008.51(17–18): p.4161-4167.
    [65] Pel, L., K. Kopinga,H. Brocken, Determination of moisture profiles in porous buildingmaterials by NMR. Magnetic Resonance Imaging,1996.14(7–8): p.931-932.
    [66] Yao, B.-g., Y. Li, J.-y. Hu, et al., An improved test method for characterizing the dynamicliquid moisture transfer in porous polymeric materials. Polymer Testing,2006.25(5): p.677-689.
    [67] van der Heijden, G.H.A., H.P. Huinink, L. Pel, et al., One-dimensional scanning of moisturein heated porous building materials with NMR. Journal of Magnetic Resonance,2011.208(2):p.235-242.
    [68] Van Belleghem, M., M. Steeman, A. Willockx, et al., Benchmark experiments for moisturetransfer modelling in air and porous materials. Building and Environment,2011.46(4): p.884-898.
    [69] Wang, S., Y. Utaka,Y. Tasaki, An experimental study on moisture transport through a porousplate with micro pores. International Journal of Heat and Mass Transfer,2009.52(19–20): p.4386-4389.
    [70] Min, J.,T. Hu, Moisture permeation through porous membranes. Journal of MembraneScience,2011.379(1–2): p.496-503.
    [71] Prommas, R., Theoretical and experimental study of heat and mass transfer mechanism duringconvective drying of multi-layered porous packed bed. International Communications in Heatand Mass Transfer,2011.38(7): p.900-905.
    [72] Olutimayin, S.O.,C.J. Simonson, Measuring and modeling vapor boundary layer growthduring transient diffusion heat and moisture transfer in cellulose insulation. InternationalJournal of Heat and Mass Transfer,2005.48(16): p.3319-3330.
    [73] Terheiden, K., Simultaneous measurement of vapor and liquid moisture transport in porousbuilding materials. Building and Environment,2008.43(12): p.2188-2192.
    [74] Kalamees, T.,J. Vinha, Hygrothermal calculations and laboratory tests on timber-framed wallstructures. Building and Environment,2003.38(5): p.689-697.
    [75]杨合长,李安桂,小浪底水电站地下厂房通风系统与实际运行工况测试分析[J].水电暖通空调技术,2005(15): p.53-57.
    [76] Stojanovi, B.,J. Akander, Build-up and long-term performance test of a full-scalesolar-assisted heat pump system for residential heating in Nordic climatic conditions. AppliedThermal Engineering,2010.30(2–3): p.188-195.
    [77] Hollmuller, P.,B. Lachal, Cooling and preheating with buried pipe systems: monitoring,simulation and economic aspects. Energy and Buildings,2001.33(5): p.509-518.
    [78] Santamouris, M., G. Mihalakakou,D.N. Asimakopoulos, On the coupling of thermostaticallycontrolled buildings with ground and night ventilation passive dissipation techniques. SolarEnergy,1997.60(3–4): p.191-197.
    [79] Stevens, J.W., Optimal placement depth for air–ground heat transfer systems. AppliedThermal Engineering,2004.24(2–3): p.149-157.
    [80] Maerefat, M.,A.P. Haghighi, Passive cooling of buildings by using integrated earth to air heatexchanger and solar chimney. Renewable Energy,2010.35(10): p.2316-2324.
    [81] Kumar, R., S. Ramesh,S.C. Kaushik, Performance evaluation and energy conservationpotential of earth–air–tunnel system coupled with non-air-conditioned building. Building andEnvironment,2003.38(6): p.807-813.
    [82] Ben Jmaa Derbel, H.,O. Kanoun, Investigation of the ground thermal potential in tunisiafocused towards heating and cooling applications. Applied Thermal Engineering,2010.30(10): p.1091-1100.
    [83] Krarti, M.,J.F. Kreider, Analytical model for heat transfer in an underground air tunnel.Energy Conversion and Management,1996.37(10): p.1561-1574.
    [84] Cucumo, M., S. Cucumo, L. Montoro, et al., A one-dimensional transient analytical model forearth-to-air heat exchangers, taking into account condensation phenomena and thermalperturbation from the upper free surface as well as around the buried pipes. InternationalJournal of Heat and Mass Transfer,2008.51(3–4): p.506-516.
    [85] Mihalakakou, G., M. Santamouris, D. Asimakopoulos, et al., Parametric prediction of theburied pipes cooling potential for passive cooling applications. Solar Energy,1995.55(3): p.163-173.
    [86] Wu, H., S. Wang,D. Zhu, Modelling and evaluation of cooling capacity of earth–air–pipesystems. Energy Conversion and Management,2007.48(5): p.1462-1471.
    [87] Hokoi Sh, U.S., Yoshida T, Cooling effect of cool tube-part1: Evaluation of cooling effectwithout moisture transfer. ASHREAE Trans,1998.104(2).
    [88] Su, H., X.-B. Liu, L. Ji, et al., A numerical model of a deeply buried air–earth–tunnel heatexchanger. Energy and Buildings,2012.48(0): p.233-239.
    [89]戴章艳,廊道通风换热过程分析-景洪、糯扎渡水电站坝体廊道通风理论与数值模拟研究
    [D],西安:西安建筑科技大学硕士学位论文,2006.
    [90]李辉,十三陵地下水电站交通洞通风换热效果实测及理论分析[D],西安:西安建筑科技大学硕士学位论文,2009.
    [91]李安桂,李辉,党义荣, et al., SSL水电站交通洞温度测试及节能潜力分析[J].太阳能学报,2010.31(9): p.1215-1219.
    [92]李安桂,王易军,钟洋,无衬、深埋、圆隧坝体廊道通风温降数学模型及景洪水电站廊道空气温度分布预测[J].水电暖通空调技术,2007(17): p.45-60.
    [93]王易军,李安桂,预测地下水电站坝体廊道温降的网络单元模型及应用[J].水电暖通空调技术,2007(17): p.60-66.
    [94]陈启高,陈永成,地下洞室壁面散湿量计算方法研究[J].地下空间,1990.10(1): p.61-64.
    [95] Zhong, Z., Combined Heat and Moisture Transfer Modeling for ResidentialBuildings[Doctoral thesis], West Lfayette, Indiana: Purdue University,2008.
    [96] Kim, S., Coupled Heat and Moisture Flow Analysis in Unsaturated Soil[Doctoral thesis],Bancroft Toledo: College of Engineering, The University of Toledo,2002.
    [97] ZUO, H., Experimental and Numerical Analysis of the Effect of Local Non-uniformity onConvective Heat and Mass Transfer in Porous Medis[Doctoral thesis], Minnesota: TheUniversity of Minnesota,2007.
    [98] Deru, M.P., Ground-Coupled Heat and Moisture Transfer From Buildings[Doctoral thesis],Colorado: Department of Mechanical Engineering, Colorado State University,2001.
    [99] Hannan, C., Measurements and modeling of air and heat flow in a brick wall cavity[Doctoralthesis], Quebec: The Department of Building Civil and Environmental Engineering,Concordia University,2007.
    [100] Nicolai, A., Modeling and Numerical Simulation of Salt Transfort and Phase Transitions inUnssaturated Porous Building Materals[Doctoral thesis], Germany: University ofTechnology Dresden,2002.
    [101] Khalifa, H.E.M., Modeling Coupled Heat and Moisture Flow Within a Bare DesertSoil[Doctoral thesis], Arizona: Department of Soil and Water Science, The University ofArizona,1992.
    [102] Ni, H., Multiphase Moisture Transport in Porous Media Under Intensive MicrowaveHeating[Doctoral thesis], Ithaca, New York: Cornell University,1997.
    [103] Spolek, G.A.,O.A. Plumb, Capillary pressure in softwoods. Wood Science and Technology,1981.15(3): p.189-199.
    [104] Wang, Z.H.,G. Chen, Heat and mass transfer in batch fluidized-bed drying of porousparticles. Chemical Engineering Science,2000.55(10): p.1857-1869.
    [105] Wang, Z.H.,G. Chen, Heat and mass transfer in fixed-bed drying. Chemical EngineeringScience,1999.54(19): p.4233-4243.
    [106] Perre, P.,C. Moyne, Processes related to drying:Part2:Use of the same model to solvetransfers both in saturated and unsaturated porous media. Drying Technology,1991.9(5): p.1153-1179.
    [107] Turner, I.W.,M. Ilic, Convective drying of a consolidated slab of wet porous materialincluding the sorption region. International Communications in Heat and Mass Transfer,1990.17(1): p.39-48.
    [108] Plumb, O.A., G.A. Spolek,B.A. Olmstead, Heat and mass transfer in wood during drying.International Journal of Heat and Mass Transfer,1985.28(9): p.1669-1678.
    [109] Turner, I.W.,P. Perré, The use of implicit flux limiting schemes in the simulation of thedrying process: A new maximum flow sensor applied to phase mobilities. AppliedMathematical Modelling,2001.25(6): p.513-540.
    [110] Hui.Li, A Modeling and Experimental Investigation of Coupled Heat, Air,Moisture andPollutants Transport in Building[Doctoral thesis], Beijing: Tsinghua University,1998.
    [111] Ahmad, H.E., A Numerical Modeling Study of Transport Phenomena in WoodDrying[Doctoral thesis], Ottawa: Department of Mechanical Engineering,University ofVictoria,1999.
    [112] Gong, L., A theoretical, numerical and experimental study of heat and mass transfer in woodduring drying[Doctoral thesis], Washington: Department of Mechanical and MaterialsEngineering, Washington State University,1992.
    [113] Parikh, R.J., An analysis of the irreversible thermodynamics model for coupled heat andmoisture transport phenomena in unsaturated porous media[Doctoral thesis], Fayetteville:The University of Arkansas,1979.
    [114] Jerry, M.S., Analytical, experimental and numerical analysis of moisture movement in wallsexposed to hot and humid climates[Doctoral thesis], Kansas: Department of Mechanical andNuclear Engineering College of Engineering, Kansas State University,1998.
    [115] Harmathy, T.Z., Simultaneous Moisture and Heat Transfer in Porous System with ParticularReference to Drying. Ind.&Engr. Chem.Fundamentals,1969.8(1): p.92-103.
    [116] Huang, C.L.D., Multi-phase moisture transfer in porous media subjected to temperaturegradient. International Journal of Heat and Mass Transfer,1979.22(9): p.1295-1307.
    [117]王补宣,王仁,含湿建筑材料的导热系数[J].工程热物理学报,1983.4(2): p.146-152.
    [118] Wong, S.P.W.,S.K. WANG, Fundamentals of simulations heat and mass between thebuilding envelope and the conditioned space air. ASHRAE Transaction,1990.96(2): p.73-83.
    [119] Pedersen, C.R., Combined moisture and heat transfer in building constructions[Doctoralthesis], Copenhagen: Thermal Insulation Laboratory,Danish Technical University,1990.
    [120] Chow, L.C.,J.N. Chung, Evaporation of water into a laminar stream of air and superheatedsteam. International Journal of Heat and Mass Transfer,1983.26(3): p.373-380.
    [121] El Diasty, R., P. Fazio,I. Budaiwi, Dynamic modelling of moisture absorption anddesorption in buildings. Building and Environment,1993.28(1): p.21-32.
    [122] Kusuda, T., Indoor humidity calculation. ASHRAE Transaction,1983.89(2): p.728-738.
    [123] CENGEL, Y.A., J.M. Cimbala,R.H. Turner, Fundamentals of Thermal-Fluid Science, NewYork: McGraw-Hill,2011.
    [124] Jiyuan, T., H.Y. Guan,C. Liu, Computational Fluid Dynamics-A Prachtical Approach,America: Elsevier,2008.
    [125] Tzaferis, A., D. Liparakis, M. Santamouris, et al., Analysis of the accuracy and sensitivity ofeight models to predict the performance of earth-to-air heat exchangers. Energy andBuildings,1992.18(1): p.35-43.
    [126]贺婷婷,白莲河抽水蓄能电站通风空调设计[J].水电暖通空调技术,2009(17): p.11-16.
    [127]钟洋,金安桥水电站坝后式厂房通风空调系统设计[J].水电暖通空调技术,2007(16): p.40-44.
    [128]陈立新,乐滩水电站厂房通风空调设计[J].水电暖通空调技术,2007(16): p.101-105.
    [129]李光华,三峡右岸地下电站暖通空调系统设计[J].水电暖通空调技术,2005(15): p.70-76.
    [130]林志勇,颜加明,泰安抽水蓄能电站通风空调系统设计[J].水电暖通空调技术,2009(17):p.17-23.
    [131]林志勇,张帆,宜兴抽水蓄能电站通风空调系统设计[J].水电暖通空调技术,2009(17): p.24-31.
    [132]丁季芳,肖斌,地下水电站厂房在暖通专业设计中几个问题的探讨[J].水电暖通空调技术,2005(15): p.18-24.
    [133]盛国林,水电站机组设备及运行[M],北京:化学工业出版社.2010.
    [134]杨胜保,水电站监控系统设计探讨[J].中国农村水利水电,2007(5): p.114-115.
    [135]卢新良,崔凯,柬埔寨甘再水电站照明设计[J].西北水电,2011(S2): p.56-60.
    [136]周德贵,巩北宁,同步发电机运行技术与实践[M],北京:中国电力出版社.1996.
    [137]青长庚,莫让江河空自流——浅说水力发电[M],北京:中国电力出版社.2002.
    [138]林婷莹,地下式水电站通风空调系统设计方案优化研究[D],重庆:重庆大学硕士学位论文,2014.
    [139]水电站机电设计手册编写组,水电站机电设计手册[S],北京:水利水电出版社.1988.
    [140]吴晓华, S7型变压器更新换代问题的探讨[J].农村电工,2004(12): p.15.
    [141]谭锰田, Y系列和JO2系列电动机的节能性讨论[J].节能3,1994(11): p.19-23.
    [142]周旭辉,赵朝阳,万家寨水电站调速器机械液压系统的故障分析及改造[J].电力学报,2005.20(2): p.154-159.
    [143]王勇,张德会,围海水电站技术供水系统自动控制设计[J].环球市场信息导报,2011(10):p.56.
    [144]李培元,发电机冷却介质及其监督[M],北京:中国电力出版社,2008.
    [145]盛昌达,发电机故障诊断与冷却技术[M],北京:中国科学技术出版社,2002.
    [146]陈铁华,赵万清,郭岩,水轮发电机原理及运行[M],北京:中国水利水电出版社.2009.
    [147]林志勇,浅探抽水蓄能电站电气设备发热量确定[A].2004年全国抽水蓄能学术年会论文集,2004.
    [148]邸双奎,自然油循环电力变压器温升计算方法的研究[D],济南:山东大学硕士学位论文,2006.
    [149]黎贤钛,电力变压器冷却系统设计[M],杭州:浙江大学出版社,2009.
    [150]杜莉,油浸式变压器的热模拟及结构优化[D],天津:河北工业大学硕士学位论文,2010.
    [151]刘永志,油浸式变压器温度场的数值计算与分析[D],沈阳:沈阳工业大学硕士学位论文,2012.
    [152]李大建,油浸式变压器温度场分析与油流对内部温升影响因素研究[D],成都:西南交通大学硕士学位论文,2013.
    [153]李鹏飞,李国祥,胡玉平,大型油浸式自冷变压器冷却系统CFD分析[J].变压器,2008.45(4): p.45-48.
    [154]张兴娟,曹乃承,杨春信,等,垂直布置的母线温度场计算及分析[J].中国电机工程学报,2000.20(8): p.11-13.
    [155]李玲,吴晓文,李洪涛,等,气体绝缘母线热计算及其影响因素分析[J].电工技术学报,2012.27(9): p.264-270.
    [156]田国栋,引水发电系统对电站厂房热湿环境的影响研究[D],重庆:重庆大学硕士学位论文,2013.
    [157]付祥钊,肖益民,刘勇,江口水电站地下厂房热湿环境测试[J].水电暖通空调技术,2005(15): p.35-42.
    [158]张帆,天荒坪电站通风空调设计中若干技术问题的探讨[J].水电暖通空调技术,2004(12): p.25-28.
    [159]杨益,对抽水蓄能电站通风空调系统节能的一些探讨[J].水电暖通空调技术,2007(16):p.1-6.
    [160]付祥钊,刘勇,陈金华,等,水电站地下厂房热湿环境测试研究[J].水电暖通空调技术,2009(17): p.123-127.
    [161]付祥钊,刘勇,肖益民,等,过渡季节江口水电站地下洞室的热湿环境实测研究[J].水电暖通空调技术,2007(17): p.87-94.
    [162]肖益民,陈金华,刘勇,等,富春江水电厂主厂房通风测试[J].水电暖通空调技术,2009(17): p.86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700