用户名: 密码: 验证码:
地下结构断裂破坏分析的无网格流形方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来无网格方法和数值流形方法以其新颖的计算思想和数值技术得到了力学与工程界的重视。无网格方法是近年来发展起来的一种新兴的数值方法,因其具有不需要网格,只需要节点信息、前处理简单、计算精度高等特点,已成为目前科学和工程计算方法的研究热点之一;而数值流形方法通过引入数学与物理双重网格和有限覆盖技术解决了材料连续与非连续性的数学统一表述的问题,使得连续变形分析与非连续变形分析得到了统一,非常适合于各种非连续、大变形等问题的分析模拟。然而,在处理复杂非连续问题时(如多裂纹扩展问题),这两种方法均有其各自的缺陷,例如无网格方法一般采用光线法(如可视、衍射准则)来处理域内的不连续问题,这样可能会由于插值点不足而导致试函数难以建立,产生数值解的不稳定性等问题;数值流形方法在处理复杂非连续问题时,由于双重网格的局限性,使得数值流形方法的覆盖系统生成算法十分复杂,严重影响了它的应用。为了克服无网格方法和数值流形方法在处理复杂非连续问题时遇到的困难,本文提出和发展了一种基于单位分解法和有限覆盖技术的、地下结构破坏过程模拟分析的无网格流形MSIM(Meshless ShepardInterpolation Method,简称MSIM)新方法。在该方法中,插值函数除了不受域内不连续面的影响外,还具有高阶完备性、一致性,且可以在需要的节点处具备Kronecker-Delta属性,能够方便准确地施加各种边界条件;克服了传统无网格方法在处理不连续问题时由于采用光线法所遇到的困难及数值流形方法由于网格的存在使得覆盖系统的生成异常复杂的问题。本文主要开展了以下工作:
     1、基于单位分解和数值流形方法的有限覆盖理论,建立和发展了基于MSIM插值的、用于地下结构裂纹扩展和破坏过程分析的无网格流形MSIM方法,详细地介绍和推导了相关公式,给出了无网格流形MSIM方法中的不连续问题处理方法和无网格流形MSIM方法数值实现的具体步骤;
     2、在无网格流形MSIM方法中引入了J积分法、虚拟裂纹扩展法及虚拟裂纹闭合法等目前常用的几种应力强度因子的计算方法,特别是把目前仅用于有限元计算的虚拟裂纹扩展法、虚拟裂纹闭合法引入到了无网格流形MSIM方法中,并对其相应的裂纹扩展准则选取和裂纹扩展步长的确定等进行了研究;
     3、研究和发展了数学覆盖被不连续面切割后的无网格流形MSIM方法物理覆盖系统全自动生成理论与算法;基于Matlab平台,给出了无网格流形覆盖系统自动生成等无网格流形MSIM方法关键模块的实施技术,并编制了可应用于地下结构断裂破坏分析的无网流形MSIM方法的计算程序;
     4、利用具有解析解答的或参考解答的含裂纹试件算例,对J积分法、虚拟裂纹扩展法及虚拟裂纹闭合法等各种方法的计算精度和稳定性进行了对比分析研究,并在此基础上对具有试验或数值分析对照结果的各种裂纹扩展算例进行了裂纹扩展模拟分析研究,以验证和测试本文所发展的地下结构断裂破坏分析的无网流形MSIM理论和方法的正确性和可靠性;
     5、结合套拱加固的隧道衬砌破坏试验,利用研制的无网格流形MSIM分析程序,对套拱加固后带裂缝衬砌的具体破坏过程进行了分析研究,进一步对本文理论和方法的正确性、有效性进行了验证。
In recent years Numerical Manifold Method (NMM) and Meshless Method (MM)have received worldwide attention in the fields of mechanics and engineering. MM is aclass of new numerical methods developed, only needs the information at nodes, anddoesn’t discretize the domain into a mesh. The advantages of MM are the simplerpre-processing and higher precision. MM is a hot topic of researches on scientific andengineering computation. Based on topological manifold methods and differentiablemanifold methods, NMM has two cover systems, namely the mathematical covers and thephysical covers, so NMM can integrate both continuous analysis and discontinuousanalysis in a united mathematical framework, it is very suitable for simulating the problemsof discontinuity and large deformation. However, several difficulties arise in the realizationand implementation of MM and NMM for dealing with very complex discontinuousdeformation problems such as multi-crack propagation. For example, MM usually uses thediffraction method, the transparency method or the see-through method to deal with thediscontinuity in the domain, which may make it difficult to construct the shape functions asa result of the insufficient interpolation points, thus leading to the instability of thenumerical solution. As for NMM, when dealing with complex discontinuous problems, thelimitation of its dual grids makes the forming algorithm of the cover system verycomplicated, thus seriously hinders the expansion of its application.
     In order to overcome the difficulties of MM and NMM when dealing with complexdiscontinuous problems, a new Meshless Shepard Interpolation Method (MSIM) based onthe partition of unity (PU) and the finite cover theory is employed to solve the problems ofcrack propagation and failure behavior of the underground structures. In the MSIM, Theshape functions are constructed by the partition of unity and the finite cover technology,and thus the shape functions are not affected by discontinuous domains and crack problemscan be more properly treated. The MSIM shape function possesses three distinguishedfeatures: the interpolation property, the arbitrarily high order consistency, and satisfyingKronecker delta property at any desired node. The essential boundary conditions in MSIMcan be treated as easily as they are in FEM. Compared with the conventional MM, theMSIM shape functions are not influenced by the discontinuities in the solution domainbecause of finite cover technology is used. Compared with the mesh-based NMM, the finitecovers and the partition of unity functions of the MSIM are constructed by using a series of nodes. The main works of this thesis are listed as follows:
     (1) Base on the partition of unity and the finite cover technology, a new MSIMinterpolation has been developed for the simulation of crack propagation and failurebehavior of the underground structures. Fundamental equations of MISM analysis arededuced. The approach of how to deal with discontinuity in MSIM method are alsointroduced, as well as the specific steps to achieve numerical method applied for crackexpansion analysis.
     (2) The J-integral method, the virtual crack extension method and the virtual crackclosure method are introduced into the MSIM method for the computation of the stressintensity factor. Furthermore, the selection of the corresponding crack propagation criterionand the corresponding crack step is investigated.
     (3) A simple but efficient algorithm for finite cover automatic generating is introducedinto the MSIM for dealing with complex discontinuous problems. Based on Matlabsoftware, the key implementation technology of finite cover system is proposed, and theMSIM program for concrete crack analysis is developed to implement the meshlessautomatic trace simulating of concrete structure crack expansion.
     (4) The accuracy and stability of the J-integral method, the virtual crack extensionmethod and the virtual crack closure method for several crack examples are studied byusing the MSIM method, then comparison of multi-crack propagation simulation betweenMSIM and experimental is carried out. Numerical examples indicate the advantages andthe accuracy of the MSIM for the analysis of crack propagation.
     (5) Combined with the experimental study on cracked tunnel lining reinforced withumbrella arch, the failure process analysis of cracked tunnel lining reinforced withumbrella arch is carried out by using MSIM, the property and feasibility of the MSIM isalso tested and verified.
引文
[1] Atluri S N, Kim H G.Analysis of thin beam,using the meshless local Petrov-Galerkin method, withgeneralized moving least squares interpolations.Computational Mechanics,1999a,24:334-347.
    [2] Atluri S N, Kim H G.A critical assessment of the truly meshless local Petrov-Galerkin(MLPG),andlocal boundary integral equation (LBIE)methods. Computational Mechanics1999b,24:348-372.
    [3] Atluri S N, Kim H G. Arbitrary placement of secondary nodes in the meshless local Petrov-Galerkin(MLPG) method. Computer Modeling in Engineering&Science,2002a:1:11-32.
    [4] Atluri S N, Shen S P. The Meshless Local Petrov-Galerkin(MLPG): a simple&less-costlyalternative to the finite element and boundary element methods. CMES: Computer modeling inEngineering and Sciences,2002b,3:11-51.
    [5] Atluri S N, Sladek J, Sladek V. The local boundary integral equation(LBIE) and it’s meshlessimplementation for linear elasticity. Computational Mechanics.2000c,25:180-198.
    [6] Atluri S N, Zhu T L. New concepts in meshless methods. International Journal for NumericalMethod in Engineering,2000a,47:537-556.
    [7] Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems inelasto-statics. Computational Mechanics,2000b,25:169-179.
    [8] Atluri S N, Zhu T L. A new Meshless local Petrov-Galerkin(MLPG) approach in computationalmechanics.Computational Mechanics,1998,22:117-127.
    [9] Attaway S, Heinstein M, Swegle J. Coupling of smooth particle hydrodynamics with the finiteelement method. Computational Mechanics,1994,150:199-205.
    [10] Babuska I, Melenk J M. The partition of unity finite element method:basic theory and applications.Computer Methods in Applied Mechanics and Engineering,1996,139:289-314.
    [11] Beissel S, Belytschko T. Nodal integration of the element free Galerkin method.ComputerMethods in Applied Mechanics and Engineering,1996,120:49-74.
    [12] Belytschko T, Krongauz Y. Smoothing and accelerated computations in the element free Galerkinmethod. Computer Methods in Applied Mechanics and Engineering,1996,74:111-126.
    [13] Belytschko T, Lu Y Y, Gu L, Tabbara M. Element-free Galerkin methods for static and dynamicfracture. International Journal of Solids and Structures,1995,32:2547-2570.
    [14] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin Methods. International Journal for NumericalMethods in Engineering,1994,37:229-256.
    [15] Belytschko T, Lu Y Y.Fracture and crack growth by element free Galerkin methods.ModllingSimul. Computer Methods in Applied Mechanics and Engineering,1994,2:519-534.
    [16] Belytschko T, Organ D, Gerlach C. Element-free galerkin methods for dynamic fracture in concrete.Computer Methods in Applied Mechanics and Engineering,2000,187:385-399.
    [17] Belytschko T, Organ D, Krongauz Y. A coupled finite element-element free Galerkin method.Computational Mechanics,1995,17:186-195.
    [18] Bernardino C, Alessandro P. Combining fiber-reinforced concrete with traditional reinforcement intunnel linings. Engineering Structures.2009,31:1600-1606.
    [19] Bouillard P,Seleau S. Element-free Galerkin solutions for Helmholtz problems: formulation andnumerical assessment of the pollution effect. Computer Methods in Applied Mechanics andEngineering,1998,162:317-335.
    [20] Buhmann M D. Radial functions on compact support. Proceedings of the Edinburgh MathematicalSociety,1998,41:3-46.
    [21] Cai Y C, Zhu H H. A local meshless Shepard and least square interpolation method based on localweak form. Computer Modeling in Engineering and Sciences (CMES),2008,34(2):179-204.
    [22] Cai Y C, Zhu H H. A PU-based meshless Shepard interpolation method satisfying delta property.Engineering Analysis with Boundary Elements.2009,34(2):9-16.
    [23] Carlos Z. Good quality point sets error estimates for moving least square approximations.AppliedNumerical Mathematics,2003,47:575-585.
    [24] Chati M K, Mukherjee S. The boundary node method for three-dimensional problems in potentialtheory. International Journal for Numerical Methods in Engineering,2000,47:1523-1547.
    [25] Chati M K, Mukherjee S, Mukherjee Y X. The boundary node method for three-dimensional linearelasticity. International Journal for Numerical Methods in Engineering,1999,190:1163-1184.
    [26] Chati M K. Meshless standard and hypersingular boundary node method applications in threedimensional theory and linear elasticity. Ph.D. thesis, Cornell University, Ithaca, NY,1999.
    [27] Chen F H,Shield R J.Consevation Laws in Elasticity of the J-Integral Type. International Journalfor Numerical Methods in Engineering,1997,28:1-22.
    [28] Chen G,Miki S,Ohnishi Y. Automatic creation of mathematical meshes in manifold method ofmaterial analysis. Working Forum on the Manifold of Material Analysis, California,USA,1995,1:105-126.
    [29] Chen G Q, Takahiro I.Development of high order manifold method.Proceedings of the2ndInternational Conference on Analysis of Discontinuous Deformation. Kyoto, Japan,1997:132-154.
    [30] Chen G Q. Development of high order manifold method.International Journal for NumericalMethods in Engineering,1998,43:685-712.
    [31] Chen J K, Beraun J E. An improvement for tensile instability in smoothed particle hydrodynamics.Computational Mechanics,1998,23:279-287.
    [32] Chen J S, Han W, You Y, Meng X. A reproducing kernel method with nodal interpolation property.International Journal for Numerical Methods in Engineering,2003,56:935-960.
    [33] Chen J S, Pan C, Wu C T, Liu W K. Reproducing Kernel Particle Methods for large deformationanalysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering,1996,139:195-227.
    [34] Chen J S, Yoon S, Wang H P, Liu W K. An improved reproducing kernel particle method fornearly incompressible finite elasticity. Computer Methods in Applied Mechanics and Engineering,2000,181:117-145.
    [35] Chen W.RBF-based meshless boundary knot method and boundary particle method.China Congresson Compute Mechanics,Guangzhou,China,2001:319-326.
    [36] Chen Y M,Wilkins M L. Numerical analysis of dynamic crack problems. Mechanics of Fracture,1977,17:165-182.
    [37] Chen Y, Hasebe N. New integration scheme for the branch crack problem. Engineering FractureMechanics.1995,52:791-801.
    [38] Cheng Y M, Ji X.An investigation on a New Integral Transform Boundary Element Methods forElastodynamics. Acta Meehanica Solida Sinica, l997,10:26-29.
    [39] Chih T K,Haw T.Modeling of solid-fluid interaction using the manifold method.Proceeding of the2nd North American Rock Mechanics Symposium. Montreal, Quebec. Canada,1996:1815-1822.
    [40] Chiou Y M, Lee Y M.Mixed mode fracture propagation by manifold method, International Journalof Fracture,2002,114:327-347.
    [41] Chung H J, Belytschko T. An error estimate in the EFG menthod. Computational Mechanics,1998,21:91-100.
    [42] Cundall P A. A computer model for simulating progressive large scale movements in blocky rocksystems. Rock Fracture, ISRM, Nancy, France,1971:2-8.
    [43] Danielson K T, Hao S, Liu W K. Parallel computation of meshless methods for explicit dynamicanalysis. International Journal for Numerical Methods in Engineering,2000,47:1323-1341.
    [44] Daux C, Moes N, Dolbow J, Sukumar N, Belytschko T.Arbitrary branched and intersecting crackswith the extended finite element method. Computer Methods in Applied Mechanics andEngineering,2000,48:1741-1760.
    [45] Demkowicz L, Oden J T. Toward a universal h-p adaptive finite element strategy, Part I.Constrained approximation and data structure, Computer Methods in Applied Mechanics andEngineering,1989,77:79-112.
    [46] Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in the meshfreemethods.Computational Mechanics,1999,23:219-230.
    [47] Donning B M,Liu W K. Meshless methods for shear deformable beams and plates. ComputationalMechanics,1998,152:47-71.
    [48] Duarte C A, Oden J T. Hp clouds: a h-p meshless method. Numerical Methods for PartialDifferential Equations,1996,12:673-705.
    [49] Duarte C A, Oden J T. Hp clouds-a meshless method to solve boundary-value problems.TechnicalReport. Texas Institute for Computational and Applied Mathematics, University of Texas at Austin,1995.
    [50] Duarte M, Oden J T. An h-p adptive method using clouds. Computer Methods in AppliedMechanics and Engineering,1996,139:237-262.
    [51] Elisa R L.Multiple Crack growth by extended finite element method.Ph.D.NorthwesternUniversity,2004.
    [52] Enrique P. Convergence and accuracy of the path integral approach for elastostatics. ComputerMethods in Applied Mechanics and Engineering,2002,191:2191-2219.
    [53] Fleming M, Chu Y A, Moran B, Belytschko T. Enriched element-free Galerkin methods for cracktip fields. International Journal for Numerical Methods in Engineering,1997,40:1483-1504.
    [54] Franke C, Schaback R. Convergence order estimates of the meshless collocation methods usingradial basis functions. Advances in Computational Mathematics,1998,8:381-399.
    [55] Franke C, Schaback R. Solving partial differential equations by collocation using radial basisfunctions. Computer Methods in Applied Mechanics and Engineering,1998,93:73-82.
    [56] Frink R. Scattered data interpolation: test of some methods. Mathematics of Computation,1972,38:181-199.
    [57] Gavete L, Falcon S, Ruiz A. An error indicator for the element free Galerkin method. Mathematicsof Computation,2001,20,327-341.
    [58] Ghaboussi J.Fully deformable discrete element analysis using a finite element the approach.International Journal of Computers and Geotechnics,1997,5:175-195.
    [59] Gingold R A, Moraghan J J. Smoothed particle hydrodynamics: theory and applications tononspherical stars. Computational Mechanics,1977,18:375-389.
    [60] Gu Y T, Liu G R. A boundary point interpolation method for stress analysis of the solids.Computational Mechanics,2002,28:47-54.
    [61] Gu Y T. Development of Meshless techniques for computational mechanics. Ph.D thesis,NationalUniversity of Singapore,2002,30:156-172.
    [62] Han W, Meng X. Error analysis of the reproducing kernel particle method. Computer Methods inApplied Mechanics and Engineering,2001,190:6157-6181.
    [63] Hegen D. Element-free Galerkin methods in combination with finite element approaches.ComputerMethods in Applied Mechanics and Engineering,1996,135:143-166.
    [64] Hellen T K, On the method of virtual crack extensions.International Journal for Numerical Methodsin Engineering,1975,9:187-207.
    [65] Hideom O,Katsuyuki S.Utilization of finite covers in the manifold method for accuracy control.Proceeding of the2nd International Conference on Analysis of DiscontinuousDeformation,Kyoto,Japan,1997,317-322.
    [66] Hideto M, Nobuharu I, Tsutomu K, Takuo E. Effect of fiber reinforced concrete on shrinkage crackof tunnel lining. Tunnelling and Underground Space Technology,2006,21:382-383.
    [67] Hillerborg A, Modeer M. Analysis of crack formation and crack growth in concrete by means offracture mechanics and finite elements. Cement and Concrete reseatch,1976,6(6):773-782
    [68] Huerta A, Fernandez M. Enrichment and coupling of the finite element and meshless methods.International Journal for Numerical Methods in Engineering,2000,48:1615-1636.
    [69] Hwang W S. A boundary node method method for airfoils based on the Dirichlet condition.Computer Methods in Applied Mechanics and Engineering,2000,190:1679-1688.
    [70] Johnsons G R, Beissel S R. Normalized smoothing functions for the SPH impact computations.International Journal for Numerical Methods in Engineering,2002,53:825-843.
    [71] Kaljevic I, Saigal S. An improved element free Galerkin formulation. International Journal forNumerical Methods in Engineering,1997,40:2953-2974.
    [72] Kansa E J. Multiquadrics-a scatered data approximation scheme with applications to computationalfluid dynamics-I. International Journal for Numerical Methods in Engineering,1990,19:127-45.
    [73] Kargarmovin M H, Toussi H E, Faribotz S J. Elasto-plastic element-free Galerkin method.Computational Mechanics,2004,33:206-214.
    [74] Karihaloo B L, Nallathambi P. Effective cracks model for the determination of fracture toughnessof concrete. Engineering Fracture Mechanics,1990,35(4/5):637-645.
    [75] Ke T K. Artificial joint-based on manifold method, Working Forum on the Manifold of MaterialAnalysis, California, USA,1995,1:21-38.
    [76] Kothnur V S, Mukherjee S, Mukherjee Y X. Two dimensional linear elasticity by the boundarynode method. International Journal of Solids and Structures,1999,36:1129-1147.
    [77] Krongauz Y, Belytschko T. EFG approximation with discontinuous derivatives. InternationalJournal for Numerical Methods in Engineering,1998,41:1215-1233.
    [78] Krysl P, Belytschko T. A library to compute the element free Galerkin shape functions.ComputerMethods in Applied Mechanics and Engineering,2001,190:2181-2205.
    [79] Krysl P, Belytschko T. Analysis of thin shells by element-free Galerkin method. ComputationalMechanics,1995,17:26-35.
    [80] Krysl P, Belytschko T. Element-free Galerkin method convergence continuous and discontinuousdiscontinuous shape functions. Computer Methods in Applied Mechanics and Engineering,1997,148:257-277.
    [81] Lancaster P, Salkauskas K. Surfaces generated by moving least square methods. Mathematics ofComputation,1981,37:141-158.
    [82] Lee S H, Yoon Y C. An improved crack analysis technique by element-free Galerkin.InternationalJournal for Numerical Methods in Engineering,2003,56:1291-1314.
    [83] Li S, Cheng F. Numerical manifold method based on the method of weighted residuals.Computational Mechanics,2005,35:470-480.
    [84] Li S, Liu W K. Meshfree Particle Methods. Berlin Heidelberg: Springer-Verlag,2004.
    [85] Li S, Liu W K. Moving least-square reproducing kernel method Methodology and Convergence.Computer Methods in Applied Mechanics and Engineering,1997,143:113-154.
    [86] Li S, Liu W K. Moving least-square reproducing kernel method Part II Fourier analysis.ComputerMethods in Applied Mechanics and Engineering,1996,139:159-193.
    [87] Li S,Cheng Y M. Enriched meshless manifold method for two-dimensional crack modeling.Theoretical and Applied Fracture Mechanics,2005,44:201-346.
    [88] Liew K M, Ng T Y, Wu Y C. Meshfree method for large deformation analysis-a reproducing kernelparticle approach. Engineering structures,2002,24:543-551.
    [89] Liew K M, Ren J, Kitipornchai S. Analysis of the pseudoelastic behavior of a SMA beam by theelement-free Galerkin method. Engineering Analysis with Boundary Elements,2004,28:497-507.
    [90] Lim I L, Johnston I W,Choi S K.模拟岩体裂纹扩展的数值方法.计算机方法在岩石力学及工程中的应用国际学术讨论会论文集,1993:289-296.
    [91] Lin C T.Extensions to the discontinuous deformation analysis for jointed rock masses and otherblocky systems. Ph.D. University of Colorado,1995.
    [92] Lin D M, Mo H H. Manifold method of material analysis. The University of Oklahoma,1994.
    [93] Lin D M,Mo H H. Manifold method of material analysis. Working Forum on the Manifold of Material Analysis, California,USA, US Army Corps of Engineerings.1995,147-164.
    [94] Lin H, Atluri S N. The Meshless Local Petrov-Galerkin(MLPG) Method for Solving theIncompressible Navier-Stokes Equations. Computer Modeling in Engineering&Sciences(CMES),2001,2:117-142.
    [95] Lin J S, Lee D H.Manifold method using polynomial basis function of any order.Proceeding of the1nd International Forum on Discontinuous Deformation Analysis (DDA) and Simulations ofDiscontinuous Media, Berkeley, CA,1996:365-372.
    [96] Lin J S.Continuous and discontinuous analysis using the manifold method. Working Forum on theManifold of Material Analysis, California, USA,1995,1:1-20.
    [97] Liu G R. Mesh Free Methods: Moving Beyond the Finite Method. CRC Press,2002.
    [98] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids. International Journalfor Numerical Methods in Engineering,2001,50:937-951.
    [99] Liu G R, Gu Y T. Boundary meshless methods based on the boundary point interpolation methods.Engineering Analysis with Boundary Elements,2004,28:475-487.
    [100] Liu G R, Gu Y T. Coupling of element free Galerkin and hybrid boundary element methods usingmodified variational formulation. Computational Mechanics,2000,26:166-173.
    [101] Liu G R, Gu Y T. A matrix triangularization algorithm for point interpolation method. ComputerMethods in Applied Mechanics and Engineering,2003,28:2269-2295.
    [102] Liu G R, Liu M B.Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore:World Scientific,2003.
    [103] Liu G R, Tu Z H. An adaptive procedure based on background cells for meshless methods.Computer Methods in Applied Mechanics and Engineering,2002,191:1923-1943.
    [104] Liu K Y,Long S Y,Li G Y.A simple and less costly meshless local Petrov-Galerkin (MLPG)method for the dynamic fracture problem.Engineering Analysis with Boundary Elements,2006,30:72-76.
    [105] Liu M B, Liu G R, Lam K Y. Constructing smoothing functions in smoothed particlehydrodynamics applications. Journal of Computational and Applied Mathematics,2003,155:263-284.
    [106] Liu W K, Chen Y J. Wavelet and multiple scale reproducing kernel methods. International Journalof Numerical Methods in Fluids,1995,21:901-931.
    [107] Liu W K, Chen Y J, Uras RA, Chang CT. Generalized multiple scale reproducing kernelparticle.Computer Methods in Applied Mechanics and Engineering,1996,139:91-157.
    [108] Liu W K, Jun S et al. Multire solution reproducing kernel particle methods for computational fluiddynamics. International Journal for Numerical Methods in Fluid,1997,24:1391-1415.
    [109] Liu W K, Jun S, Zhang YF. Reproducing kernel partical methods. International Journal forNumerical Methods in Fluid,1995,20:1081-1106.
    [110] Liu W K, Jun S. Multiple-scale reproducing kernel particle methods for large deformationproblem. International Journal for Numerical Methods in Engineering,1998,41:1339-1362.
    [111] Lu Y Y, Belytschko T. Element-free Galerkin methods for wave propagation and dynamic fracture.Computer Methods in Applied Mechanics and Engineering,1995,126:131-153.
    [112] Lucy L B. A numerical approach to the testing of the fission hypothesis. The as trophysicalJournal,1977,8(12):1013-1024.
    [113] Maria G A, Ricardo G D. Error estimates for moving least square approximations. AppliedNumerical Mathematics,2001,37:397-416.
    [114] Mashimo H, Isago N. Numerical approach for design of tunnel concrete lining considering effectof fiber reinforcements. Tunnelling and Underground Space Technology2004,19:454-455.
    [115] Moes N, Belytschko T. Extended finite element method for cohesive crack growth. EngineeringFracture Mechanics,2002,69:813-833.
    [116] Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkin method.Computational Mechanics,1997,19:264-270.
    [117] Mukherjee Y X, Mukherjee S. The boundary node method for potential problems. InternatioalJournal for Numerical Methods in Engineering,1997,40:797-815.
    [118] Nayroles B,Touzot G, Villon P. Generalizing the finite element method: diffuse approximationand diffuse elements. Computational Mechanics,1992,10:307-318.
    [119] Ngo D, Scordelis A C.Finite element analysis of reinforcement concrete beams.A Journal of theAmerican Concrete Institute,1967,64(2):152-163
    [120] Oden J T, Duarte A, Zienkiewicz O C. A new cloud-based hp finite element method.InternationalJournal for Numerical Methods in Engineering,1998,50:160-170.
    [121] Ohnishi Y, Tanaka M, Koyama T.Manifold method in saturated-unsaturated groundwater flowanalysis.Proceeding of the3nd International Conference on Analysis of DiscontinuousDeformation from Theory to Practice, Vail, Colorado, USA,1999.
    [122] Onate E, Idelsohn S, Zienkiewicz O C et al. A finite point method in computational mechanics.Applications to convective transport and fluid flow. International Journal for Numerical Methodsin Engineering,1996,39:3839-3866.
    [123] Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport and fluidflow problems. Computational Mechanics,1998,21:283-292.
    [124] Oshihiro A, Yoshiyuki K. Tunnel maintenance in Japan. Tunnelling and Underground SpaceTechnology2003,18:161-169.
    [125] Park D M. A stiffness derivative finite element technique for determination of crack tip stressintensity factor.International Journal of Fracture,1974,10:487-502.
    [126] Park H, Liu W K. An introduction and tutorial on multiple-scale analysis in solids. ComputerMethods in Applied Mechanics and Engineering,2004,193:1733-1772.
    [127] Ponthot J P, Belytschko T. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkinmethod. Computer Methods in Applied Mechanics and Engineering,1998,152:19-46.
    [128] Qian D, Wagner G J, Liu W K. A multiscale projection method for the analysis of carbonnanotubes. Computer Methods in Applied Mechanics and Engineering,2004,193:1603-1632.
    [129] Qiu X J. Manifold method without use of penalty springs. Proceeding of the1nd InternationalForum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media,Berkeley, CA,1996:205-249.
    [130] Quinlan N J, Basa M, Lastiwka M. Truncation error in mesh-free particle methods.InternationalJournal for Numerical Methods in Engineering,2006,66:2064-2085.
    [131] Rajendran S,Zhang B R. A“FE-meshfree” QUAD4element based on partition of unity. ComputerMethods in Applied Mechanics and Engineering,2007,197:128-147.
    [132] Raju I S, Phillips D R, Krishnamurthy T. A radial basis function approach in the meshless localPetrov-Galerkin method for Euler-Bernoulli beam problems. Computational Mechanics,2004,34:464-474.
    [133] Raju IS. Calculation of strain energy release rates with higher order and singular finite elements.Engineering Fracture Mechanics1987,28:251-274.
    [134] Rao B N, Rahman S. An enriched meshless method for non-linear enriched fracture mechanics.International Journal for Numerical Methods in Engineering,2004,59:197-223.
    [135] Rashid.Analysis of prestressed concrete pressure vessels. Nuclear engineering and design,1968,7:334-344
    [136] Ren J T, Yaw J C, Wailin C. Crack growth prediction by manifold method.Journal of EngineeringMechanics,1999,125(8):884-890.
    [137] Rybicki E F, Kanninen M F. A finite element calculation of stress intensity factors by a modifiedcrack closure integral. Engineering Fracture Mechanics,1977,9:931-938.
    [138] Sasaki T, Morikawa S, Yuzo O.Elastic-plastic analysis of jointed rock models by manifold method.Proceeding of the2nd International Conference on Analysis of Discontinuous Deformation, Kyoto,Japan,1997:309-316.
    [139] Schaback R. Error estimation and condition number for radial basis function interpolation.International Journal for Numerical Methods in Engineering,1998,35:198-226.
    [140] Schlangen E,Garboczi E J. Fracture simulations of concrete using lattice models.computationalaspects. Engineering Fracture Mechanics,1997,57:319-332.
    [141] Sheng J, Chen M H. Approximation theories for the manifold method.Working Forum on theManifold of Material Analysis, California, USA,1995,1:61-86.
    [142] Shi G H.Manifold method. Proceeding of the1nd Forum on Discon Defor Anal&Simu ofDiscon.Media,Berkeley,California.USA.1996,1:52-204.
    [143] Shi G H, Goodman RE.Generalization of two-dimensional discontinuous deformation analysis forforward modeling, International Journal for Numerical and Analytical Methods in Geomechanics,1989,13:359-380.
    [144] Shi G H.Modeling rock joints and blocks by manifold method, Proceedings of the32nd U.S.Symposium on Rock Mechanics,1992, Santa Fe. New Mexico,639-648.
    [145] Shi G H.Numerical manifold method.Proceeding of the1nd International Conference onAnalysis of Discontinuous Deformation, Kyoto, Japan,1997,1-35.
    [146] Shivakumar K N, Tan P W, Newman J C. A virtual crack-closure technique for calculating stressintensity factors for cracked three dimensional bodies. International Journal of Fracture1988,36:43-50.
    [147] Shyu K, Salami M R. Manifold method with four-node isoperimetric finite element method.Working Forum on the Manifold of Material Analysis, California, USA,1995,1:165-182.
    [148] Sladek J, Atluri S N et al. Numerical integration of singularities in meshless implementation oflocal boundary integral equations. Computational Mechanics,2000,25:394-403.
    [149] Sladek J, Sladek V, Atluri S N. Application of the local boundary integral equation(LBIE)methodto boundary-value problems. International Applied Mechanics,2002,38:1025-1047.
    [150] Sladek J. Dynamics stress intensity fracturs studied by boundary integro-differential equations.Numer Methods,1986,23:919-928.
    [151] Smolinski P, Palmer T. Procedures for multi-time step integration of element free Galerkinmethods for diffusion problems. Compute Struct,2000,77:171-183.
    [152] Song K Z, Zhang X. Meshless method based on collocation for elasto-plastic analysis.Proceedingsof Internal Conference on Computational Engineering&Science. Los Angeles, USA.2000,8:53-86.
    [153] Song K Z, Zhang X, Lu M W. Collocation with Modified Compactly Supported Radial BasisFunction. Proceedings of International Conference on Computational Engineering&Sciences,August19-25, Puerto Vallarta,USA.2001,12:186-212.
    [154] Strouboulis T, Babuska I, Copps K. The design and analysis of the generalized finite elementmethod. Computer Methods in Applied Mechanics and Engineering,2000,181:43-69.
    [155] Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis.Computational Mechanics,1995,116:123-134.
    [156] Swenson D V,Ingraffea A R. Modelling mixed-mode dynamic crack propagation using finiteelements: theory and applications. Computational Mechanics,1988,3:187-192.
    [157] Tang Z, Shen S, Atluri S N. Analysis of materials with strain gradient effects: A Meshless LocalPetrov-Galerkin(MLPG) approach, with nodal displacements only. Computer Modeling inEngineering&Sciences(CMES),2003,4:177-196.
    [158] Tsay R J, Chiou Y J, Chuang W.Crackgrowth prediction by manifold method. Journal ofEngineering Mechanics,1999,125(8):884-890.
    [159] Uras R A, Cheng C T, Chen Y. Multiresolution reproducing kernel particle methods in acoustics.Computer Modeling in Engineering&Sciences(CMES),1998,5:71-94.
    [160] Voth T E, Christon M A. Discretization errors associated with reproducing kernel methods:one-dimensional domains. Computer Methods in Applied Mechanics and Engineering,1996,190:2429-2446.
    [161] Wagner G J, Liu W K.Hierarchical enrichment for bridging scales and mesh-free boundaryconditions. International Journal for Numerical Methods in Engineering,2001,50:507-524.
    [162] Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions.International Journal for Numerical Methods in Engineering,2002,54:1623-1648.
    [163] Wang J G, Liu G R. On the optimal shape parameters of radial basis functions used for2-Dmeshless methods. Computer Methods in Applied Mechanics and Engineering,2002,191:2611-2630.
    [164] Wang M Z, Sun S L. The local boundary integral equation and mean value theorem in the theoryof elasticity. Journal of Elasticity,2002,67:51-59.
    [165] Wang S L, Ge X R. Manifold method with complete first order displacement function on physicalcover. Proceeding of the3rd International Conference on Analysis of Discontinuous Deformationfrom Theory to Practice, Vail, Colorado, USA,1999.
    [166] Wendland H. Meshless Galerkin method using radial basis functions. Computer Methods inApplied Mechanics and Engineering,1999,68(228):1521-1531.
    [167] Wendland H. Positive definite and compactly supported radial basis functions of minimal degree.Advances in Computational Mathematices,1995,4:389-396.
    [168] Wong S M, Hon Y C, Li T S.Multizone decomposition of time-dependent problems using themultiquadric schem. Computer Methods in Applied Mechanics and Engineering,1999,37(8):23-43.
    [169] Wu Z M, Hon Y C. Convergence error estimate in solving free boundary diffusion problem byradial basis functions method. Engineering Analysis with Boundary Elements,2003,27:73-79.
    [170] Wu Z M, Schaback R. Local error estimates for radial basis function interpolation of scattered data.IMA Journal of Numerical Analysis,1993,13:13-27.
    [171] Wu Z M. Multivariate compactly supported positive definite radial functions. Advances in theComputational Mathematics,1995,4:283-292.
    [172] Wu Z M. Solving PDE with radial basis functions and error estimation. Advances in theComputational Mathematics, Lecture Notes on Pure and Applied Mathematics, Guang Zhou,1998,2:202-242.
    [173] Wu Z, Hon Y C. Convergence error estimates in solving free boundary diffusion problem byradial basis functions. Engineering Analysis with Boundary Elements,2003,27,73-79.
    [174] Xiao J R. Local Heaviside weighted MLPG meshless methods for two-dimensional solids usingcompactly supported radial basis functions. Computer Methods in Applied Mechanics andEngineering,2004,193:117-138.
    [175] Xiao S P, Yang W X. A Nanoscale Meshfree Particle Method with the Implementation ofQuasicontinuum Method. International Journal of Computational Methods,2005,2:293-313.
    [176] Xiao S P, Yang W X. Temperature-related Cauchy-Born rule for multiscale modeling of thecrystalline solids. Computational Materials Science,2006,37:374-379.
    [177] Xu Y, Saigal S. An Element Free Galerkin analysis of steady dynamic growth of a mode I crack inelastic-plastic materials. International Journal of sounds and structures,1999,36:1045-1079.
    [178] Zhang G X, Yasuhito S. Crack propagation and thermal fracture analysis by manifold method.Proceeding of the2nd International Conference on Analysis of Discontinuous Deformation, Kyoto,Japan,1997:282-297.
    [179] Zhang H H, Li L X,An X M, Ma G W. Numerical analysis of2-D crack propagation problemsusing the numerical manifold method. Engineering Analysis with Boundary Elements.2010,34:41-50.
    [180] Zhang J M, Yao Z H, Li H. A hybrid boundary node method. International Journal for NumericalMethods in Engineering,2002,53:751-763.
    [181] Zhang X, Liu X H, Song K Z. Least-square collocation meshless method. International Journal forNumerical Methods in Engineering,2001,51(9):1089-1100.
    [182] Zhang X, Lu M W. A2-D meshless model for jointed rock structures. Computational MaterialsScience,2000,47(10):1649-1661.
    [183] Zhou W Y, Kou X D. Crack propagation by manifold method coupled with element free method.Proceeding of the3nd International Conference on Analysis of Discontinuous Deformation fromTheory to Practice, Colorado, USA,1999:563-582.
    [184] Zhou W Y, Kou X D. Manifold method and its applications to engineering. Proceeding of the2ndInternational Conference on Analysis of Discontinuous Deformation, Kyoto, Japan,1997:274-281.
    [185] Zhu T, Zhang J, Atluri S N. A local boundary integral equation(LBIE) method in computationalmechanics and a meshless discretization approach. Computational Mechanics,1999a,21:223-235.
    [186] Zhu T, Zhang J, Atluri S N. A local boundary integral equation(LBIE) method for solvingnonlinear problems. Computational Mechanics,1999b,22:174-186.
    [187] Zhuang X Y. Meshless Methods:theory and application in3D fracture modeling with level sets.Ph.D thesis, School of Engineering and Computing Sciences University of Durham UnitedKingdom,2010
    [188]包浩杉.套拱加固带裂缝衬砌的试验研究:[硕士学位论文].上海:同济大学,2012.
    [189]贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166.
    [190]蔡永昌,张湘伟.流形方法的矩形覆盖系统及其全自动生成算法[J].重庆大学学报,2001,24(1):42-46.
    [191]蔡永昌,张湘伟.数值流形方法在连续体数值分析中的应用[J].力学与实践,1999,21(6):53-54.
    [192]蔡永昌,朱合华,夏才初.流形方法覆盖系统自动生成算法研究[J].同济大学学报,2004,32(5):585-590.
    [193]蔡永昌,朱合华.裂纹扩展过程模拟的无网格MSLS方法.工程力学[J].2010,27(7):21-27.
    [194]曹国金.无单元法的进展,改进及其应用[D].河海大学博士论文.2003.
    [195]曹文贵,速宝玉.流形元覆盖系统自动形成方法之研究,岩土工程学报[J].2001,23(2):187-190.
    [196]程荣军,程玉民.势问题无单元Galerkin方法的误差估计[J].物理学报,2008,57(10):607-646.
    [197]程玉民,陈美娟.弹性力学的一种边界无单元法[J].力学学报,2003,35(2):181-186.
    [198]程玉民,嵇醒.动态断裂力学的无限相似边界元法[J].力学学报,2004,36(1):43-48.
    [199]程玉民,李九红.弹性力学的复变量无网格法[J].物理学报,2005,54(10):4463-4471.
    [200]程玉民,彭妙娟.弹性动力学的边界无单元法[J].中国科学,2006,35(4):435-448.
    [201]丁遂栋主编.断裂力学[M].北京:机械工业出版社.1991.
    [202]冯晓燕.隧道病害分级和衬砌裂损整治技术研究:[硕士学位论文].北京:北方交通大学,2002.
    [203]付黎龙.偏压连拱隧道衬砌病害分析及加固研究:[硕士学位论文].湖南长沙:中南大学,2009.
    [204]高洪芬,程玉民.弹性力学的复变量数值流形方法[J].力学学报,2009,41(3):480-488.
    [205]郭隽,陶智.非线性问题的MPS无网格算法[J].北京航空航天大学学报,2003,29(1):83-86.
    [206]何川,李祖伟,余健,汪波.组合补强对缺陷病害隧道结构承载力影响的室内模型试验研究[J].公路,2007.3:195-201.
    [207]何川,佘健,兰宇.高速公路隧道维护加固对策模型试验研究[J].全国公路隧道学术会议论文集,2005.
    [208]何川,佘健.高速公路隧道维修与加固[M].北京:人民交通出版社,2006.
    [209]何川,唐志成,汪波,汪洋,余健.内表面补强对缺陷病害隧道结构承载力影响的模型试验研究[J].岩土力学,2009,30(2):406-412.
    [210]黄宏伟.隧道病害与防治[M].上海:同济大学出版社,2003.
    [211]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].清华大学出版社,2005.
    [212]姜弘道,曹国金.无单元法研究和应用现状及动态[J].力学进展,2002,34(4):526-534.
    [213]交通部.《2010年公路水路交通运输行业发展统计公报》.
    [214]解德,钱勤,李长安编著.断裂动力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.
    [215]寇晓东,周维垣.应用无单元法近似计算拱坝开裂[J].水利学报,2000,10:28-35.
    [216]匡震邦,马法尚.裂纹端部场Crack Tip Fields[M].西安交通大学出版社,2002.
    [217]李海枫,张国新,石根华,彭校初.流形切割及有限元网格覆盖下的三维流形单元生成[J].岩石力学与工程学报,2010,29(4):731-742.
    [218]李九红,程玉民.无网格方法的研究进展与展望[J].力学季刊,2006,27(1):143-152.
    [219]李宁军,刘彤,曹彩芹.公路隧道衬砌加固计算分析[J].西安建筑科技大学学报(自然科学版),2004:79-81.
    [220]李树忱,程玉民,基于单位分解法的无网格流形方法[J].力学学报,2004a,36(4):496-500.
    [221]李树忱,程玉民,李术才.动态断裂力学的无网格流形方法[J].物理学报,2006,55(9):4760-4766.
    [222]李树忱,程玉民,裂纹扩展分析的无网格流形方法[J].岩石力学与工程学报,2005,24(7):1187-1195.
    [223]李树忱,程玉民.数值流形方法及其在岩石力学中的应用[J].力学进展,2004b,34(4):446-454.
    [224]李卧东,谭国焕等.无网格法在弹塑性问题中的应用[J].固体力学学报,2001,22(4):361-367.
    [225]李治国,张玉军.衬砌开裂隧道的稳定性分析及治理技术[J].现代隧道技术,2004,41(l):26-31.
    [226]李治国.病害隧道调查及裂缝治理技术[J].现代隧道技术,2002(增):441-446.
    [227]刘欣,朱德懋等.基于流形覆盖思想的无网格方法的研究[J].计算力学学报,2001,18(1):21-27.
    [228]刘永华.高速公路隧道安全性评价研究:[硕士学位论文].四川成都:西南交通大学,2004.
    [229]刘再华,解德,王元汉等编著.断裂动力学引论[M].武汉:华中理工大学出版社,1990.
    [230]龙述尧,刘凯远.动态断裂力学问题中的局部Petrov-Galerkin无网格方法[J].暨南大学学报.2005,26:57-59.
    [231]龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518.
    [232]龙述尧.用无网格局部Petrov-Galerkin法分析非线性地基梁[J].力学季刊,2002,23(4):547-551.
    [233]陆新征,江见鲸.利用无网格方法分析斜拉破坏钢筋混凝土梁[J].计算力学学报,2004,21(6):701-705.
    [234]栾茂田,田荣,杨庆等.有限覆盖无单元法在岩土类弱拉型材料摩擦接触问题中的应用[J].岩土工程学报,2002,24(2):137-141.
    [235]栾茂田,张大林,田荣.有限覆盖无单元法在裂纹扩展数值分析问题中的应用[J].岩土工程学报,2003,25(5):527-531.
    [236]骆少明,张湘伟,蔡永昌.非线性数值流形方法的变分原理与应用[J],应用数学和力学,2000,21(12):1265-1270.
    [237]骆少明,张湘伟,蔡永昌.数值流形方法的变分原理与应用[J],应用数学和力学,2001,22(6):587-592.
    [238]莫海鸿,陈尤雯.流形法在岩石力学研究中的应用[J],华南理工大学学报,1998,26(9):48-53.
    [239]潘小飞,张雄,陆明万.Meshless Galerkin least square method[M].工程与科学中的计算力学,北京,2003.
    [240]庞作会,葛修润.无网格伽辽金法在边坡开挖问题中的应用[J].岩土力学,1999,20(1):61-64.
    [241]佘健.高速公路隧道安全性评价及维护加固对策研究[D].四川成都:西南交通大学,2005.
    [242]沈成康.断裂力学[M].上海:同济大学出版社,1996.
    [243]石根华著,裴觉民译.数值流形方法与非连续变形分析[M],清华大学出版社,1997.
    [244]史宝军,袁明武,李君.基于核重构思想的最小二乘配点型无网格方法[J].力学学报,2003,35(6):697-706.
    [245]史宝军,袁明武,舒东伟.基于核重构的最小二乘配点法求解Helmholtz方程[J].力学学报,2006,38(1):125-129.
    [246]唐春安,朱万成.混凝土损伤与断裂-数值试验[M].科学出版社,2003.
    [247]田荣,连续与非连续变形分析的有限覆盖无单元方法及其应用研究[D].大连:大连理工大学,2000.
    [248]田荣,栾茂田等.高阶流形方法及其应用[J].工程力学,2001,18(2):21-26.
    [249]王春景.运营公路隧道结构病害安全性评估及综合处治技术研究:[硕士学位论文]:湖南:中南大学,2010.
    [250]王建秀,朱合华.连拱隧道裂缝运动的监测与分析[J].土木工程学报,2000,40(5):69-73.
    [251]王书法.岩体弹塑性分析的数值流形方法[J].岩石力学与工程学报,2002,21(6):900-904.
    [252]王书法等.考虑侧向影响的数值流形方法及其工程应用[J].,岩石力学与工程学报,2001,20(3):297-300.
    [253]王水林,葛修润.流形方法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(5):405-410.
    [254]王水林,葛修润.受压状态下裂纹扩展的数值分析[J].岩土力学与工程学报,1999,18(6):671-675.
    [255]王兆清,冯伟.自然单元法研究进展[J].力学进展,2004,34(4):437-445.
    [256]王芝银,王思敬,杨志法.岩体大变形分析的流形方法[J].岩石力学与工程学报,1997,16(5):199-404.
    [257]王芝银等.数值流形方法中的几点改进[J].岩土工程学报,1998,20(6):33-36.
    [258]吴江滨,张顶立,王梦恕.铁路运营隧道病害现状及检测评估[J].中国安全科学学报,2003,13(6):49-52.
    [259]吴梦军.大茅隧道右洞病害分析与整治设计[J].重庆交通学院学报,2006,25(4):9-11.
    [260]吴宗敏.径向基函数和与无网格偏微分方程数值解[J].工程数学学报,2002,19(2):1-11.
    [261]邢纪波,俞良群,王泳嘉等.三维梁-颗粒模型与岩石材料细观力学行为模拟[J].岩石力学与工程学报,1999,16(6):627-630.
    [262]熊渊博,龙述尧.薄板的局部Petrov-Galerkinf方法[J].应用数学和力学,2004,28(2):198-206.
    [263]杨成忠,黄明,刘新荣,王淑芳.碳纤维布用于深埋隧道衬砌裂缝的加固效果[J].解放军理工大学学报(自然科学版),2010,11(3):323-327.
    [264]姚武,吴科如.混凝土断裂过程区理论模型研究[J].大连理工大学学报,1997(37):13-20.
    [265]于骁中,居襄.断裂力学在水工结构设计中的应用[J].水利学报,1980(5):86-87.
    [266]袁振,李子然等.无网格法模拟复合型疲劳裂纹的扩展[J].工程力学,2002,19(1):25-28.
    [267]曾清红,卢德唐.无网格方法求解稳定渗流问题[J].计算力学学报,2003,20(4):440-445.
    [268]张见明,姚振汉,李宏.二维势问题的杂交边界点法.重庆建筑大学学报,2000,22(6):105-107.
    [269]张见明,姚振汉.一种新型无网格法-杂交边界点法[J].中国计算力学大会,2001会议论文集,广州,2001,339-343.
    [270]张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397.
    [271]张伟星,庞辉.弹性地基板计算的无单元法[J].工程力学,2000,17(3):138-144.
    [272]张雄,胡炜,潘小飞等.加权最小二乘无网格法[J].力学学报,2003,35(4):425-431.
    [273]张雄,刘岩.无网格方法[M].清华大学出版社,2004.
    [274]张雄,宋康祖,陆明万.紧支试函数加权残值法[J]力学学报,2003a,35(1):43-49.
    [275]张雄,宋康祖,陆明万.无网格法研究进展及其应用[J].计算力学学报,2003b,20(6):731-741.
    [276]张延军,王思敬.有限元与无网格伽辽金耦合法分析二相连续多孔介质[J].计算物理,2003,20(2):142-146.
    [277]张玉军,李治国.带裂纹隧道二次衬砌承载能力的平面有限元计算分析[J].岩土力学,2005,26(8):1201-1206.
    [278]中国航天研究院.应力强度因子手册[M].科学出版社,1993.
    [279]中国建筑科学研究院.混凝土结构试验方法标准讲义[M].北京:中国建筑工业出版社,1990.
    [280]周进雄,李梅娥,张红艳,张陵.再生核质点法研究进展[J].力学进展,2002,32(4):535-544.
    [281]周敏.带裂缝隧道衬砌承载力评价方法研究:[硕士学位论文].上海:同济大学,2010.
    [282]周维垣,杨若琼,剡公瑞,流形元法及其在工程中的应用[J],岩石力学与工程学报,1996,15(3):211-218.
    [283]朱万成,赵启林,唐春安,卓家寿.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32(4):579-598.
    [284]朱以文,曾又林.岩石大变形分析的增量流形方法[J].岩石力学与工程学报,1999,18(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700