用户名: 密码: 验证码:
污泥管道输送非均质流动阻力预测及费用模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法因其高效、低耗等优点而成为城市污水处理的最主要方法,但随之产生的大量污泥却是污水处理厂面临的一大难题。对污泥的处理处置有分散处理和集中处理两种模式,其中后者因占用城市面积小且对周边环境污染轻而成为污泥处理与处置的首选模式。实践表明,在可供选择的污泥输送方式中,传统的卡车输送、驳船输送运行费用高,输送效率低,并且严重影响城市环境卫生。相比之下,城市污泥的管道输送方式因其运行费用省、自动化控制程度高及清洁卫生等优点而成为污泥输送方式的最佳选择。对城市污泥管道输送阻力特性进行研究,并对输送管道的设计参数进行优化,不但能够保障污泥输送管道的安全可靠运行,同时还对保障其经济运行并节省输送成本具有重要意义。
     测定了质量浓度分别为2.38%,3.94%和5.39%的污泥的流变性,结果表明其具有显著剪切稀化特性,在剪切速率足够大时表现出较稳定的极限粘度,三种质量浓度污泥在温度T=293K时的极限粘度分别为2.60mPa s,3.21mPa s和5.95mPa s;T=298K时分别为2.45mPa s,2.91mPa s和5.78mPa s;T=303K时分别为2.32mPa s,2.78mPa s和3.69mPa s,表明极限粘度随污泥质量浓度的升高而增大,同时随温度的升高而降低。污泥流变曲线符合宾汉模型,表现出宾汉伪塑性的流变特征。
     基于污泥的流变特性,经阻力模型比选,采用广泛应用的Turian-Yuan非均质模型对城市污泥在管道内的流动阻力进行了预测,并结合试验数据对其参数进行了优化。对于敏感参数污泥体积浓度CV的指数m1和污泥颗粒沉降阻力系数CD的指数m2的优化结果为:m1=0.887,m2=-0.162,由此确定改进Turian-Yuan20.694非均质阻力模型为i i0.551C0.887C0.162(v)(s movD)1.2gD i0。经实际输泥
     管道实测数据验证,改进Turian-Yuan非均质模型精度高且预测效果稳定,满足对污泥流动阻力预测的精度要求,同时对该模型预测误差的来源进行了分析。推导了基于相似理论的输泥管道原型和物理模型主要参数之间的关系,实现了基于试验结果的实际原型流动参数的模拟,并将该方法所获得的阻力模拟值与改进Turian-Yuan模型的模拟值进行了分析比较,进一步验证了改进Turian-Yuan模型的精度和安全性。
     建立了污泥管道输送系统年折算总费用模型,并将污泥浓度Cw和输送速度v确定为待优化变量,同时利用高效并行且具有全局寻优能力的遗传算法对复杂非线性的污泥管道输送系统费用模型进行了参数优化求解,为污泥管道输送系统的安全经济运行提供了可参考的优化设计参数。计算实例表明,污泥流量Q=0.226~0.045m3/s(污泥浓度Cw=0.8~4.0%),输送距离L=4.5103m条件下的最优设计参数为:污泥浓度2.32%,输送流速1.10m/s,管径300mm,年折算总费用W=52.83万元。
     污泥管道输送系统年折算总费用构成的分析结果表明,输送系统年折算总费用由年折算建设费用和年运行费用构成,后者主要表现为维持系统运行的动力费用且在总费用中占主要部分,因此应在满足输送流速约束条件的前提下通过降低输送流速来控制年运行费用的剧增,从而降低年折算总费用。同时,对实用的污泥浓度进行了分区,并对计算实例建立了比年折算总费用偏离率曲线以用于对不同污泥浓度分区内的运行方案进行优选,优选结果为:在第Ⅲ浓度分区内,基准值W0’(300)=1.77E-06,且在Cw=2.32%时偏离率达到最小值,与计算实例中优化结果吻合。
An active sludge process is the preferred method for treating urban sewage with high efficiency and low energy consumption. However, the large quantities of sludge produced in the treatment process can be a great burden for the sewage treatment plant. Currently, there are two methods to dispose sewage sludge. One is decentralized the treatment, another is centralized treatment. Latter one, whose area requirements is smaller and pollution is light, has been an ideal choice to dispose sewage sludge. Practice has proved that sewage sludge truck conveying has higher cost, lower delivery efficient and severe pollution. Alternatively, sewage sludge pipeline transport with lower operation cost, automation control and hygiene has become the best choice. This purpose of paper is to guarantee the safe and reliable operation of sludge pipeline through studying resistance characteristics of transport of urban sludge pipeline and optimization of the design parameters.
     The rheological properties of sludge with the mass concentration2.38%,3.94%and5.39%were determined. The results showed that it has obvious shear thinning characteristics. When the shear rate is large enough, the limiting viscosity is stable. When the temperature T=293K, the limiting viscosity of three kinds of concentration of sludge is2.60mPa s,3.21mPa s and5.95mPa s, respectively; when the temperature T=298K, the limiting viscosity of three kinds of concentration of sludge is2.45mPa s,2.91mPa s and5.78mPa s, respectively; when the temperature T=303K, the limiting viscosity of three kinds of concentration of slugged is2.32mPa s,2.78mPa s and3.69mPa s, respectively. All these suggested that the limiting viscosity increases with the elevation of sludge concentration, and decreases with the increase of temperature. Sludge rheological curve is in agreement with the Bingham model, which exhibits Bingham pseudo plastic rheological characteristics.
     Based on the rheological properties of sludge, Turian-Yuan heterogeneous model was used to predict the flow resistance of urban sludge in pipeline, and to correct the parameters through the test data. The sludge volume concentrations CV index parameter m1and sludge particle settlement coefficient CD index m2are corrected as0.887and-0.162, respectively. The improved Turian-Yuan heterogeneous resistance model can be expressed as20.694i.8870.1621.2m io0.551C0v C (v s Dbility and accuracy of gD)() i0. The sta improved Turian-Yuan heterogeneous resistance model prediction has been verified by the actual data. The improved Turian-Yuan heterogeneous resistance model meets the accuracy requires, meanwhile, error source of the improved model was
     analyzed. The relationship between the main parameters of pipeline prototype and physical model was deduced based on the similarity theory, and the flow parameters of pipeline prototype was obtained based on the results of the experiment on the physical model. Then the resistance simulation results from this method were compared to those from the improved Turian-Yuan model, which further verified the
     accuracy and safety of the improved Turian-Yuan model. The mathematical model for total annualized cost of the sludge transport system was set up, and sludge concentration and transport velocity were chosen as the two key parameters of the complex nonlinear sludge pipeline transport system cost model, and then the two parameters were carried out using a genetic algorithm which is adaptive and allows parallel computing and global optimization. The results of the calculation example showed that the optimal values of sludge concentration Cw, transport velocity v and pipeline diameter D were2.32%,1.10m/s and300mm, respectively under the conditions of sludge quantity Q=0.226~0.045m3/s (sludge concentration Cw=0.8~4.0%) and transport length L=4.5103m.
     The total annualized cost W was528,300RMB under this scheme. The analysis results of composition of total annualized cost of the sludge pipeline transport system showed that the total annualized cost was composed of annualized construction cost and annual operating cost, and the latter cost takes up the major proportion in the selected optimization scheme. Therefore, reducing the conveying velocity which meets the constrained velocity can be helpful to control the sharp increasing of annual operating cost and then helpful to decrease the total annualized cost. At the same time, the sludge concentration can be divided into several partitions, and the optimization scheme is then selected for each partition based on the bias of the specific total annualized cost. The results showed that in the third partition, the reference value W0’(300)=1.77E-06and reached the minimum value when Cw=2.32%, which met the optimization results in the example.
引文
[1]张辰.污泥处理处置技术研究进展[M].北京:化学工业出版社,2005:80-100.
    [2] Christian F. Ihle, Aldo Tamburrino. Uncertainties in key transport variables inhomogeneous slurry flows in pipelines[J]. Minerals Engineering,2012,32:54-59.
    [3]日本浆体输送研究会.浆体与密封容器输送技术手册[M].北京:冶金工业出版社,1994:15-30.
    [4]刘弦.城市污水处理厂污泥管道输送阻力特性研究[D].重庆:重庆大学,2007:2-3.
    [5] Jason Luk, Hossein Safaei Mohamadabadi, Amit Kumar. Pipeline transport ofbiomass: Experimental development of wheat straw slurry pressure lossgradients[J]. Biomass and Bioenergy, May2014,64:329-336.
    [6] John J. Kania. Economics of coal transport by slurry pipeline versus unit train:A case study[J]. Energy Economics,1984,6(2):131-138.
    [7] Huang Cunkui, Minev P, Luo Jingli, et al. A phenomenological model forerosion of material in a horizontal slurry pipeline flow[J]. Wear, June2010,269(3-4):190-196.
    [8] Senapati P.K, Mishra B.K, Parida A. Analysis of friction mechanism andhomogeneity of suspended load for high concentration fly ash&bottom ashmixture slurry using rheological and pipeline experimental data[J]. PowderTechnology,2013,250:154-163.
    [9]姜泳文.城市污水处理厂污泥的管道运输[J].冶金矿山设计与建设,2000,32(2):32-36.
    [10]Lahiri S.K, Ghanta K.C. Development of an artificial neural networkcorrelation for prediction of hold-up of slurry transport in pipelines[J].Chemical Engineering Science,2008,63(6):1497-1509.
    [11]孙东坡,王二平,许继刚等.管道高浓度泥浆阻力系数的试验研究[J].泥沙研究,2004,(4):44-50.
    [12]魏庆元.管道输送系统在固体物料运输中的应用[J].重庆建筑大学学报,2002,24(1):45-48.
    [13]许振良.沉降性浆体在水平管道内输送时的水力坡度[J].中国有色金属学报,1999,9(2):441-447.
    [14]赵利安,许振良.沉降性浆体倾斜管道浓度分布的研究[J].长春工业大学学报(自然科学版),2007,28(1):105-108.
    [15]陈良勇,段钰锋,赵国华等.温度和固相粒径与浓度对水煤浆管内流动壁面滑移的影响[J].化工学报,2008,59(9):2206-2213.
    [16]Chen Liangyong, Duan Yufeng, Liu Meng, et al. Slip flow of coal water slurriesin pipelines[J]. Fuel,2010,89(5):1119-1126.
    [17]Frimpong Samuel, Szymanski Jozef, Changirwa R.M.M. Oil sands slurry andwaste recycling mechanics in a flexible pipeline system. Resources[J].Conservation and Recycling,2003,39(1):33-50.
    [18]孙东坡,王二平,严军等.高浓度泥浆输送管道阻力及输送能力研究[J].水利学报,2004,(9):93-99.
    [19]Ma Xiuyuan, Duan Yufeng, Li Huafeng. Wall slip and rheological behavior ofpetroleum-coke sludge slurries flowing in pipelines[J]. Powder Technology,2012,230:127-133.
    [20]Illán F, Viedma A. Experimental study on pressure drop and heat transfer inpipelines for brine based ice slurry Part II: Dimensional analysis andrheological mode[J]. International Journal of Refrigeration,2009,32(5):1024-1031.
    [21]Esber I. Shaheen. Rheological study of viscosities and pipeline flow ofconcentrated slurries[J].Powder Technology,1972,5(4):245-256.
    [22]Maciejewski W, Lord E, Gillies R, et al. Pipeline transport of large ablatingparticles in a non-Newtonian carrier[J]. Powder Technology,1997,94(3):223-228.
    [23]Senapati P.K, Mishra B.K, Parida A. Modeling of viscosity for power plant ashslurry at higher concentrations: Effect of solids volume fraction, particle sizeand hydrodynamic interactions[J]. Powder Technology,2010,197(1–2):1-8.
    [24]赵洪烈.水力采煤矿井煤浆管道输送参数的研究[J].水力采煤与管道运输,1995,(4):27-34.
    [25]王绍周.伪均质浆体层流阻力与过渡流速的简捷计算法[J].泥沙研究,1992,(3):60-64.
    [26]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,2003:18-27.
    [27]宁德志.沉降性浆体倾斜管道水力坡度的研究[D].阜新:辽宁工程技术大学,2002:8-10.
    [28]Turian R. M, Ma T.W, Hsu F.L.G, et al. Characterization, settling, and rheologyof concentrated fine particulate mineral slurries[J]. Powder Technology,1997,93(3):219-233.
    [29]Sundqvist A sa, Sellgren Anders, Addie Graeme. Slurry pipeline friction lossesfor coarse and high density industrial products[J]. Powder Technology,1996,89(1):19-28.
    [30]Wilson K.C, Clift R, Sellgren A. Operating points for pipelines carryingconcentrated heterogeneous slurries[J]. Powder Technology,2002,123(1):19-24.
    [31]费祥俊.浆体与颗粒物料输送水力学[M].北京:清华大学出版社,1994:42-50.
    [32]王绍周.粒状物料的浆体管道输送[M].北京:海洋出版社,1998:167-190.
    [33]邓祥吉.管道管道输沙阻力特性研究[D].南京:河海大学,2005:15-17.
    [34]赵利安.沉降性浆体倾斜管道摩阻损失的研究[D].阜新:辽宁工程技术大学,2003:8-9.
    [35]陈成林.管道水力输送在大库盘水库排沙清淤中的应用研究[D].乌鲁木齐:新疆农业大学,2012:11-13.
    [36]Durand. The hydraulic transportation of coal and other materials in pipes[M].London:Colloq National Coal Board,1952:123-130.
    [37]Wasp E.J. Coross-Country Coal Pipeline Hydranlics[J].Pipe Line News,1963:20-30.
    [38]Dentz M, Bolster D, Le Borgne T. Concentration statistics for transport inRandom media[J].Physical Review E,2009,80(1):115-123.
    [39]Ghanta K C, Purohit N K. Pressure drop predietion in hydraulic transport ofbi-dispersed particles of coal and copper ore in pipeline [J]. Canadian Journal ofChemical Engineering,1999,77(1):127-131.
    [40]Shook C A, Daniel S M. A Variable-Density Model of pipeline Flow ofSuspensions [J]. Canadian Journal of Chemical Engineering,1969,47(2):196-200.
    [41]Sundqvist A, Sellgren A, Addie G. Pipeline friction losses of coarse sandslurries: Comparison with a design model [J].Powder Technology,1996,89(l):9-18.
    [42]Wilson K.C, Clift R, AddieG R, et al. Effect of Broad Particle Grading onSlurry Stratification Ratio and Seale-UP [J]. Powder Technology,1990,61(2):165-172.
    [43]Christian F.Ihle. A cost perspective for long distance ore pipeline water andenergy utilization. Part I: Optimal base values[J]. International Journal ofMineral Processing,2013,122:1-12.
    [44]Christian F. Ihle, Santiago Montserrat, Aldo Tamburrino. A cost perspective forlong distance ore pipeline water and energy utilization. Part II: Effect of input parameter variability[J]. International Journal of Mineral Processing,2013,122:54-58.
    [45]Lahiri S.K, Ghanta K.C. Prediction of Pressure Drop of Slurry Flow in Pipelineby Hybrid Support Vector Regression and Genetic Algorithm Model[J]. ChineseJournal of Chemical Engineering,2008,16(6):841-848.
    [46]Roco M.C, Shook C.A. Computational method for coal slurry pipelines withheterogeneous size distribution[J]. Powder Technology,1984,39(2):159-176.
    [47]Keska Jerry K. Experimental investigation of spatial concentration spectra of asolid in a slurry in horizontal pipeline flow[J]. Flow Measurement andInstrumentation,1994,5(3):155-163.
    [48]Matousek Václav. Pressure drops and flow patterns in sand-mixture pipes [J].Experimental Thermal and Fluid Science,2002,26:693-702.
    [49]Matousek Václav. Distribution and friction of particles in pipeline flow ofsand-water mixtures[M].Handbook of Conveying and Handling of ParticulateSolids, Elsevier,2001:465-471.
    [50]Matousek Václav. Research developments in pipeline transport of settlingslurries[J]. Powder Technology,2005,156(1):43-51.
    [51]Matousek Václav. Predictive model for frictional pressure drop insettling-slurry pipe with stationary deposit [J]. Powder Technology,2009,192(3):367-374.
    [52]Matou ek Václav, Krupi ka Jan. One-dimensional modeling of concentrationdistribution in pipe flow of combined-load slurry[J]. Powder Technology,2014,260(7):42-51.
    [53]Kaushal D.R, Kimihiko Sato, Takeshi Toyota, et al. Effect of particle sizedistribution on pressure drop and concentration profile in pipeline flow ofhighly concentrated slurry[J]. International Journal of Multiphase Flow,2005,31(7):809-823.
    [54]Kaushal D.R, Thinglas T, Tomita Yuji, et al. CFD modeling for pipeline flow offine particles at high concentration[J]. International Journal of Multiphase Flow,2012,43(7):85-100.
    [55]Kaushal D.R, Tomita Yuji. Experimental investigation for near-wall lift ofcoarser particles in slurry pipeline using γ-ray densitometer[J]. PowderTechnology,2007,172(3):177-187.
    [56]Kaushal D.R, Tomita Yuji, Dighade R.R. Concentration at the pipe bottom atdeposition velocity for transportation of commercial slurries through pipeline[J]. Powder Technology,2002,125(1):89-101.
    [57]Kaushal D.R, Kumar A, Tomita Yuji, et al. Flow of mono-dispersed particlesthrough horizontal bend [J]. International Journal of Multiphase Flow,2013,52(6):71-91.
    [58]Kaushal D.R, Tomita Yuji. Solids concentration profiles and pressure drop inpipeline flow of multisized particulate slurries[J]. International Journal ofMultiphase Flow,2002,28(10):1697-1717.
    [59]刘红缨,朱书全,王奇.矿物对水煤浆稳定性的影响研究[J].中国矿业大学学报,2004,33(3):283-286.
    [60]刘青泉,曹文红.泥沙颗粒的扬动机理分析[J].水利学报,1998,(5):1-6.
    [61]冯民权,张丽,张晓斌等.污泥的滑移现象及其特性分析[J].重庆大学学报,2011,34(7):102-106.
    [62]郭光明,庄德玉,马星民等.造纸污泥的流变特性实验研究[J].环境工程,2008,24增刊:245-248.
    [63]费祥俊,邵学军.泥沙源区沟道输沙能力的计算方法[J].泥沙研究,2004,(1):1-8.
    [64]费祥俊.悬移质水流挟沙能力与输沙特性[J].泥沙研究,2003,(3):30-34.
    [65]王丹,孟媛媛,胡勤海等.两种城市污泥掺混水煤浆的成浆性[J].环境科学学报,2009,29(8):1690-1695.
    [66]李明松,李志光,刘海林等.强化混凝调理生活剩余污泥脱水研究[J].环境科学与技术,2011,34(2):152-155.
    [67]许振良.管道内非均质流流速分布与水力坡度的研究[J].煤炭学报,1998,23(1):91-96.
    [68]许振良,孙宝铮.非均质流管内流动机理的研究[J].辽宁工程技术大学学报,1998,17(2):113-118.
    [69]许振良.非均质流流速分布与水力坡度的研究[J].有色金属,1998,50(3):8-14.
    [70]许振良.非均质流流速分布与水力坡度的研究[D].沈阳:东北大学,1998:12-13.
    [71]Fangary Y.S, Abdel ghani A.S, El haggard S.M, et al. The effect of fineparticles on slurry transport processes [J]. Minerals Engineering,1997,10(4):427-439.
    [72]Schaan J, Sumner R.J, Gillies R.G, et al. The effect of particle shape onpipeline friction for Newtonian slurries of fine particles [J]. Canadian Journal ofChemical Engineering,2000,78(4):717-725.
    [73]Huynh Le, Jenkins Paul, Ralston John. Modification of the rheologicalproperties of concentrated slurries by control of mineral–solution interfacialchemistry[J]. International Journal of Mineral Processing,2000,59(4):305-325.
    [74]徐桂萍,张建隆.高浓度水煤浆流变特性试验研究[J].武汉水利电力大学学报,1996,29(3):102-105.
    [75]李凤起,朱书全.添加剂对煤—水界面性质的影响与效能研究[J].选煤技术,2001,(1):22-24.
    [76]李培芳,马云龙,徐继怀等.水煤浆管道输送特性的研究[J].水力采煤与管道运输,1996,(3):4-9.
    [77]赵世民.表面活性剂—原理、合成、测定及应用[M].北京:中国石化出版社,2005:33-40.
    [78]但盼,邱学青,周明松.温度及剪切时间对水煤浆表观黏度及流变性影响[J].煤炭科学技术,2008,36(6):103-106.
    [79]赵国华,王秋粉,陈良勇等.温度对高浓度水煤浆流变特性的影响[J].锅炉技术,2007,38(6):74-78.
    [80]Newitt D M, Richardson J F. Hydraulic Conveying of Solids[J]. Nature,1955,175(4462):800-801.
    [81]Langhaar H.L. Dimensional Analysis and Theory of Models[M]. New York:John Wiley&Sons,1951:63-87.
    [82]Silberberg I.H, McKetta J.J. Learning How to Use Dimensional Analysis. I.Which Dimensional System Should You Use[J]. Petroleum Refiner,1953,4(32):163-187.
    [83]Silberberg I.H, McKetta J.J. Learning How to Use Dimensional Analysis. II.The Correct Use of Dimensional Systems[J]. Petroleum Refiner,1953,5(32):143-150.
    [84]Turian R.M, Yuan T. Flow of Slurries in Pipelines[J]. AIChE Journal,1977,23(3),232-243.
    [85]Carstens M.R. A Theory for Heterogeneous Flow of Solids in Pipes. Journal ofthe Hydraulics Division[J]. Proceeding of the ASCE,1969,95(HYI):275-286.
    [86]Ayukanswa K. Velocity Profile in a Horizontal Duct in the Hudraulic Transportof Solids[J]. Proceedings of47th the Congrees of Japan Soc.Mech.Enger.1969,10:63-76.
    [87]Ayukawa K. Mechanics of Solid-Liquid Flow[J]. Proc.22nd Japan NationalCongrees for Applied Mechanic,1972,22:79-88.
    [88]Roco M.C, Shook C.A. A Model for Turbulent Slurry Flow[J]. C.A.J. Pipelines,1984,4(1):3-13.
    [89]Roco M.C, Zarea S. A New Hypothesis about Turbulent Flow to ObtainVelocity Distribution in Cylindrical Pipes[J]. Rev. Roum. Sci. Techn.Mecanique Applique,1978,32(6):881-896.
    [90]Roco M.C, Shook C.A. Dispersive Stress in Shear Slurry Flow. In Multi-PhaseFlow and Heat Transfer[M]. New York:Elsevier,1983:43-54.
    [91]Soo S.L. Correlation of States of Hydraulic Transport of Solid in Pipes[J]. Proc.1st Int. Conf. on Hydraulic Transport of Solid in Pipes,1970, A1-1~A1-12.
    [92]Roco M. C, Mahadevan S. Scale-up Technique of Slurry Pipelineons (Part2):Numerical Integrat. Trans ASME[J], J. Energy Resour. Thechol.,1986,108:269-277.
    [93]Roco M.C, Shook C.A. Calculation Model for Turbulent Slurry Flow. JointASME-ASCE Mechanics Conference[J]. Boulder, Colorado(1981a), also. J.Pipelines, Accepted for Publication,73-97.
    [94]Roco M.C, Shook C.A. New Approach to Predict Concentration Distributionin Fine Particle Slurry Flow[J]. A. I. Ch. E.91st Annual Meeting,Detroit(1981b), also, Physico-Chemical Hydrodynamics, Accepted forPublication,56-86.
    [95]Asakura K, Takeuti N, Watanabe Y. Effect of Pipe Diameter on terminalVeiocities of Multipartical in Vertical pipes[J]. J. of MMIJ,1982,98(1128):93-98.
    [96]Asakura K, Sakamoto F, Watanabe Y. An Electric Probe for Measuring LocalVelocity of Particals in a Pipelne[J]. J. of MMIJ,1986,102(1179):287-293.
    [97]Asakura K, Tozawa Y, Nakajima I, et al. The application of an Electric Probefor Measuring Local Concentration of Slurry[J]. J. of MMIJ,1990,106(8):463-468.
    [98]Paulo Santos Monteiro. The influence of the anaerobic digestion process on thesewage sludges rheological behaviour[J]. Water Science and Technology,1997,36(11):61-67.
    [99]Ehsan Farno, Jean Christophe Baudez, Rajarathinam Parthasarathy, et al.Rheological characterisation of thermally-treated anaerobic digested sludge:Impact of temperature and thermal history[J], Water Research,2014,56(2):156-161.
    [100] Hammadi Larbi, Ponton Alain, Belhadri Mansour. Rheological study andvalorization of waste sludge from wastewater treatment plants in the dredgingoperation of hydraulic dams [J]. Energy Procedia,2011,6:302-309.
    [101] Eshtiaghi Nicky, Shao Dong Yap, Markis Flora, et al. Clear model fluids toemulate the rheological properties of thickened digested sludge[J]. WaterResearch, June2012,46(9):3014-3022.
    [102] Sozanski Marek M., Kempa Edward S., Grocholski Krzysztof, et al. Therheological experiment in sludge properties research[J]. Water Science andTechnology,1997,36(11):69-78.
    [103]董玉婧,王毅力.给水厂浓缩污泥的稳态流变特征研究[J].环境科学学报,2012,32(3):678-682.
    [104]苏宇,邓慧萍.给水厂污泥减量化及性能改善研究[J].给水排水,2006,32(12):8-12.
    [105]谢敏.净水厂排泥水浓缩脱水特性及调质形态学研究[D].长沙:湖南大学,2007:15-19.
    [106]王伟云.脱水污泥流变特性及表观干燥动力学研究[D].沈阳:沈阳航空工业学院,2007:1-5.
    [107]张新瑜.活性污泥的流变特性研究[D].哈尔滨:哈尔滨工业大学,2005:6-8.
    [108]黄河洵,陈汉平,财兴飞.市政污泥流变特性及圆管流数值模拟研究[J].环境工程学报,2012,6(12):4642-4648.
    [109]白晓宁,胡寿根.浆体管道输送的阻力特性及其影响因素分析[J].水力采煤与管道运输,2000,(3):3-9.
    [110]吴淼,赵学义,潘越等.城市污泥的特性及管道输送技术研究[J].环境工程学报,2008,2(2):260-265.
    [111]吴淼,赵学义,孙浩等.污泥管道输送成套装备的应用[J].中国给水排水,2005,21(6):73-76.
    [112] Wilson K.C. Operating points for pipelines carrying concentratedheterogeneousslurries[J]. Powder Technol.,2002,123(1):19-24.
    [113] Wu J., Graham L., Wang S., et al. Energy efficient slurry holdingandtransport[J]. Parthasarathy, R.,2010,23(9):705-712.
    [114] Christian F.Ihle. A cost perspective for long distance ore pipeline water andenergy utilization.Part I: Optimal base values[J]. International Journal ofMineral Processing,2013,122:1-12.
    [115] Christian F.Ihle, Santiago Montserrat, Aldo Tamburrino. A cost perspectivefor long distance ore pipeline water and energy utilization.Part II: Effect ofinput parameter variability[J]. International Journal of Mineral Processing,2013,122:54-58.
    [116] Christian F.Ihle, Aldo Tamburrino. Variables affecting energy efficiency inturbulent ore concentrate pipeline transport[J]. Minerals Engineering,2012,39:62-70.
    [117] Hashemi S.A., Wilson K.C., Sanders R.S. Specific energy consumption andoptimum operating condition for coarse-particle slurries[J]. Powder Technology,2014,262:183-187.
    [118]申焱华,毛纪陵,凌胜.混合液管道输送的能耗分析[J].中国矿业,2000,9(3):41-44.
    [119]吴玉林.水力机械空化和固液两相流体动力学[M].北京:中国水利水电版社,2007:26-48.
    [120]周兴友.输油系统能耗分析及提高输油效率的方法[J].胜利油田师范专科学校学报,2002,16(4):85-87.
    [121]杨伟,于曼,李刚.油田输油系统优化调整及效果[J].油气田地面工程,2005,24(5):26-27.
    [122]张新瑜,袁一星,伍悦滨.污水处理工艺中活性污泥流变特性的研究[J].西安建筑科技大学学报(自然科学版),2008,40(3):388-392.
    [123]董平,吕玉庭,陈俊涛.超细煤水煤浆流变特性的研究[J].选煤技术,2004,(4):45-49.
    [124]王丽花,徐继润.絮凝污泥悬浮液流变性质研究[J].流体机械,2007,35(6):1-4.
    [125] Senapati P.K., Mishra B.K., Parida A. Analysis of friction mechanism andhomogeneity of suspended load for high concentration fly ash&bottom ashmixture slurry using rheological and pipeline experimental data[J]. PowderTechnology,2013,250(4):154-163.
    [126]薛向东,金奇庭,朱文芳等.超声对污泥流变性及絮凝脱水性的影响[J].环境科学学报,2006,26(6):897-902.
    [127] Salem Jerbi, Anthony Delahaye, Jérémy Oignet, et al. Rheologicalproperties of CO2hydrate slurry produced in a stirred tank reactor and asecondary refrigeration loop[J]. International Journal of Refrigeration,2013,36(4):1294-1301.
    [128] Mika L. Rheological behaviour of low fraction ice slurry in pipes andpressure loss in pipe sudden contractions and expansions[J]. InternationalJournal of Refrigeration,2012,35(6):1697-1708.
    [129] Ataollah Nosrati, Jonas Addai-Mensah, William Skinner. Rheologicalbehavior of muscovite clay slurries: Effect of water quality and solutionspeciation[J]. International Journal of Mineral Processing,2012,102-103(1):89-98.
    [130] Romain Castellani, Arnaud Poulesquen, Frédéric Goettmann, et al. Ionseffects on sol–gel transition and rheological behavior in alumina slurries[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,430(8):39-45.
    [131]周振,邢灿,郭江波等.膜浓缩污泥的流变学特性研究[J].水处理技术,2013,39(3):54-57.
    [132]刘辉,彭红,管民.高分子减阻剂溶液流变参数的测定与分析[J].辽宁化工,2008,37(8):519-522.
    [133] Au Pek-Ing, Leong Yee-Kwong. Rheological and zeta potential behaviourof kaolin and bentonite composite slurries[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,436(9):530-541.
    [134] Eshtiaghi Nicky, Markis Flora, Shao Dong Yap, et al. Rheologicalcharacterisation of municipal sludge: A review [J]. Water Research,2013,47(15):5493-5510.
    [135] Vegard Longva, Svein S vik, Erik Levold, et al. Dynamic simulation ofsubsea pipeline and trawl board pull-over interaction[J].Marine Structures.2013,34:156-184.
    [136]袁文忠.相似理论与静力学模型实验[M].成都:西南交通大学出版社,1998:46-72.
    [137]左东启.模拟实验的理论与方法[M].北京:水利电力出版社,1984:33-40.
    [138] Alamian R., Behbahani-Nejad M., Ghanbarzadeh A. A state space model fortransient flow simulation in natural gas pipelines[J]. Journal of Natural GasScience and Engineering,2012,9:51-59.
    [139] Behbahani-Nejad M., Bagheri A. The accuracy and efficiency of aMATLAB-Simulink library for transient flow simulation of gas pipelines andnetworks[J]. Journal of Petroleum Science and Engineering,2010,70(3-4):256-265.
    [140] An Hongwei, Cheng Liang, Zhao Ming. Numerical simulation of a partiallyburied pipeline in a permeable seabed subject to combined oscillatory flow andsteady current[J]. Ocean Engineering,2011,38(10):1225-1236.
    [141] Helmut Kobus著,清华大学水利泥沙教研室译.水利模拟[M].北京:清华大学出版社,1998:100-110.
    [142]清华大学水力学教研组编.水力学(上册)[M].北京:人民教育出版社,1980:35-40.
    [143] Bao Chunxiao, Hao Hong, Li Zhong-Xian. Integrated ARMA model methodfor damage detection of subsea pipeline system[J]. Engineering Structures,2013,48:176-192.
    [144] Stijn Hertelé, Wim De Waele, Rudi Denys, et al. Parametric finite elementmodel for large scale tension tests on flawed pipeline girth welds[J]. Advancesin Engineering Software,2012,47(1):24-34.
    [145] Mirmohammadi A., Ketabdari M.J. Numerical simulation of wave scouringbeneath marine pipeline using smoothed particle hydrodynamics[J].International Journal of Sediment Research,2011,26(3):331-342.
    [146] Liang Dongfang, Cheng Liang, Li Fangjun. Numerical modeling of flowand scour below a pipeline in currents: Part II. Scour simulation[J]. CoastalEngineering,2005,52(1):43-62.
    [147]水利水电科学研究院编.水工模型试验[M].北京:水利电力出版社,1985:75-90.
    [148] Zhang Shenwei, Zhou Wenxing. System reliability of corroding pipelinesconsidering stochastic process-based models for defect growth and internalpressure[J]. International Journal of Pressure Vessels and Piping,2013,111-112:120-130.
    [149] Pekka J skel inen, Vladimír Guzma, Viljami Korhonen. Resource conflictdetection in simulation of function unit pipelines[J]. Journal of SystemsArchitecture,2008,54,(11):1058-1064.
    [150] Xu L.Y., Cheng Y.F. Development of a finite element model for simulationand prediction of mechanoelectrochemical effect of pipeline corrosion[J].Corrosion Science,2013,73:150-160.
    [151] Bali o J.L., Burr K.P., Nemoto R.H. Modeling and simulation of severeslugging in air-water pipeline-riser systems[J]. International Journal ofMultiphase Flow,2010,36(8):643-660.
    [152] Holland J H. Adaptation in Nature and Artificial Systems[M].Massachusetts:MIT Press,1992:35-50.
    [153] Goldberg D E. Genetic Algorithms in Search, Optimization and MachineLearning[M]. New Jersey:Addison-Wesley,1989:46-70.
    [154] Lu Lin, Li Yucheng, Qin Jianmin. Numerical simulation of the equilibriumprofile of local scour around submarine pipelines based on renormalized groupturbulence model[J]. Ocean Engineering,2005,32(17-18):2007-2019.
    [155] Henau V. De, Raithby G.D. A transient two-fluid model for the simulationof slug flow in pipelines-II. Validation[J]. International Journal of MultiphaseFlow,1995,21(3);351-363.
    [156] Adeyemi Oke, Haroun Mahgerefteh, Ioannis Economou, et al. A transientoutflow model for pipeline puncture[J]. Chemical Engineering Science,2003,58,(20):4591-4604.
    [157] Federico Rueda, José Luis Otegui, Patricia Frontini. Numerical tool tomodel collapse of polymeric liners in pipelines[J]. Engineering Failure Analysis,2012,20:25-34.
    [158] Ostfeld Avi, Sce M.A. Optimal Design and Operation of MultiqualityNetworks under Unsteady Conditions[J]. Journal of Water Resources Planningand Management,2005,131(2):116-124.
    [159] Paulo Cesar Ribas, Lia Yamamoto, Helton Luis Polli, et al. A micro-geneticalgorithm for multi-objective scheduling of a real world pipeline network[J].Engineering Applications of Artificial Intelligence,2013,26(1):302-313.
    [160]张自杰,林荣忱,金儒霖.排水工程(第四版)[M].中国建筑工业出版社,2000:185-200.
    [161]孙慧修,郝以琼,龙腾锐.排水工程(第四版)[M].中国建筑工业出版社,1999:70-100.
    [162] Lahiri S.K., Ghanta K.C. Prediction of Pressure Drop of Slurry Flow inPipeline by Hybrid Support Vector Regression and Genetic Algorithm Model[J].Chinese Journal of Chemical Engineering,2008,16(6):841-848.
    [163] Lin Kuo-Ping, Chang Ping-Teng, Hung Kuo-Chen, et al. A simulation ofvendor managed inventory dynamics using fuzzy arithmetic operations withgenetic algorithms[J]. Expert Systems with Applications,2010,37(3):2571-2579.
    [164]林澍,李霞,赵群.遗传算法在水科学若干领域应用中的改进[J].水科学与工程技术,2006,(4):39-41.
    [165]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:65-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700