用户名: 密码: 验证码:
基于物联网的地下洞室群施工专家信息系统研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下洞室群施工是一项复杂的系统工程,会受到各种复杂天然地质状况等诸多未知因素的影响。针对地下洞室群施工过程的随机性、突发性、不确定性和经验性强等特点,本文引入物联网等先进的技术与方法,从信息采集、工程进度、工程安全、工程预警四个主要方面对地下洞室群施工过程开展了系统地分析研究,研发基于物联网技术的地下洞室群施工专家信息系统。本文主要研究内容和成果如下:
     (1)基于物联网技术,给出了地下洞室群各种施工信息基于物联网的实时采集建设方案,搭建了地下洞室群施工信息实时采集平台。
     本文首次将物联网技术应用到地下洞室群施工信息采集中,结合地下洞室群施工过程中产生各类信息的各自特点,建立三种不同的信息采集方式,实现地下洞室群施工过程中信息的无线实时采集,弥补了目前地下洞室群施工信息采集中信息采集过程复杂、时效性差等不足之处,为地下洞室群施工过程中科学管理与决策提供即时的数据信息保障。
     (2)提出了基于贝叶斯理论的地下洞室群时变施工进度风险预测方法,同时结合施工进度风险控制理念,研发了基于贝叶斯理论的地下洞室群施工进度风险实时控制专家系统。
     本文将贝叶斯理论与实时仿真技术同时引入到地下洞室群施工进度预测中,建立了基于贝叶斯理论的地下洞室群时变施工进度风险预测方法。该方法将工序单位工作量施工时间的均值和方差视为随机变量,利用现场采集到的实际施工记录信息,不断修正和改进正在施工工序剩余工作时间和未施工工序工作时间的预测概率分布,同时结合柔性网络计划仿真方法实现对工程后期整体施工进度的完工风险预测。基于本文方法得到的施工进度预测结果更加贴近工程实际,对于地下洞室群施工进度概率预测方法的发展起到了一定的推动作用。
     (3)给出了适用于实时仿真的数值模型建立方法,建立实际施工状态与数值模型模拟状态的实时映射关系,提出了基于数值模拟技术的地下洞室群施工结构安全实时数值仿真方法。
     本文通过对地下洞室群实际施工状态与施工数值模拟状态的深入分析,给出各自所包含的主要要素,并引入数学中集合的概念,建立了两个状态之间的实时动态映射关系,完成了实际施工进度、突发不良地质及支护措施在大尺度精细化数值模型上的实时、自动化映射模拟,实现了地下洞室群施工过程中结构安全的实时数值仿真,为现场工程师进行指挥决策提供了重要的参考依据。
     (4)将(2)、(3)两个创新点进行融合,提出了地下洞室群施工期结构安全与进度耦合实时仿真方法,研发了基于结构安全与进度耦合实时仿真的地下洞室群施工突发不良地质处理措施专家系统。
     大型地下洞室群施工安全与进度受突发不良地质状况影响较大,实时确定不良地质对施工结构安全与进度的综合影响具有重要工程意义。本文将突发不良地质状况映射到数值模型上,根据实时数值仿真结果对不良地质段施工的结构安全性进行预测评估,对不满足安全要求的施工状态提出相应的处理措施,并对处理效果进行实时仿真预测,将确定的处理措施以施工参数的形式反馈给施工进度控制系统,实时评价处理措施对总体施工进度的影响。该系统实现了地下工程安全施工与进度控制的现场办公一体化,为地下工程现场施工的安全与进度控制提供了技术支持。
     (5)基于强度折减的思想,结合(3)中的实时数值仿真方法,提出了基于实时数值仿真的地下洞室群施工期围岩劣化损伤折减计算方法,该方法能够给出施工期某一施工状态下的围岩变形动态预警指标及标准,实现了施工期动态安全预警。
     针对开挖扰动会导致围岩内部产生劣化损伤区的事实,本文引入边坡开挖中常用的强度折减法的计算思想,提出了基于实时数值仿真的施工期围岩劣化损失折减计算方法。该方法利用屈服接近度指标划定围岩劣化损失区的范围,每次只对劣化损伤区内的指定参数进行折减,直到数值计算不收敛为止,得到某施工状态下围岩变形与折减系数关系曲线;通过对曲线划分为匀速、加速和破坏三个变形过程,利用三段的分界值建立该开挖状态下的动态预警标准,进而实现了地下洞室群施工期的动态安全预警。
     (6)基于多层次模糊综合评价方法,提出了基于实测性态的地下洞室群安全性综合评价方法。
     本文基于对地下洞室群安全监测设计进行了深入分析与广泛调研,建立了基于实测信息的地下洞室群安全评价结构体系,采用层次分析法和专家打分法确定评价指标权重;然后通过混合使用―乘与取大算子M(·,∨)‖和―乘与和算子M(·,+)‖两种算子,对模糊综合评价方法的权重向量与模糊关系矩阵的合成进行改进,充分考虑断面最危险区域对整体安全性评价结果的重要性,将不稳定危险因素更好的向上层传递,使得最终的结构稳定性评判结果更加真实可信。此方法也为地下洞室群整体安全性评价提供一个新的思路。
     (7)综上,研发了基于物联网的地下洞室群施工专家信息系统,并对其它辅助功能进行简要展示。
Underground cavern group construction is a complex system engineering,which is affected by a variety of complex natural geological conditions and manyother unknown factors. In view of the randomness, sudden, uncertainty and highlyempirical as well as other characteristics of the construction process of undergroundcavern group, the Internet of Things Technology (ITT) and other advancedtechnologies and methods are introduced in this paper. In addition, a systematicanalysis and research on the four main aspects (information collection, projectschedule, engineering safety, engineering warning) of the construction process ofunderground cavern group is carried out. Then an expert information system basedon ITT for the construction of underground cavern group is developed. The mainresearch contents and results of this paper are as follows:
     (1) Based on ITT, a real-time acquisition scheme for all kinds ofconstruction information of the underground cavern group is proposed and areal-time data acquisition platform for construction information of theunderground cavern group is built.
     ITT is first applied to the construction information collection of undergroundcavern group, with respect to the characteristics of various types of informationproduced in the construction process of underground cavern group; three differenttypes of information acquisition methods are proposed. Then information in theconstruction process can be collected timely and wirelessly. The problems of poortimeliness and highly complexity as well as other shortcomings of currentinformation gathering process in the construction of underground cavern group aremade up, and thus can provide real-time data for the scientific management andscientific decision in the course of construction of underground cavern group.
     (2)A time-varying construction schedule risk prediction method based onBayesian theory for construction of underground cavern group is put forwardin this paper; meanwhile, combined with the risk control concept ofconstruction schedule, a real-time risk control expert system for constructionschedule based on Bayesian theory is set up.
     Bayesian theory and real-time simulation technology are introduced into theprediction of underground cavern group construction schedule in this paper, atime-varying construction schedule risk prediction method based on Bayesiantheory for construction of underground cavern group is put forward. In the method,mean value and variance of unit workload construction time are chosen as randomvariables, and the probability distribution forecast of remaining work time of underconstruction process and work time of new construction procedure can be revisedand improved constantly according to the actual record information of theconstruction field. At the same time, combined with flexible network planningsimulation method, completion risk of the overall construction schedule of the lateproject can be predicted. With the method of this paper, construction scheduleprediction results are highly consistent with actual engineering practice, and thusthe method can play a practical role in promoting the development of probabilityprediction methods for the construction schedule of underground cavern group.
     (3)In this paper, a suitable method to establish numerical models forreal-time simulation is given and the real-time mapping relationship betweenactual construction state and numerical models is set up. Besides, a real-timenumerical simulation method based on numerical simulation technology forconstruction structural safety of underground cavern group is proposed.
     Through in-depth analysis of actual construction state and constructionnumerical simulation state, main factors of the two are given. Then by bringing inthe concepts of collection in mathematics, the real-time dynamic mapping relationsbetween the two states are established. The simulation of actual constructionprogress, unexpected adverse geological conditions and support measures oflarge-scale refinement numerical models can be completed timely andautomatically, and the aim of real-time numerical simulation for constructionstructural safety of underground cavern group is realized. Thus it can provideimportant reference for field engineers to make decisions and commands.
     (4)Integrated innovation point (2) and (3), the coupled real-time simulationmethod of structural safety for construction period of underground caverngroup is proposed. And based on structure safety and schedule coupledsimulation method, a treatment expert system for unexpected adversegeological conditions during construction is put forward.
     Construction safety and progress of large underground cavern group are greatlyinfluenced by sudden adverse geological conditions, thus real-time determination ofthe combined affects which sudden adverse geological conditions have onconstruction structure safety and schedule has important engineering significance.In this paper, sudden adverse geological conditions are mapped to numericalmodels. And based on the real-time numerical simulation results, structural safetyof the adverse geological areas is assessed. Then appropriate measures forconstruction states that don‘t meet the security requirements can be put forward.Through the real-time simulation of treatment effects, decided treatments in formsof construction parameters are sent back to the construction schedule control system,in this way, the system can assess the effects of treatments on overall constructionschedule. The system implements the on-site office integration of undergroundengineering construction safety and progress control and can provide technicalsupport for the security and progress control of the on-site construction ofunderground works.
     (5) Based on the idea of strength reduction and combine with the real-timenumerical simulation method mentioned in (3), a calculation method based onreal-time numerical simulation of the construction period of the undergroundcavern group surrounding rock deterioration damage reduction is proposed.Surrounding rock deformation dynamic early warning indicators andstandards of surrounding rock under certain construction status during theconstruction phase can be calculated through that method, and thus it canrealize the aim of dynamic security warning during the construction phase.
     In consideration of the fact that excavation disturbance can cause thepropagation of deterioration and damage zones in inner of surrounding rock, thispaper introduces the idea of strength reduction which is commonly used in theexcavation of slopes and proposes a calculation method based on real-timenumerical simulation of the construction period of the underground cavern groupsurrounding rock deterioration damage reduction. In this method, the range ofdeterioration damage zones of surrounding rock is divided by the yield proximityindicators. In each calculation only the strength parameters of deterioration damagezones are reduced, the strength of parameters should be reduced until the numericalcalculation does not converge, then a curve of surrounding rock deformation andthe reduction factor can be got; the curve can be divided into three deformation parts, namely the uniform part, the acceleration part and the destruction part.Boundary values of the three parts can be used to establish the dynamic earlywarning standards of that excavation status, and then the aim of dynamic securitywarning during the construction phase is realized.
     (6) Based on multi-level fuzzy comprehensive evaluation method, acomprehensive safety evaluation method according to observed behavior ofunderground cavern group is proposed.
     Based on in-depth analysis and extensive research on the security andmonitoring design of underground cavern group, a structure safety evaluationsystem of underground cavern group based on measured information is establishedin this article. Index weights in the system are determined through analytichierarchy process and expert scoring method. Then by comprehensive applicationof two kinds of operators,―the multiplication and max operator M(,∨)‖and―themultiplication and addition operator M(,+)‖, the weight vector of fuzzycomprehensive evaluation method and the composition of fuzzy relationship matrixcan be improved. With fully consideration of the influence of most dangeroussectional area on overall safety evaluation results, unstable risk factors can be betterdelivered to upper layer, thus the final evaluation result of structure stability is moreauthentic and believable. Furthermore, this method also provides a new way ofthinking for overall safety evaluation of underground cavern group.
     (7) In conclusion, based on ITT, a construction expert information systemof underground cavern group is developed and other auxiliary functions of thesystem are briefly introduced in the paper as well.
引文
[1]叶英,隧道施工信息化预警,北京:人民交通出版社,2012
    [2]陈娟,颜义忠,大型地下洞室群安全监测设计探讨,贵州水力发电,2004,18(3):32-35
    [3]杨志法,齐俊修,刘大安,等,岩土工程监测技术及监测系统问题,北京:海洋出版社,2004
    [4]张孝松,龙滩水电站地下洞室群布置及监控设计,岩石力学与工程学报,2005,24(21):3983-3989
    [5]中华人民共和国国家标准编写组,锚杆喷射混凝土支护技术规范,(GB50086–2001),北京:中国计划出版社,2001
    [6]王思敬主编,中国岩石力学与工程世纪成就,南京:河海大学出版社,2004,9
    [7]王浩,地下工程监测中的数据分析和信息管理、预测预报系统:[博士学位论文],武汉;中国科学院研究生院,2007
    [8]吴中如,中国大坝的安全和管理,中国工程科学,2000,2(6):36-39
    [9]蔡德所,光纤传感技术在大坝工程中的应用,北京:中国水利水电出版社,2002.12
    [10]刘泉声,徐光苗,张志凌,光纤测量技术在岩土工程中的应用,岩石力学与工程学报,2004,23(2):310-314
    [11]马水山,王志望,李端有,等,光纤传感器及其在岩土工程中的应用,岩石力学与工程学报,2001,20(增):1692-1694
    [12]高改萍,李双平,苏爱军,等,测量机器人变形监测自动化系统,人民长江,2005,36(3):63-65
    [13]杨建图,姜衍祥,周俊,等,GPS测量地面沉降的可靠性及精度分析,大地测量与地球动力学,2006,26(1):70-75
    [14]吴晓铭,隔河岩大坝外观变形GPS自动化监测系统的研究与应用,2002,(2):31~32
    [15]何秀凤,华锡生,丁晓利,等,GPS一机多天线变形监测系统,水电自动化与大坝监测,2002,26(3):34-36
    [16]马莉,朱永全,隧道变形的近景摄影测量精度的试验研究,铁道建筑,1997,2:28-30
    [17]田胜利,葛修润,涂志军,隧道及地下空间结构变形的数字化近景摄影测量试验研究,岩石力学与工程学报,2006,25(7):1309-1315
    [18]田胜利,隧道及地下空间结构变形的数字化摄影测量与监测数据处理新技术研究,[博士学位论文]:上海;上海交通大学,2005
    [19] LUKE.R.A.Diamonds with disPatch:computerized LHD dispatching reportWorld mining Epuipment.1992(6),24-28.
    [20] ANON.Safety in microprocessors-TIRIS tracking[J].World mining Equipment.1995(5),44
    [21] HIND.D.J,Application of radio frequeney indetification systems in the miningindustry,6th Canadian Symposium on Mining Automation,Montreal,1994,34-39
    [22] http://www.qihuan.com/.武汉七环电气有限公司主页
    [23]吕金辉,大红山铁矿井下人员跟踪定位系统的优化研究:[硕士学位论文],昆明;昆明理工大学,2011
    [24]蒋磊,于雷,王振翀,等,基于WiFi和ZigBee的井下人员无线跟踪与定位系统的设计,工矿自动化,2011,(7):1-6
    [25]郭韡,李郴,郑岚,等,煤矿井下人员定位系统的现状和发展,江西煤炭科技,2008(2):33-34,36
    [26]王龙宝,赵杰,基于物联网的水利施工机械远程智能监控系统研究,水利经济,2012,30(1):31-35
    [27]黄迪,物联网的应用和发展研究:[硕士学位论文],北京;北京邮电大学,2011
    [28]朱仲英,传感网与物联网的进展与趋势,微型电脑应用,2010,26(1):1-3
    [29]魏凤,我国物联网发展及建设的思考,中国科技投资,2010,10:18-21
    [30]李晓明,张彬,贾巧丽,物联网发展趋势分析,中国新通信,2011,(19):82-88
    [31] International Telecommunication Union,ITU Intenet Reports2005:The Internetof Things,Geneva:ITU,2005
    [32]袁光裕,水利工程施工,北京:中国水力水电出版社,1980
    [33]洪坤,惠州抽水蓄能电站地下洞室群施工仿真与优化研究:[硕士学位论文],天津;天津大学,2006
    [34] D. H. Halpin,―CYCLONE-method for modeling job site processes,‖J. Constr.Div., ASCE,103,1977.489-499
    [35] Paulson, B.C.Jr. Interactive graphics for simulating construction operation. J. ofConstruction Division,1978,104(1):69-76
    [36] Chang D. RESQUE:[Ph.D. thesis], Michigan: Univ. of Michigan,1987
    [37] Ioannou P G. UM-CYCLONE user‘s guide:[Ph.D. thesis], Michigan: Univ. ofMichigan,1989
    [38] Huang R. Simulation of cable-stayed bridges using DISCO. Proc. WinterSimulation Conf.,1994,1130-1136
    [39] Martinez J, Ioannou P G. General purpose simulation with stroboscope. Proc.Winter Simulation Conf.,1994,1159-1166
    [40] Shi J. Activity-based construction (ABC) modeling and simulation method.Journal of Construction Engineering and Management,1999,125(5):354–360
    [41] Hajjar D, and AbouRizk, S M. Simphony: An environment for building specialpurpose construction simulation tools. Proc., Winter Simulation Conf., IEEE,Piscataway, N.J.,1999,998-1006.
    [42] Tommelein I D, Carr R I, and Odeh A M. Knowledgebased assembly ofsimulation networks using construction designs, plans, and methods. Proc.,1994Winter Simulation Conf., IEEE, Piscataway, N.J.,1999,1145-1152
    [43] Kim K J, Edward Gibson Jr G. Interactive simulation modeling for heavyconstruction operations. Automation in Construction,2003,12:97-109
    [44] Wang H J, Zhang J P, Chau K W, et al.4D dynamic management for constructionplanning and resource utilization. Automation in Construction,2003,13:97-109
    [45] Lee D E. Probability of Project Completion Using Stochastic Project SchedulingSimulation. Journal of Construction Engineering and Management, ASCE,2005(3):310-318
    [46]张伟波,大型地下洞室群施工系统仿真及进度研究:[硕士学位论文],天津;天津大学,1999
    [47]钟登华,刘奎建,张静,大型地下洞室群施工动态可视化仿真研究进展,水力发电学报,2004,23(2):88-93
    [48]钟登华,张伟波,宋令广,可视化面向资源的施工系统模拟建模方法,天津大学学报,1999,32(6):682-686
    [49]钟登华,郑家祥,刘东海,等,可视化仿真技术及其应用,北京:中国水利水电出版社,2002
    [50]张伟波,大型地下洞室群施工系统仿真理论与应用研究:[博士学位论文],天津;天津大学,2002
    [51]钟登华,刘东海,大型地下洞室群施工系统仿真理论方法与应用,北京:中国水利水电出版社,2004
    [52]钟登华,刘奎建,张静,大型地下洞室群施工动态可视化仿真研究进展,水力发电学报,2004,23(2):88-93
    [53]孙相军,公路工程施工进度管理系统设计与开发:[硕士学位论文],长沙;长沙交通学院,2002
    [54]钟安群,铁路工程全线施工进度动态控制计算机辅助管理的研究,[硕士学位论文]:北京;北京交通大学,2004
    [55]查京民,工程施工进度控制系统研究:[硕士学位论文],天津;天津大学,1993
    [56]刘伟军,公路工程进度管理系统的设计与开发:[硕士学位论文],长沙;长沙交通学院,2000
    [57]汪强,铁路工程建设进度控制系统的研究:[硕士学位论文],北京;北京交通大学,2002
    [58]许卓明,胡肇枢,三峡工程施工进度控制系统的设计与实现,河海大学学报(自然科学版),1996,24(2):1-6
    [59]刘建民,跨流域调水工程施工进度优化与控制研究:[博士学位论文],天津;天津大学,2006
    [60]冯夏庭,周辉,李邵军,等,复杂条件下岩石工程安全性的智能分析评估和时空预测系统,岩石力学与工程学报,2008,27(9):1741-1756
    [61]冯夏庭,周辉,李邵军,等,岩石力学与工程综合集成智能反馈分析方法及应用,岩石力学与工程学报,2007,26(9):1737-1744
    [62]冯夏庭,江权,向天兵,等,大型洞室群智能动态设计方法及其实践,岩石力学与工程学报,2011,30(3):433-448
    [63]冯夏庭,高应力下硬岩地下工程的稳定性智能分析与动态优化,岩石力学与工程学报,2008,27(7):1341-1352
    [64]周辉,冯夏庭,谭云亮,等,基于胞映射理论的岩体动力系统可预测尺度模型,中国有色金属学报,2002,12(2):377-382
    [65]冯夏庭,朱维申,智能岩石力学在地下工程中的应用,岩石力学与工程学报,1999,18(增刊):822-825
    [66]冯夏庭,张治强,杨成祥,等,位移反分析的进化神经网络方法研究,岩石力学与工程学报1999,18(5):497-502
    [67]冯夏庭,杨成祥,智能岩石力学(2)—参数与模型的智能辨识,岩石力学与工程学报,1999,18(3):350~353
    [68]江权,冯夏庭,陈建林,等,锦屏二级水电站厂址区域三维地应力场非线性反演,岩土力学,2008,29(11):3003-3010
    [69]江权,侯靖,冯夏庭,等,锦屏二级水电站地下厂房围岩局部不稳定问题的实时动态反馈分析与工程调控研究,岩石力学与工程学报,2008,27(9):1899-1907
    [70]王刚,蒋宇静,李术才,大型地下洞室群施工期快速反馈分析实用方法,山东大学学报(工学版),2011,41(8):133-142
    [71]付成华,秦卫星,陈胜宏,等,地下洞室岩体力学参数反演软件系统开发与应用,岩土力学,2007,28(3):577-581
    [72]付成华,汪卫明,陈胜宏,溪洛渡水电站坝区初始地应力场反演分析研究,岩石力学与工程学报,2006,25(11):2305-2312
    [73]陈俊涛,肖明,郑永兰,用OpenGL开发地下结构工程三维有限元图形系统,岩石力学与工程学报,2006,25(5):1015-1020
    [74]张雨霆,肖明,刘嫦娥,三维有限元任意截面剖分和插值计算方法,武汉大学学报(工学版),2008,41(2):37-45
    [75]朱汉华,杨建辉,尚岳全,隧道新奥法原理与发展,隧道建设,2008,28(1):11-14
    [76]冯卫星,徐明新,铁路隧道新奥法施工新实践,岩石力学与工程学报,2001,2(4):524-526
    [77]代高飞,应松,夏才初,高速公路隧道新奥法施工监控量测,重庆大学学报,2004,27(2):132-135
    [78]徐干成,白洪才,郑颖人,等,地下工程支护结构,北京:中国水利水电出版社,2001
    [79]李晓红,隧道新奥法及其量测技术,北京:科学出版社,2002.01
    [80]刘山洪,刘毅,李放,石龙山隧道新奥法施工围岩变形监测研究,重庆交通大学学报(自然科学版),2008,27(1):44-48
    [81]刘洪州,华蓥山隧道新奥法施工中的位移量测分析,世界隧道,1999,(3):28-30
    [82]徐林生,东门关隧道出口新奥法施工监控量测研究,重庆交通学院学报,2006,25(1):24-26
    [83]李立新,刘琳,刘曣,工程结构安全预警系统构建方法,沈阳建筑大学学报(自然科学版),2006,22(2):204-207
    [84]陈红,堤防工程安全评价方法研究:[硕士学位论文],南京;河海大学,2004
    [85]罗尧治,苑佳谦,大跨度空间结构安全预警评估技术研究,空间结构,2011,17(3):61-68
    [86]周翠英,陈恒,朱凤贤,基于渐进演化的高边坡非线性动力学预警研究,岩石力学与工程学报,2008,27(4):818-824
    [87]袁程,深基坑工程过程控制和预警研究:[硕士学位论文],南京;东南大学,2004
    [88]贺勇,姜晨光,崔专,基坑工程表观监测与安全预警问题的研究,勘察科学技术,2003,(4):29-31
    [89]刘华,重庆地区水运工程建设项目安全生产评价及预警研究:[硕士学位论文],重庆;重庆交通大学,2009
    [90]李聪,姜清辉,周创兵,等,基于实例推理系统的滑坡预警判据研究,岩土力学,2011,32(4):1069-1076
    [91]王尚庆,陈磊,长江三峡滑坡监测预报,北京:地质出版社,1999
    [92]刘小伟,谌文武,韩文峰,浅埋红层软岩隧洞围岩变形特征试验研究,冰川冻土,2007,29(6):992-996
    [93]宁秩南,赵海斌,刘路平,龙滩水电站地下厂房试验洞围岩变形观测与分析,中国岩土力学与工程学会地下岩石工程专业委员会,岩石地下工程论文集-1990年会议论文,武汉:1990,55-63
    [94]林从谋,陈建洪,黄志波,等,特大断面隧道多步序施工工法试验及围岩变形,兰州大学学报(自然科学版),2011,47(论文集):18-21
    [95]李毕华,小间距隧道施工的现场实测与物理模型试验和数值模拟结果的对比研究:[硕士学位论文],上海;同济大学,2007
    [96]王超,岩质边坡变形量预警标准分析,科技资讯,2011,(10):93-93
    [97]肖明,地下洞室施工开挖三维动态过程数值模拟分析,岩土工程学报,2000,22(4):421-425
    [98]李晓静,朱维申,陈卫忠,层次分析法确定影响地下洞室围岩稳定性各因素的权值,岩石力学与工程学报,2004,23(增2):4731-4734
    [99]张振华,冯夏庭,周辉,等,基于设计安全系数及破坏模式的边坡开挖过程动态变形监测预警方法研究,岩土力学,2009,30(3):603-612
    [100]许传华,岩体破坏的非线性理论研究及应用:[博士学位论文],南京;河海大学,2004
    [101]陈国庆、冯夏庭、江权,等,考虑岩体劣化的大型地下厂房围岩变形动态监测预警方法研究[J].岩土力学,2010,31(9):3012-3018
    [102]黄桂田,龚六堂,张全升,中国物联网发展报告(2011),北京:社会科学文献出版社,2011
    [103]魏长宽,物联网后互联网时代的信息革命,北京:中国经济出版社,2011
    [104]王汝传,孙力娟,物联网技术导论,北京:清华大学出版社,2011
    [105]臧劲松,物联网安全性能分析,计算机安全,2010,(6):51-52
    [106]郝文江,武捷,物联网技术安全问题探析,信息网络安全,2010,(1):49-50
    [107]吴振强,周彦伟,马建峰,物联网安全传输模型,计算机学报,2011,34(8):1351-1363
    [108]刘宴兵,胡文平,杜江,基于物联网的网络信息安全体系,中兴通讯,2011,17(1):17-20
    [109]李茹,揭秘物联网技术及应用,北京:化学工业出版社,2011
    [110]陈海滢,刘昭等,物联网应用启示录-行业分析与案例实践,北京:机械工业出版社,2011
    [111]李继云,矿山物联网节点的研究与开发:[硕士学位论文],安徽;安徽理工大学,2011
    [112]周怡,凌志浩,吴勤勤,ZigBee无线通信技术及其应用探讨,自动化仪表,2005,26(6):5-9
    [113]原羿,苏鸿根,基于ZigBee技术的无线网络应用研究,计算机应用与软件,2004,21(6):89-91
    [114] http://www.zigbee.org.
    [115]徐勇军,物联网试验教程,北京:机械工业出版社,2011
    [116] PICDEMTM, ZigBeeTM Technology Demonstration Kit(2004), USA:MieroehiP Teehnology Ineorporated,2004
    [117]陈向阳,基于ZigBee的低功耗人员定位系统的设计和实现:[硕士学位论文],安徽;安徽理工大学,2011
    [118]中华人民共和国行业标准,《公路隧道施工技术规范》(JTJ042-94),中华人民共和国交通部,1995-7-1
    [119]李建中,李金宝,石胜飞,传感器网络及其数据管理的概念、问题与进展,软件学报,2003,14(10):1717-1726
    [120]李建中,高宏,无线传感器网络的研究进展,计算机研究与发展,2008,45(1):1~15
    [121]吴键,袁慎芳,无线传感器网络节点的设计和实现,仪器仪表学报,2006,27(9):1120-1124
    [122]路坦,王志斌,张记龙,等,基于zigbee的煤矿安全监测及人员定位系统,煤矿安全,2009,11:77-81
    [123] N. Bulusu, J. Heidemann and D. Estrin. GPS-less Low Cost OutdoorLocalization for Very Small Devices[J]. IEEE Per-sonal CommunicationsMagazine, October2000,7(5):28-34.
    [124] D. Nicolescu and B. Nath, Ad-Hoc Positioning Systems(APS)[C]//Proceedingsof IEEE GLOBECOM.01, Novem-ber2001:2926-2931.
    [125] R. Nagpal, Organizing a Global Coordinate System from Lo-cal Information onan Amorphous Computer[R], A.I. Memo1666, MIT A.I. Laboratory, August1999.
    [126]任丽荣,肖军,基于TOA的无线传感器网络自定位技术的研究,信息与控制,2006,35(2):280-283
    [127] HarterA, HopperA, Steggles P,et al. The anatomy of a con-text-awareapplication [A]. Proceedings of the5th Annual ACM/IEEE InternationalConference on Mobile Computing and Networking [C]. New York, USA: ACMPress,1999.59~68.
    [128] Girod L, Estrin D. Robust range estimation using acoustic and multimodalsensing [A]. Proceedings of the IEEE/RSJ Interna-tionalConference onIntelligentRobots and Systems [C]. Pisca-taway, USA: IEEE,2001.1312~1320.
    [129] Niculescu D, Nath B. Ad hoc positioning system (APS) using AoA [A].Proceedings of the IEEE INFOCOM [C]. New York, USA: IEEE,2003.1734~1743.
    [130] Girod L, BychovskiyV, Elson J,etal. Locating tiny sensors in time and space: acase study [A]. Proceedings of the IEEE In-ternationalConference onComputerDesign: VLSI in Computersand Processors [C]. New York, USA:IEEE,2002.214~219
    [131] Li Xiaoli,Shi Hongchi,Shang Yi,A partial-range-aware localization algorithmfor ad-hoc wireless sensor networks,In:Proceedings of the29th Annual IEEEInternational Conference on Local Computer Networks (LCN'04),Tampa,FL,UnitedStates,Nov2004
    [132]黄毅,胡爱群,无线传感器网络定位算法综述,电信科学,2010,(07):69-75
    [133]肖俊芳,无线传感器网络的若干关键技术研究:[博士学位论文],上海;上海交通大学,2009
    [134]孙延飞,基于无线传感器网络的煤矿安全监测及定位系统研究:[硕士学位论文],辽宁;辽宁工程技术大学,2010
    [135]崔璐,蔡觉平,赵博超,等,基于ZigBee技术的井下人员定位安全监测系统,大连理工大学学报,2011.51(Suppl.1):102-106
    [136]孙利民,李建中,陈渝,等,无线传感器网络,北京:清华大学出版社,2005
    [137]刘奎建,大型地下洞室群施工进度实时控制研究:[博士学位论文],天津;天津大学,2007
    [138]杨铭,李原,张开富,等,基于改进的计划评审技术的航空项目风险评价技术研究,计算机集成制造系统,2008,14(1):192~196,208.
    [139]朱群雄,曹雷,顾祥柏,基于约束的CPM动态优化算法[,控制与决策,2010,25(2):166~170.
    [140]钟登华,刘奎建.基于实时仿真的地下洞室群施工进度预测与控制[J].天津大学学报,2007,40(6):721~725.
    [141]茆诗松,贝叶斯统计,北京:中国统计出版社,2012
    [142] Chung, T. H., Mohamed, Y.,&AbouRizk, S.(2006). Bayesian updatingapplication into simulation in the North Edmonton sanitary trunk tunnel project.Journal of construction engineering and management,132(8),882-894.
    [143] Gardoni, P., Reinschmidt, K. F., and Kumar, R.(2007).―A probabilisticframework for Bayesian adaptive forecasting of project progress.‖Comput.Aided Civ. Infrastruct. Eng.,22(3),182–196.
    [144] Kim, B. C., and Reinschmidt, K. F.(2007).―An S-curve Bayesian model forforecasting probabilistic distributions on project duration and cost atcompletion.‖Proc.,25th Anniversary Conf. of Construction Management andEconomics: Past, Present, and Future,136.
    [145] Chung, T. H., Mohamed, Y.,&AbouRizk, S.(2004, December). Simulationinput updating using bayesian techniques. In Simulation Conference,2004.Proceedings of the2004Winter (Vol.2, pp.1238-1243). IEEE.
    [146] Box, G. E. P.&Tiao, G. C.(1992), Bayesian Inference in Statistical Analysis,Addison-Wesley, Reading, MA
    [147] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.(2003). Bayesian dataanalysis,2nd Ed., Chapman and Hall/CRC, Boca Raton, Fla.
    [148] Gardoni, P., Reinschmidt, K. F., and Kumar, R.(2007).―A probabilisticframework for Bayesian adaptive forecasting of project progress.‖Comput.Aided Civ. Infrastruct. Eng.,22(3),182–196.
    [149] Kim, B.C., and Reinschmidt, K.F.(2009). Probabilistic forecasting of projectduration using Bayesian inference and the beta distribution. Journal ofConstruction Engineering and Management135,178–186.
    [150] ICK-HYUN NAM. Dynamic schedule for a flexible processing network.Operations Research,2001,49(2):305~315
    [151]钟登华,刘奎建,杨晓刚,施工进度计划柔性网络仿真的不确定性研究,系统工程理论与实践,2005,25(2):107~112.
    [152] Lee D.-E.. Probability of Project Completion Using Stochastic ProjectScheduling Simulation [J]. Journal of Construction Engineering andManagement, ASCE,2005,131(3):310~318.
    [153]张晓峰,朱琳,谭学奇,等,大型水利水电工程施工进度风险分析,水利水电技术,2005,36(4):82~84.
    [154]水利部建设与管理司,》(SL377-2007),水利水电工程锚喷支护技术规范,北京:中国水利水电出版社,2008
    [155]毛昆明,陈国兴,基于Abaqus软件的并行计算异构集群平台的搭建,地震工程与工程振动,2011,31(5):184-189
    [156]阚圣哲,陈国兴,陈磊,基于Abaqus软件的并行计算集群平台构建与优化方法,防灾减灾工程学报,2009,29(6):644-651
    [157]冯夏庭,智能岩石力学导论,北京:科学出版社,2000
    [158]朱川曲、冯涛、施式亮,神经网络在锚杆支护方案优选及变形预测中的应用,煤炭学报,2005,30(3):322-326
    [159]邓福康,基于人工神经网络的巷道围岩分类与支护参数优化研究:[硕士学位论文],安徽;安徽理工大学,2009
    [160]鲁岩,构造应力场影响下的巷道围岩稳定性原理及其控制研究:[博士学位论文],中国矿业大学,2008
    [161]和平,李志雄,陆远忠,等,断层面的有限单元模拟方法综述,西北地震学报,2011,22(2):186-194
    [162]王仁,何国琦,殷有泉,等,华北地区地震迁移规律的数学模拟,地震学报,1980,2(1):32-42
    [163] Rawnsley K K.Joint development in perturbed stress field nearfaults.J.Struct.Geol,1992,Vol.14.
    [164]江权.高地应力下硬岩弹脆塑性劣化本构模型与大型地下洞室群围岩稳定性分析:武汉;中国科学研究生院,2007
    [165]左双英,肖明,来颖,基于FLAC_3D_的某水电站大型地下洞室群开挖及锚固效应数值分析,武汉大学学报工学版,2009,42(4):432-436
    [166]高谦,宋建国,余伟健,等,金川深部高应力巷道锚喷支护设计与数值模拟技术,岩土工程学报,2007,29(2):279-284
    [167]吴波,刘维宁,高波,等,地铁分岔隧道施工性态的三维数值模拟与分析,岩石力学与工程学报,2004,23(18):3081-3086
    [168]罗福强,等,C#程序设计经典教程,北京:清华大学出版社,2012
    [169]吴向东,刘志刚,万敏,等,基于Python的ABAQUS二次开发及在板料快速冲压成形模拟中的应用,塑性工程学报,2009,16(4):68-72
    [170] FANG Z, HARRISON J P. A mechanical degradation index for rock[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(8):1193-1199.
    [171]黄书岭,高应力下脆性岩石的力学模型与工程应用研究,北京:中国科学院研究生院,2008.
    [172]孙钧,岩土材料流变及其工程应用,北京:中国建筑工业出版社,1999.
    [173]原国家冶金工业局,GB50086-2001,锚杆喷射混凝土支护技术规范,北京:中国计划出版社,2001.
    [174]赵尚毅,郑颖人,张玉芳,有限元强度折减法中边坡失稳的判据探讨,岩土力学,2005,26(2):332–336.
    [175]郑颖人,赵尚毅,有限元强度折减法在土坡与岩坡中的应用,岩石力学与工程学报,2004,23(19):3381–3388.
    [176]吴顺川,金爱兵,高勇涛,基于广义Hoek-Brown准则的边坡稳定性强度折减法数值分析,岩土工程学报,2006,28(11):1975-1980
    [177]杨文东,张强勇,宋萌勃,基于破坏接近度和强度折减法的边坡稳定性评价,山东大学学报(工学版),2010,40(6):82-87
    [178]张传庆,周辉,冯夏庭,基于破坏接近度的岩土工程稳定性评价,岩土力学,2007,28(5):888-894.
    [179]谢和平,鞠杨,黎立云,基于能量耗散与释放原理的岩石强度与整体破坏准则,岩石力学与工程学报,2005,24(17):3003-3010.
    [180]杨健,武雄,岩爆综合预测评价方法,岩石力学与工程学报,2005,24(3):411-416
    [181] ESRAA,YASEMIN C E.Using the analytic hierarchy process (AHP) to improvehuman performance: application pf multiple criteria decision makingproblem[J].Journal of Intelligent Manufacturing,2004,15:491-503.
    [182] NI Ming.Study on hybrid AHP method with its application[C]//Proceedings of2009IEEE Conference on Grey System and Intelligent Services.Nanjing,China:Nanjing University of Aeronautics and Astronautics,2009:1496-1501.
    [183] REZA B K.A newmethod for site suitability analysis: the analytic hierarchyprocess[J].Environmental Management,1989,13(6):685-693.
    [184]赵焕臣,层次分析法,北京:科学出版社,1986.
    [185]杨茂松,冶金矿山矿井安全现状模糊综合评价研究:[硕士学位论文],长沙;中南大学,2005.5
    [186]江高,模糊层次综合评价法及其应用,天津:天津大学,2005
    [187]王广月,土建工程综合评价技术及应用,北京:中国水利水电出版社,2011
    [188]陈守煜,工程水文水资源系统模糊集分析理论与实践,大连:大连理工大学出版社,1998
    [189]赵志峰,徐卫亚,基于监测与数值模拟的岩质边坡稳定性分析,河海大学学报(自然科学版),2007,35(4):398-403
    [190]吴中如,朱伯芳,等,三峡水工建筑物安全监测与反馈设计,北京:中国水利水电出版社,1999.
    [191]吴中如,沈长松,阮焕祥,水工建筑物安全监控理论及其应用,南京:河海大学出版社,1990.
    [192] Phatak M. Position fix from three GPS satellites and altitude: a direct method,IEEE Trans on Aeros Ele Sys,1999,35(1):350-354.
    [193] Abbott E,Powell D,Land-vehicle navigation using GPS,Proceedings of theIEEE,1999,87(1):145-162
    [194]曹金凤,Python语言在Abaqus中的应用,北京:机械工业出版社,2011
    [195]牟乃夏,GIS应用与开发丛书:ArcGIS10地理信息系统教程从初学到精通,北京:测绘出版社,2012
    [196] S.M. Lo, Z. Fang, P. Lin. An evacuation model: the SGEM package,Fire SafetyJournal,2004,39(3):169-190
    [197]胡强,山地城市避难场所可达性研究,重庆:重庆大学建筑城规学院,2010
    [198] Dijkstra E. A note on two problems with graphs,Numer Math,1959(1):269-271.
    [199]郑四发,曹剑东,连小珉,复杂路网下多客户间最短路径的扇面Dijkstra算法,清华大学学报(自然科学版),2009,49(11):1834~1837
    [200]张社荣,撒文奇,等,考虑预警时间的智能化洪灾疏散路径选择与可视化研究,水力发电学报,2013,32(1):63-69
    [201] Hart P, Nilsson N, Raphael B. A formal basis for the heuristic determination ofminimum cost paths,IEEE Trans Syst Science and Cybernetics,1968(2):100-107
    [202] Hart P, Nilsson N, Raphael B. Correction to―A formal basis for the heuristicdetermination of minimum cost paths‖[J]. SIGART Newsletters,1972,37:38-39.
    [203]李明哲,金俊,石瑞银,图论及其算法,北京:机械工业出版社,2010
    [204]范辉,基于虚拟现实技术的可控可视化矿井通风研究:[博士学位论文],太原;太原理工大学,2007
    [205]王从陆,非灾变时期金属矿复杂矿井通风系统稳定性及数值模拟研究:[博士学位论文],长沙;中南大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700