用户名: 密码: 验证码:
岩土锚杆拉拔荷载传递分析与FRP智能锚杆监测验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上地质灾害最为严重的国家之一。锚杆支护技术具有充分调动岩土体强度、减轻结构物自重以及节约工程材料等优点,近年来已逐渐发展为地质灾害预防与治理的主要技术手段,在边坡、基坑以及隧道等岩土工程领域得到了广泛应用。但是,由于加固对象和工作环境的复杂性,至今锚杆支护原理仍没有形成一个统一和全面的认识,对于复杂条件下锚杆的应力分布与传递规律以及检测与监测技术等问题亟需更为深入的研究。本文采用理论分析、试验实测以及工程应用相结合的方法,围绕锚杆拉拔荷载传递与内嵌光纤传感的全尺度监测验证展开了较系统研究,主要内容包括:
     首先,考虑界面非线性特性,从锚杆荷载位移的指数曲线关系出发,建立了锚固界面的曲线剪切滑移模型;采用荷载传递函数法推导了张拉荷载作用下锚杆的荷载传递解析解,并通过室内和现场实测锚杆拉拔试验数据进行了验证,对锚杆拉拔受力特征进行了分析。
     其次,考虑界面残余剪切强度影响,进一步拓展了锚固界面的曲线剪切滑移模型,利用切比雪夫多项式推导了该模型下锚杆的荷载传递解析解,分析了不同残余剪切强度条件下锚杆的拉拔受力特征,并通过实测数据对模型和荷载传递解答进行了验证。
     第三,考虑岩土局部脱空不连续特征,结合上述建立的曲线剪切滑移模型及分析方法,构建了局部脱空岩土锚杆锚固段的拉拔荷载传递解答,对局部脱空岩土锚杆锚固段的拉拔荷载传递特征进行了探讨,分析了局部脱空参数对锚杆锚固段拉拔荷载传递特征的影响。
     最后,针对实际工程锚杆拉拔受力长期测试的全尺度监测需求,在阐述光纤传感技术原理的基础上,研制了系列内嵌光纤FRP智能锚杆,并对其制备工艺进行了探讨;基于研制的智能锚杆,对均质和局部脱空岩土锚杆的受力特征进行了拉拔试验研究,分析了上述工况智能锚杆的应力分布和界面损伤特征,探讨了智能锚杆对应力分布和界面损伤的全尺度监测性能,并对比分析了智能锚杆的全尺度监测与理论计算结果,验证了智能锚杆的全尺度监测性能和解析解的有效性。在此基础上,结合某边坡工程的实际监测需求,采用内嵌光纤FRP智能锚杆对边坡加固锚杆的应力状态进行了监测,获得了边坡锚杆的应力分布特征和演化规律,验证了智能锚杆在实际工程中应用的有效性和可靠性。
China is one of the countries influenced by geological disasters most seriously. With the advantages of strengthening soil, lightening structure, saving material and shortening period, geotechnical anchor, which has been becoming the major technology to prevent and deal with geological disasters, has been widely applied in geotechnical engineering such as slope, foundation pit and tunnel in recent years. However, due to the complexity of surrounding soil and environment, the principles of geotechnical anchor have not yet common and completely understood. Thus geotechnical anchor need more study on the stress distribution and transfer mechanism as well as the detecting and monitoring technologies under complex soil and environment. This study has focused on the pullout load transfer mechanism of geotechnical anchor under tension as well as its full-scale monitoring technology and validation based on optical fiber sensors by means of theoretical analysis, experimental measurement and engineering practice. The content of this study mainly contains:
     Firstly, a novel curvilinear shear stress-slip model is developed from exponential load-displacement relationship curve in consideration of interfacial nonlinearity. Adopting load transfer function method, load-transfer solution of the anchor is derived, which is verified by measuring result from both laboratory and field tests subsequently. Based on this solution, the pullout mechanical behavior of the anchor is analysis.
     Secondly, the developed curvilinear shear stress-slip model is expanded in consideration of interfacial residual strength. Subsequently, load-transfer solution of the anchor under the expanded model is derived by means of Chebyshev polynomial approximation. Then measuring results are applied to verify this model as well as solution and the pullout mechanical behavior of the anchor with different residual shear strengths are discussed.
     Thirdly, adopting the above method and curvilinear shear stress-slip models, load-transfer solutions of the anchors in imperfect soils are derived expandly considering the imperfect characteristics. Then the pullout mechanical behavior of the anchors in imperfect soils is discussed as well as the influences from the imperfect parameters.
     Finally, aiming at the full-scale monitoring requirement of the anchorage engineering, series of smart FRP anchors with built-in optical fiber sensor are developed after discussing the sensing principle of optical fiber sensor. The fabricating processes of these smart anchors are also discussed. Adopting these smart anchors, experiments on pullout load transfer mechanism of the anchors in homogeneous and imperfect soils are carried out in laboratory. The stress distributed and interfacial damage characteristics of the anchors in above cases are studied in sequence to test the performance of the smart FRP anchor on monitoring stress distributed and interfacial damage characteristics. The results from full-scale monitoring and theoretical calculation are compared to verify the effectiveness of both smart FRP anchor and developed solutions. Then the smart anchors are applied in one slope project to verify the effectiveness and reliability. The stress distribution and long-term evolution of the slope anchors are monitored and discussed.
引文
[1]中国地质环境信息网.全国地质灾害通报,2013.
    [2]李宏.我国的自然灾害及其经济成本研究[J].价格月刊,2010,4:66-72.
    [3]程良奎,李象范.岩土锚固、土钉、喷射混凝土—原理、设计与应用[M].中国建筑工业出版社,2008.
    [4]彭振斌.锚固工程设计计算与施工[M].中国地质大学出版社,1997
    [5]程良奎,韩军,张培文.岩土锚固工程的长期性能与安全评价[J].岩石力学与工程学报,2008,27(5):865-872.
    [6]陈伟,吴裕锦,彭振斌.广州某基坑抢险监测及坍塌事故技术原因分析[J].地下空间与工程学报,2006,2(6):1035-1039.
    [7] Kalman, K. History of the sprayed concrete lining method-part I:milestones up to the1960s[J]. Tunneling and Underground SpaceTechnology2003;18(1):57-69.
    [8] Kalman, K. History of the sprayed concrete lining method-part II:milestones up to the1960s[J]. Tunneling and Underground SpaceTechnology2003;18(1):71-83.
    [9]赵一鸣.煤矿巷道树脂锚固体力学行为及锚杆杆体承载特性研究[D].中国矿业大学博士学位论文,2012..
    [10]尤春安.锚固系统应力传递机理理论及应用研究[D].山东科技大学博士学位论文,2004.
    [11]朱尔明.20世纪中国学术大典—水利学[M].福建:福建教育出版社,2006.
    [12]张乐文,汪淰.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627-631
    [13] Fuller, P.G. and Cox. R.H.T. Mechanics load transfer from steel tendons ofcement based grouted[C]. Fifth Australasian Conference on the Mechanicsof Struetures and Materials, Melbourne,1975.
    [14]高永涛,吴顺川,孙金海.预应力锚杆锚固段应力分布规律及应用[J].北京科技大学学报,2002,24(4):387-390.
    [15]陈弦.锚杆拉拔荷载传递机理及试验研究[D].西安科技大学硕士学位论文,2010.
    [16] Phillips S.H.E. Factors affecting the design of anchorages in rock [R].London: Cementation Research Ltd,1970.
    [17] Farmer IW. Stress distribution along a resin grouted rock anchor [J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1975,12(11):347-351
    [18]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式[J].岩土工程学报,2001,2(36):696-699.
    [19] Aydan, O., Ichikawa, Y. and Kawamoto, T. Load bearing capacity andstress distributions in along rrockbolts with inelastic behaviour ofinterfaces[C]. Proceeding of5th International Conference on NumericalMethods in Geomechnic, Nagoya, Japan, January41985, pp.1281-1291.
    [20] Wijk, G. A theoretieal remark on the stress field around Prestressed rockBolts [J]. International Journal of Rock Mechanics and Mining Sciences,1978,15(6):289-294.
    [21]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):334-338
    [22]孔宪宾,汪洪武,高公略,余跃心.土-锚杆界面模型的改进和应用[J].力学与实践,1999,21(5):17-19.
    [23]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188-192.
    [24]李铀,白世伟,方昭茹等.预应力锚索锚固体破坏与锚固力传递模式研究[J].岩石力学与工程学报,2003,24(5):655-690.
    [25]何思明.基于损伤理论的预应力锚索荷载-变形特性分析[J].岩石力学与工程学报,2004,23(5):786-792.
    [26]何思明.预应力锚索的非线性分析[J].岩石力学与工程学报,2004,23(9):1535-1541.
    [27]何思明.预应力锚索作用机理[D].西南交通大学博士学位论文,2004.
    [28]魏新江,危伟,张世明.理想弹塑性锚杆拉拔理论分析[J].力学与实践,2006,28(3):56-59.
    [29]杨庆,朱训国,栾茂田.压力型锚索锚固段应力分布及影响参数分析[J].岩石力学与工程学报,2006,25(S2):4065-4070
    [30]刘波,李东阳.锚杆砂浆黏结-滑移关系的试验拟合分析与模拟[J].合肥工业大学学报(自然科学版),2009,32(9):1510-1513.
    [31]伍国军.地下工程锚固时效性及可靠性研究[D].中国科学院武汉岩土力学研究所博士学位论文,2009.
    [32] Ren, F.F., Yang, Z.J., Chen, J.F. and Chen, W.W. An analytical analysis ofthe full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model [J]. Construction and Building Materials,2010,24(3):361-370.
    [33]赵明华,廖彬彬,刘思思,黄利雄.桩底嵌岩锚杆锚固段应力分布研究[J].公路交通科技,2011,28(1):42-46.
    [34] Dai, J., Ueda, T., and Sato, Y. Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet–concrete interfaces with asimple method[J]. Journal of Composites for Construction,2005,9(1):52-62.
    [35] Zhou, Y.W., Wu, Y.F., Yun, Y. Analytical modeling of the bond-sliprelationship at FRP-concrete interfaces for adhesively-bonded joints[J].Composites Part B: Engineering,2010,41(6):423-433.
    [36] Ma, S.Q., Nemcik, J. and Aziz, N. An analytical model of fully groutedrock bolts subjected to tensile load[J]. Construction and BuildingMaterials,2013,49:519-526.
    [37]黄书岭,徐劲松,丁秀丽等.考虑结构面特性的层状岩体复合材料模型与应用研究[J].岩石力学与工程学报,2010,29(4):743-756.
    [38] Zhao, Y.M. and Yang, M.J. Pull-out behavior of an imperfectly bondedanchor system[J]. International Journal of Rock Mechanics and MiningSciences.201148(3):469-475.
    [39]段建,言志信,郭锐剑等.土层缺陷锚杆锚固特性与参数影响分析[J].中南大学学报(自然科学版),2012,43(8):3209-3215..
    [40] Evangelista A and Sapio G. Behaviour of ground anchors in stiff clays[A].Proceedings of the9th International Conference on Soil Mechanics andFoundation Engineering[C]. Tokyo: The Japanese Society of SoilMechanics and Foundation Engineering,1977.39-47.
    [41] Ostermayer H and Scheele F. Research on ground anchors in noncohesivesoils[A]. Proceedings of the9th International Conference on SoilMechanics and Foundation Engineering[C]. Tokyo: The Japanese Societyof Soil Mechanics and Foundation Engineering,1977,92-97
    [42] Fuller, P.G. and Cox. R.H.T. Mechanics load transfer from steel tendons ofcement based grouted[C]. Fifth Australasian Conference on the Mechanicsof Struetures and Materials, Melbourne,1975.
    [43] Fujita K. A method to predict the load-displacement relationship of groundanchors [A]. Proceedings of the9th International Conference on SoilMechanics and Foundation Engineering [C]. Tokyo: The Japanese Societyof Soil Mechanics and Foundation Engineering,1977,58-62.
    [44] Stillborg B. Experimental investigation of steel cable for rockreinforcement in hard rock[D]. Sweden: Lulea University of Technology,1984
    [45] Su, W. and Fragaszy, R. J. Uplift testing of model anchors[J]. Journal ofGeotechnical Engineering Division,1988,114(9):961-983.
    [46] Hyett, A.J., Bawden, W.F. and Reichert, R.D. The effect of rock massconfinement on the band strength of fully grouted cable bolts[J].International journal of rock mechanics and miningsciences&geomechanics abstracts,1992,29(5):503-524
    [47] Barley, A.D. Theory and practice of the single bore multiple anchorsystem[C]. Anchors in Theory and Practice (Widmann, R. Ed.), Salzburg,Austria, October9-101995, pp.315-323.
    [48] Barley, A.D. The single bore multiple anchor system[C]. GroundAnchorages and Anchored Structures (Littlejohn, G.S. Ed.). London, UK,March20-21,1997, pp.65-76.
    [49]丁多文,白世伟,刘泉声.预应力长锚索锚固深度模型试验研究[J].工程勘察,1995,4:14-19.
    [50]程良奎,胡建林.土层锚杆的几个力学问题[C].岩土工程锚固技术,北京:人民交通出版社,1996, pp.1-6.
    [51]黄福德.高边坡群锚加固中锚索体的动态受力特征[J].西北水电,1997,62(4):33-37.
    [52]荣冠,朱焕春,杨松林等.三峡工程永久船闸高强锚杆现场试验研究[J].岩土力学,2001,22(2):171-175.
    [53]朱焕春,荣冠,肖明等.张拉荷载下全长粘结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379-384.
    [54] Kilic, A., Yasar, E. and Celik A.G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt[J]. Tunneling and undergroundspace technology,2002,17(4):355-362
    [55] Kim N.K. Performance of Tension and Compression Anchors in WeatheredSoil[J]Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1138-1150.
    [56]任非凡.南竹加筋复合锚杆锚固机理研究[D].兰州大学博士学位论文,2011.
    [57]叶根飞.岩土锚固荷载传递规律与锚固特性试验研究[D].西安科技大学博士学位论文,2012.
    [58] Huang, M.H., Zhou, Z., Ou, J.P. A novel durable intelligent fiberreinforced polymer anchor with embedded optical fiber Bragg gratingsensors[J]. Science China Technological Sciences,2012,55(5):1455-1462.
    [59] Huang, M.H., Zhou, Z., Ou, J.P., et al. A distributed self-sensing FRPanchor with built-in optical fiber sensor[J]. Measurement,2013,46(4):1363-1370.
    [60]谈一评,曾镇强.简谐动力波作用下锚杆拉拔试验研究[J].岩土工程学报,2013,35(3):409-414.
    [61]柯玉军.锚杆检测技术研究及应用[D].兰州大学博士学位论文,2006.
    [62] Thurner, H.F. Boltometer-instrument for non-destructive testing of groutedrock bolts[C]. Proceeding of2nd International symposium on fieldmeasurements in geomechanics, Sakurai (ed.), Rotterdam,1988, pp.135-143.
    [63] Tadolini, S.C. Evaluation of ultrasonic measurement systems for bolt loaddeterminations[R]. The US Bureau of Mines, Denver, CO.,1990.
    [64] Tadolini, S.C and Dyni, R.C.Transfer Mechanics of Full-column Resin-grouted Roof Bolts[R].The U S Bureau of Mines, Denver, CO.,1990.
    [65] Rodger, A.A., Holland, D.C, Littlejohn, G.S.et al. The behavior of resinbonded rock bolts and other anchorages, subjected to close proximityblasting[C].8th ISRM Congress,Tokyo, Japan,25-29September1995,pp.25-29.
    [66] Rodger, A.A., Milne, G.D., and Littlejohn, G.S. Condition monitoring andintegrity assessment of rock anchorages[C]. Proceedings of theInternational Conference on Ground Anchorages and Anchored Structures,Institution of Civil Engineers, London, UK,20-21March1997, pp343-352.
    [67]王道成.光纤光栅锚杆检测实验研究[D].西安科技大学硕士学位论文,2011.
    [68] Pavlakovic, B.N., Lowe, J.S. and Cawley, P. High-frequency low-Lossultrasonic modes in imbbeded bars[J]. Journal of Applied Mechanics,2001,68(1):67-75.
    [69] Beard, M.D. Guided wave inspection of embedded cylindricalstructures[D]. A thesis submitted to the University of London for thedegree of Doctor of Philosophy,2002.
    [70] Beard, M.D. and Lowe, M.J.S. Non-destructive testing of rock bolts usingguided ultrasonic waves[J]. International Journal of Rock Mechanics andMining Sciences,2003,40(4):527-536.
    [71] Beard, M.D., Lowe, M.J.S. and Cowley, P. Ultrasonic guided waves forinspection of grouted tendons and bolts[J]. Journal of Materials in CivilEngineering,2003,15(3):212-218.
    [72]岳向红,刘明贵,李祺.锚杆检测技术研究进展[J].土工基础,2005,19(3):83-85.
    [73]郭世明,高才坤.弹性应力波法锚杆质量检测初探[J].西部探矿工程(岩土钻掘矿业工程),1999,11(2):9-10.
    [74]汪明武,王鹤龄.锚固质量的无损检测技术[J].岩石力学与工程学报,2002,21(1):126-129.
    [75]彭斌,刘春生,肖柏勋等.锚杆锚固质量无损检测数据的分析与处理[J].物探化探计算技术,2003,25(3):241-245.
    [76]何存富,孙雅欣,吴斌等.超声导波技术在埋地锚杆检测中的应用研究[J].岩土工程学报,2006,28(9):1143-1147.
    [77]陈明晓.隧道锚杆无损检测的应用及实践[J].资源环境与工程,2009,23(S1):164-170.
    [78]吴斌,李昱昊,刘增华等.树脂锚杆锚固质量超声导波检测技术[J].无损检测,2010,32(10):785-787.
    [79]李玉英,李争. YMC-I型电阻应变式锚杆测力计的研制[J].唐山工程技术学院学报,1990,1:53-59.
    [80]张少华,侯朝炯,张益东,赵海云. TSB9型测力锚杆的研制[J].矿山压力与顶板管理,1998,4:32-34.
    [81]王全为,李栋,李家祥.锚杆的应力电测方法及工程应用[J].岩石力学与工程学报,2002,21(S):2250-2253
    [82]陈建勋,尹增廉. CD型钢弦式测力锚杆的研制[J].隧道机械与施工技术,2006,9:45-46.
    [83]陆庭侃,戴耀辉.全长锚固锚杆在回采巷道层状顶板的工作特性[J].岩石力学与工程学报,2010,29(S1):3329-3335.
    [84]徐鸿涛.基于RS-485的金矿顶板动态监测系统[D].山东科技大学硕士学位论文,2011.
    [85]曹宇,张廷毅.锚杆锚固质量检测方法及应用[J].工程地球物理学报,2008,5(6):751-755.
    [86]李毅,柴敬,邱标.新型光纤光栅锚杆测力计及应用[J].矿业研究与开发,2009,29(1):45-47.
    [87] Nellen, P.M., Frank, A., Bronnimann, R. et al.. Optical fiber Bragggratings for tunnel surveillance[C]. Proceeding of SPIE,2000,3986:263-270.
    [88]刘泉声,徐光苗,张志凌.光纤测量技术在岩土工程中的应用[J].岩石力学与工程学报,2004,23(2):310-314.
    [89]姜德生,左军,信思金等.光纤Bragg光栅传感器在水布垭工程锚杆上的应用[J].传感器技术,2005,24(1):72-74.
    [90]柴敬,兰曙光,李继平等.光纤Bragg光栅锚杆应力应变监测系统[J].西安科技大学学报,2005,25(1):1-4.
    [91]冯仁俊.基于光纤光栅测试的全长锚固锚杆实验研究:[D].西安科技大学硕士学位论文,2006.
    [92]武胜军,王宏力,敖红奎. FBG传感器在隧道锚杆支护结构监测中的应用研究[J].传感器与微系统,2007,26(12):31-33.
    [93]黄志怀,刘汉东. BOTDR技术监测GFRP锚杆应变的试验研究[J].华北水利水电学院学报,2005,26(2):49-51.
    [94]高俊启,施斌,张巍等人.分布式光纤传感器检测预应力锚索应力状态的试验研究[J].岩石力学与工程学报,2005,24(S2):5604-5610.
    [95]黄晓东,李国维,施斌等. GFRP锚杆工作状态下的变形分布特征研究[J].中外公路,2006,26(2):58-60.
    [96]隋海波,施斌,张丹波等.基于BOTDR的锚杆拉拔试验研究[J].岩土工程学报,2008,30(5):755-759.
    [97]李国维,高磊,黄志怀等.全长黏结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验[J].岩石力学与工程学报,2007,26(8):1653-1663.
    [98]林传年,刘泉声,高玮等.光纤传感技术在锚杆轴力监测中的应用[J].岩土力学,2008,29(11):3161-3164.
    [99]彭衡和,邱贤辉. GFRP锚杆加固高速公路红砂岩边坡的工程实例分析[J].公路工程,2008,33(4):114-116.
    [100]李国维,戴剑,倪春等.大直径内置光纤光栅玻璃纤维增强聚合物锚杆梁杆黏结试验[J].岩石力学与工程学报,2013,32(7):1449-1457.
    [101]周智.系列光纤传感制品研制与开发及其工程应用[R].哈尔滨工业大学博士后出站报告,2006.
    [102]白金超.岩土锚固的FBGFRP锚杆及其智能监测系统[D].哈尔滨工业大学硕士学位论文,2008.
    [103]岳帅.内嵌光纤复合纤维增强树脂智能锚杆[D].哈尔滨工业大学硕士学位论文,2011.
    [104]中冶集团建筑研究总院主编.岩土锚杆(索)技术规程(CECS22:2005)[M].中国计划出版社,2005.
    [105] Seed, H.B. and Reese, L.C. The action of soft clay along friction piles[J].1957,122:731-764.
    [106]张乾青,张忠苗.抗拔单桩受力性状的解析算法[J].2011,33(s2):308-313.
    [107] Benmokranet, B., Chennouf, A. and Mitri, H.S. Laboratory evaluation ofcement-based grouts and grouted rock anchors [J]. International Journal ofRock Mechanics and Mining Sciences&Geomechanics Abstracts,1995,32(7):633-642.
    [108] Eligehausen, R., Popov, E.P. and Bertero, V.V. Local bond stress-sliprelationships of deformed bars under generalized excitations[R]. ReportNo83/23, Energy&Environmental Research Center (EERC), Universtiy ofCalifornia, Berkeley,1983.
    [109] Cosenza, E., Manfredi, G. and Realfonzo, R. Behavior and modeling ofbond of FRP rebars to concrete[J]. Compositesjor Construction,1997,1(2):40-51.
    [110]高丹盈,朱海堂,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑,2003,33(7):41-43.
    [111] Malvar, L.J. Bond stress-slip Characteristics of FRP Rebars [R]. Technicalreport, Naval Facilities Engineering Service Center, Port Hueneme,California,1994.
    [112]王贤能,叶蓉,周逢君.土层抗浮锚杆试验破坏标准选取的建议[J].地质灾害与环境保护,2001,12(3):73-77.
    [113]龙照,张恩祥,魏永孝.锚杆极限承载力预测模型及方法研究[J].勘察科学技,2008,5:3-6.
    [114]李成.葛钦存.杨有海.膨胀软岩地层灌浆锚杆拉拔试验研究及抗拔力的可靠度分析[J].兰州铁道学院学报,1994,13(5):19-25.
    [115]应志民,张洁,尚岳全.锚杆荷载—位移曲线的指数函数模型研究[J].岩土力学,2005,26(8):1331-1334.
    [116] Dai, J.G., Ueda, T. and Sato,Y. Unified analytical approaches fordetermining shear bond characteristics of FRP-concrete interfaces throughpullout tests[J]. Journal of Advanced Concrete Technology,2006,4(1):133-145.
    [117] Li, C.V. and Ward, R.J. A novel testing technique for post-peak tensilebehavior of cementtious materials[C]. Fracture Toughness and FractureEnergy, Balkema,1989, pp.183-195.
    [118]欧阳明,丁伯阳,石吉森.单桩荷载—沉降曲线的修正指数曲线模型拟合研究[J].水运工程,2013,1:31-38.
    [119]黄明华,周智,欧进萍.全长粘结式锚杆锚固段荷载传递机理非线性分析.岩石力学与工程学报,录用待刊.
    [120] Van der Veen, C. The bearing capacity of a pile[C]. Procedures of thirdInternational Conference of Soil Mechanical and Foundation Engineering,1953, pp.84-90.
    [121]朱训国.地下工程中注浆岩石锚杆锚固机理研究[D].大连理工大学博士学位论文,2006.
    [122] Oda, H, Zhang, M.L., and Skimayanma, M. Study of load-dispersiveanchorage and shear stress in surrounding soils [C]. Proceeding ofInternational Conference on Application and Development of Rock-soilAnchoring Technology. Liuzhou,1997, pp.237~244.
    [123]王建宇,牟瑞芳.按共同变形原理计算地锚工程中粘结型锚头内力[J].OVM通讯,1999,3:3-9.
    [124]杨庆.朱训国,栾茂田.全长注浆岩石锚杆双曲线模型的建立及锚固效应的参数分析[J].岩土力学与工程学报,2007,26(4):392-398.
    [125] T.H.汉纳.锚固技术在岩土工程中的应用[M].中国建筑工业出版社,1987.
    [126]张培胜.岩土锚杆的锚固力学特性研究[D].重庆大学硕士学位论文,2003.
    [127]朱训国.地下工程中注浆岩石锚杆锚固机理研究[D].大连理工大学博士学位论文,2006.
    [128]中华人民共和国水利部.水工预应力锚杆设计规范(SL212-98).
    [129]荣冠,朱焕春,周创兵.螺纹钢与圆钢锚杆工作机理对比试验研究[J].岩石力学与工程学报,2004,23(3):469-475.
    [130]刘波,李东阳,段艳芳等.锚杆-砂浆界面黏结滑移关系的试验研究与破坏过程解析[J].岩石力学与工程学报,2011,30(S1):2790-2797..
    [131]王卫东,李永辉,吴江斌.超长灌注桩-土界面剪切模型及其有限元模拟[J].岩土力学,2012,33(12):3818-3824.
    [132]曹文贵,王江营,翟友成.考虑残余强度影响的结构面与接触面剪切过程损伤模拟方法[J].土木工程学报,2012,45(4):127-133.
    [133] Dieterich, J.H. Modeling of rock friction(I): Experimental results andconstitutive equations[J]. Journal of Geophysical Research: Solid Earth,1979,84(B5):2161-2168.
    [134] Dieterich, J.H. Modeling of rock friction(II): Simulation of preseismicslip[J]. Journal of Geophysical Research: Solid Earth,1979,84(B5):2169-2175.
    [135] Bray, J.W. and Goodman, R.E. The theory of base frictionmodels[J].International Journal of Rock Mechanics and Mining Sciencesand Geomechanies Abstracts,1981,18(6):453-468.
    [136] Pellet, F and Egger, P. Analytical model for the mechanical behaviour ofbolted rock joints subjected to shearing[J]. Rock Mechanics and RockEngineering,1996,29(2):73-97.
    [137]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报,2001,23(4):431-435..
    [138]李登华,郦能慧.土与混凝土结构接触面力学特性试验研究[J].水电能源科学,2009,27(5):114-118.
    [139]高延法.矿山岩体力学[M].中国矿业大学,2006.
    [140] Gill P.E., Murray W. and Wright M.H. Practical optimization[M]. London:Academic Press,1981.
    [141]唐焕文,秦学志.实用最优化方法[M].大连理工大学出版社,2000.
    [142]张志春.结构新型热固性FRP复合筋及其性能[D].哈尔滨工业大学博士学位论文,2008.
    [143]李国林.切比雪夫最佳一致逼近法及误差函数特性研究[J].西华师范大学学报(自然科学版),2007,28(3):253-256.
    [144]林志良.比例边界有限元法及快速多极子边界元法的研究与应用[D].上海交通大学博士学位论文,2010.
    [145] John, H.M and Kurtis K.F. Numerical methods using Matlab (4th ed)[M].Prentice-Hall,2003.
    [146]段建,言志信,郭锐剑等.层状地层锚固荷载传递特性分析[C].第3届全国工程安全与防护学术会议论文集,武汉,2012年11月17日至18日,pp.484-489.
    [147]郭凤珍,于长泰.光纤传感技术与应用[M].杭州:浙江大学出版,1992.
    [148]周智.土木工程结构光纤光栅智能传感元件及其监测系统[D].哈尔滨工业大学博士论文,2003.
    [149]黎敏,廖延彪.光纤传感器及其应用技术[M].武汉:武汉大学出版社,2008..
    [150]王玉田,郑龙江,张颖等.光纤传感技术及应用[M].北京:北京航空航天大学出版社,2009.
    [151]何建平.全尺度光纤布里渊分布式监测技术及其在土木工程中的应用[D].哈尔滨工业大学博士学位论文,2010.
    [152] Morey, W.W., Meltz, G and W. H. Glenn, W.H. Fiber optic Bragg gratingsensors[C]. Proc. SPIE1169, Fiber Optic and Laser Sensors VII,98,February13,1990.
    [153] Hill, K.O and Meltz, G. Fiber Bragg grating technology fundamentals andoverview[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY,1997,15(8):1263-1276.
    [154] Bhatia, V and Vengsarkar, A.M. Optical fiber long-period gratingsensors[J]. Optics Letters,1996,21(9):692-694.
    [155] Okabe, Y., Ryohei, Tsuji, R. and Takeda, N. Application of chirped fiberBragg grating sensors for identification of crack locations in composites[J].Composites Part A: Applied Science and Manufacturing,2004,35(1):59-65.
    [156] Rao, Y.J., Lobo Ribeiro, A.B., Jackson, D.A. et al. Combined spatial-andtime-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection[J]. Optics Letters,1995,20(20):2149-2151.
    [157] Rao, Y.J., Jackson, D.A. Zhang, L. et al. Strain sensing of moderncomposite materials with a spatial/wavelength-division multiplexed fibergrating network[J]. Optics Letters,21(9):683-685.
    [158]祁耀斌,吴敢锋,王汉熙.光纤布拉格光栅传感复用模式发展方向[J].中南大学学报(自然科学版),2012,43(8):3058-3072.
    [159] Culverhouse, D., Farahi, F., et al. Potential of stimulated Brillouinscattering as sensing mechanism for distributed temperature sensors.Electronics Letters,1989,25(14):913-915.
    [160] Horiguchi, T., Kurashima, T., Tateda, M. A technique to measuredistributed strain in optical fibers. IEEE Photonics technology Letters,1990,2(5):352-354.
    [161] Zhou, Z., He, J.P., Ou, J.P. et al. Fiber-reinforced polymer-packagedoptical fiber sensors based on Brillouin optical time-domain analysis[J].Optical Engineering,2008,47(1):014401.
    [162] Zhou, Z., Huang, M.H. He, J.P. et al. Ice structure monitoring with anoptical fiber sensing system[J]. Cold Regions Science and Technology,2010,61(1):1-5.
    [163]王言磊. FRP-混凝土组合梁/桥面结构试验、分析与设计方法[D].哈尔滨工业大学博士学位论文,2008.
    [164] Hao, Q.D., Wang, Y.L and OU, J.P. Design recommendations forbond between GFRP/steel wire composite rebars andconcrete[J]. Engineering Structures,2008,30(11):3239-3324.
    [165]郝庆多. GFRP/钢绞线复合筋混凝土梁力学性能及设计方法[D].哈尔滨工业大学博士学位论文,2009.
    [166] Zhou, Z., He, J.P., Ou, J.P., et al. A smart steel strand for the evaluation ofprestress loss distribution in post-tensioned concrete structures [J]. Journalof Intelligent Material Systems and Structures.2009,20(16):1901-1912.
    [167]兰春光.钢筋混凝土结构全寿命预应力损失监测与安全评估[D].哈尔滨工业大学博士学位论文,2013.
    [168]中华人民共和国建设部.建筑边坡工程技术规范(GB50330-2002)[S].
    [169]杨永波.边坡监测与预测预报智能化方法研究[D].中国科学院硕士学位论文,2005.
    [170]梁桂兰.岩石高边坡稳定性可拓评价模型研究[C].城市地质环境与可持续发展论坛论文集,上海,2010年8月23至26日,pp.342-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700