用户名: 密码: 验证码:
大直径桩基承载特性的仿真试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工程建设事业的蓬勃发展,大直径钻孔灌注桩在各种大型的桥梁、高层建筑和高速公路中得到了较为广泛的使用,但大直径钻孔灌注桩的理论研究还相对较为缺乏,尤其在实际工程中,桩基承载力的确定往往是通过单桩静载荷试验或者自平衡测试法获得,由于考虑到工程造价、荷载箱放置位置等原因,施加的荷载往往不足以使测试桩进入破坏状态,试桩资料虽然可以满足工程需求,但影响了其研究价值。本文在吉林省交通厅项目《大桥软岩桩基承载力评价方法研究》(2011-1-11)的基础上,以仿真分析方法为基础,对大直径钻孔灌注桩的承载特性进行分析研究,本文的研究对完善大直径钻孔灌注桩的理论研究和指导实际工程具有一定的意义和价值。
     在对大直径桩基承载力评价方法研究的基础上,采用仿真分析方法对单桩抗压静载荷试验和自平衡试验中单桩的承载特性进行仿真模拟,对大直径桩在不同试验方法下荷载沉降曲线的特征、桩身轴力的变化等方面进行分析,并对影响大直径钻孔灌注桩的承载特性的各种因素进行了系统的研究。建立基于BP神经网络的接触面力学参数的反分析模型,对桩土接触面的力学参数进行反分析研究。基于荷载传递理论的双曲线模型,从理论上推导出自平衡试验中单桩荷载与沉降的关系,在此基础上,利用模拟分析程序对自平衡试验中“平衡点”位置进行讨论,从而为自平衡试验设计提供参考。
With the development of highway, railway, large bridges and other large-scaleconstruction projects, in order to meet the requirements of large-span, high-rise, heavyloads and complex geological conditions, pile foundations become the first choice offoundation form for many buildings or structures. The design size and bearingcapacity of the pile foundations become larger, and the application of large-diameterpiles in projects has become more and more common.
     Comparied with small-diameter piles, large-diameter piles have some advantages,such as the high capacity, small deformation, convenience in construction etc. In themeanwhile, there are some differences, such as the load transfer mechanism,deformation characteristics, and load bearing characteristics. Due to the large bearingcapacity of large-diameter piles, there are some limitations on study of the bearingcharacteristics using field test. Especially in the actual projects, the bearing capacityof the pile is often determined by the static load test or Osterberg-cell test, andconsidering the project cost, or the location of the balance point in the Osterberg–Celltest and other reasons, the applied load is often not enough to make the test pile intodestruction state. The bearing capacity of test pile meets the requirement of the project,but the research value is reduced. So the theoretical analysis on bearing characteristicsof large-diameter piles is relatively lagging behind the engineering practices.Therefore, in this paper, the numerical simulation is using to analysis the deformationand the load bearing characteristics of large-diameter piles, the main findings andconclusions are as following:
     1. Study on evaluation methods of large-diameter pile bearing capacity.Systematic comparative study on the evaluation methods of the bearing capacity oflarge-diameter pile is made, including empirical parameter method, field test (PileStatic Load test, Osterberg-cell test, dynamic load test and Statnamic method),numerical simulation method and indoor model test. The advantages and limitationsof these methods in determining the pile bearing capacity of large-diameter pile areanalyzed.
     2.Simulation is used to study the bearing characteristics under different test.Numerical simulation methods are used to simulate Pile Static Load test andOsterberg-Cell test to discuss the bearing behavior of large-diameter pile underdifferent test methods. Comparing with the measured data, it found that the simulationstudy of the pile bearing characteristics is a very important and useful.
     3. Through the simulation experiments, the influencing factors of bearingcapacity of large-diameter piles were analyzed, including the deformation modulus ofsoil around the pile, cohesion and internal friction angle of soil around the pile,deformation modulus of soil at the pile tip, pile length, pile diameter, the elasticmodulus of pile, the interface mechanics parameters between the pile and soil. In thestudy, obtaining methods of the parameters for simulation are analyzed and discussed.Through the study, it found that the bearing capacity of the large-diameter pile linearlyincreases with the pile diameter increases. In a certain range, the bearing capacity ofthe pile can be improved with the increasing of the deformation modulus of soilaround the pile, deformation modulus of soil at the pile tip, and the length of the pile.There is no signigicant effect to increase the pile elastic modulus for improving thebearing capacity of the pile. The settlement of the pile is impacted by the interfaceshear stiffness between the pile and soil. And the the bearing capacity is impacted bycohesion and internal friction angle of interface between the pile and soil.
     4. Back-analysis is used on the study of the mechanical parameters of interfacebetween pile and soil. Based on the simulation results, orthogonal design and BPneural network program, the displacement back-analysis model has been established,which was used to study the mechanical parameters of interface between pile and soil.
     5. Based on the load transfer theory of piles and the deformation characteristics ofpile in the Osterberg–Cell test, a simulation analysis program was applied to simulatethe relationship between the load and settlement in the test. The analytical methodspresented in this paper can be considered practically, since the results from thesimulation test and on-site measurement indicate that the theoretically predicted resultis consistent with the measured one.
     6. The simulation analysis program can be used to determine the location of the balance point in the Osterberg–Cell test. A reasonable selection of the location of thehydraulic jack-like device (O-cell) can maximize the bearing capacity of testing pilesto obtain a more accurate ultimate bearing capacity. So this study provides a referencefor the design of the Osterberg–Cell test as well as pile foundations.
引文
[1]史佩栋.《桩基工程手册》[M].北京:人民教育出版社,2008.
    [2]吴鹏.超大群桩基础竖向承载性能及设计理论研究[D].南京:东南大学,2006.
    [3]桩基工程手册编写委员会.《桩基工程手册》[M].北京:中国建筑工业出版社,1997.
    [4]刘金砺,黄强.桩基承载性能及有关设计问题.桩基工程技术[M].北京:中国建材工业出版社,1996:1-7.
    [5]王伯惠,上官兴.中国钻孔灌注桩新发展[M].北京:人民交通出版社,1999:1-73.
    [6]肖宏彬.竖向荷载作用下大直径桩的荷载传递理论及应用研究[D].长沙:中南大学,2005.
    [7]罗安和,文吉英,杨新.嘉绍大桥超大超深钻孔灌注桩试验桩施工技术[J].资源环境与工程,2009,23(2):123-127.
    [8]程晔.超长大直径钻口灌注桩承载性能研究[D].南京:东南大学,2005.
    [9]王泽辉,陈祥福,庄裕杰.大直径超长钻孔灌注桩在无锡软土地基中的应用[J].施工技术,1999,28(9):6-8.
    [10]王成林.大直径超长钻孔灌注桩的施工[J].岩土工程界,2003,6(3):62-64.
    [11]刘显林.海湾大直径深水超长灌注桩的施工技术[J].西部探矿工程,2004(8):44-45.
    [12]吉林,冯兆祥.江阴长江公路大桥大吨位桩静载试验[J].水利水电科技进展,1996,16(5):33-36
    [13]胡立明.第四系土层大直径超长桩的承载特性[J].华东地质学院学报,2000,23(1):35-38.
    [14]冷曦晨.大型桥梁桩基承载力试验研究[D].北京:中国地质大学,2005.
    [15]龚成中,何春林,戴国亮.坝陵河大桥深嵌岩桩竖向承载力试验[J].建筑科学与工程学报,2011,28(4):43-47.
    [16]冯忠居,谢永利,李哲,张宏光.大直径超长钻孔灌注桩承载性状[J].交通运输工程学报,2005,5(1):24-27.
    [17]姚金彦,余昆,马远刚.哈尔滨松花江大桥基桩承载力自平衡测试[J].桥梁建设,2007,S1:135-137.
    [18]戴国亮,龚维明,蒋永生.桥梁大吨位桩基新静载试验方法的工程应用[J].东南大学学报(自然科学版),2001,31(4):54-57.
    [19]周红星,贺怀志,张学莹.楠溪江大桥桩基质量控制与静载试验[J].土工基础,2008,22(6):9-11.
    [20]方鹏飞.超长桩承载性状研究[D].杭州:浙江大学,2003.
    [21] Poulos, H.G., Analysis of the settlement of pile groups[J]. Geotechnique,1968,18:449-471.
    [22] Poulos, H.G., Pile behavior-theory and applieation[J]. Geotechnique,1989,39(3):365-415.
    [23] Poulos, H.G., Davis, E.H., The settlement behavior of single axially loadedincompressible piles and piles[J]. Geootechnique,1980,18(1):351-371.
    [24] Poulos, H.G., Davis, E.H., Pile foundation analysis and design. New York. Wiley.1980.
    [25] Poulos, H.G., Randolph, M.F., Pile group analysis study of two methods[J].Journal of the geotechnical engineering division, ASCE,1983,109(3):355-372.
    [26] Geddes, J.D., Stress in foundation soils due to vertical subsurface loading[J].Geotechnique,1966,16(3):231-255.
    [27] Geddes, J.D., Boussinesq-based approximation to the vertical stresses caused bypile-type subsurface loading[J]. Geotechnique,1969,19(4):509-514.
    [28]黄绍铭,王迪民,裴捷等.减小沉降量桩基的设计与初步实践[C].中国土木工程学会第六届全国土力学及基础工程学术会议论文集,中国建筑工业出版社和同济大学出版社,1991.
    [29]陈竹昌,王建华.采用弹性理论分析搅拌桩性能的探讨[J].同济大学学报,1993,21(1):17-25.
    [30]杨敏,树娟,王伯王钧,周融华.使用Geddes应力系数公式求解单桩沉降[J].同济大学学报,1997,25(4):379-385.
    [31]曹明,陈胜立.层状地基中群桩基础弹性理论解析法及参数分析[J].土木建筑与环境工程,2012,34(12):1-6.
    [32]刘绪普,龚晓南,黎执长.用弹性理论法和传递函数法联合求解单桩的沉降
    [C].肇庆:第四届全国地基处理学术讨论会论文集,1995:484-488.
    [33]邹春华.单桩计算的弹性理论法及其改进[D].成都:西南交通大学,2007.
    [34]邹春华,王长丹,代仁平,计招红.一种改进的单桩计算弹性理论法[J].城市道桥与防洪,2009,(10):117-121.
    [35]李素华,杨位洸.预制桩竖向承载性能设计理论研究[J].岩石力学与工程学报,2001,20(2):256-261.
    [36]洪鑫,杨敏.分层土中单桩荷载分布和沉降计算新方法研究[J].地下空间与工程学报,2008,2(3):431-435.
    [37] Gardner, W.S., Consideration in the design of drilled piles. Construction andperformance of deep foundation,1975.
    [38] Kezdi, A., The bearing capacity of pile and piles groups[C]. London: Proc.4thICSMFE,1957,(2):46-51.
    [39] Kraft L M, Ray R P, Kagawa T. Theoretical τ~z curves[J]. Journal of thegeotechnical engineering division. ASCE,1981,107(3):1465-1488.
    [40] Seed, H.B., Reese, L.C., The action of soft clay along friction piles, Trans.ASCE,1957,122:731-754.
    [41] Hoonil Seol, Sangseom Jeong, Yongmin Kim. Load transfer analysis ofrock-socketed drilled shafts by coupled soil resistance[J]. Computers andGeotechnics,2009,36(3):446-453.
    [42] Jaehwan Lee, Kwanglo You, Sangseom Jeong, Jaeyoung Kim. Proposed pointbearing load transfer function in jointed rock-socketed drilled shafts[J]. Soil andfoundations,2013,53(4):596-606.
    [43]叶玲玲,朱小林.传递函数法计算嵌岩桩承载力[J].同济大学学报,1995,23(3):315-319.
    [44]邱钰,胡雪辉,刘松玉.用荷载传递法计算深长大直径嵌岩桩单桩沉降[J].土木工程学报,2001,34(5):72-75.
    [45]邱钰,刘松玉,周琳.嵌岩桩单桩沉降计算的一种简化模型[J].东南大学学报,1999,(5):131-136.
    [46]谢新宇,王忠瑾,王金昌,金伟良.考虑桩土非线性的超长桩沉降计算方法[J].中南大学学报,2013,11:4664-4671.
    [47]肖宏彬,钟辉虹,王永和.多层地基中桩的荷载传递分析[J].中南工业大学学报(自然科学版),2003,34(6):687-690.
    [48]肖宏彬,刘杰,王永和.大直径桩荷载传递规律的试验及理论研究[J].岩土工程技术,2003,(1):47-50.
    [49]肖宏彬,钟辉虹,张亦静,王永和.单桩荷载-沉降关系的数值模拟方法[J].岩土力学,2002,23(5):592-596.
    [50]肖宏彬.竖向荷载作用下大直径桩的荷载传递理论及应用研究[D].长沙:中南大学,2005.
    [51]姜振春.软黏土中超长预应力高强度混凝土管桩竖向承载特性试验研究[J].岩土力学,2012,33(9):2639-2646.
    [52] Goel S, Patra N.R., Prediction of load displacement response of single pilesunder uplift load[J]. Geotechnical and Geological Engineering,2007,25(1):57-64.
    [53]张乾青,张忠苗.抗拔单桩受力性状的解析算法[J].岩土工程学报,2011,33(Supp.2):308-313.
    [54]孙晓立,杨敏.使用修正变形协调法分析抗拔桩非线性变形[J].岩石力学与工程学报,2008,27(6):1270-1277.
    [55] Cooke, R.W., The settlement of friction pile foundations[C]. Proc. Conf. on TallBuildings, Kuala Lumpur,1974.
    [56] Cooke, R.W., Price, G., Tarr, K., Jacked piles in londen clay: A study of loadtransfer and settlement under working condition[J]. Geotechnique,1979,29(2):113-147.
    [57] Randolph, M.F., Wroth, C.P., Analysis of deformation of vertically loadedpiles[J]. J. Geotech. Eng., ASCE,1978,104(CT12):1465-1488.
    [58] Randolph, M.F., Wroth, C.P., Driven piles in clay-the effects of installation andsubsequent consolidation[J]. Geotechnique,1979,29(4):423-439.
    [59]宰金珉,杨嵘昌.桩周土非线性变形分析的广义剪切位移法[J].南京建筑工程学院学报,1993,(1):1-16.
    [60]杨嵘昌,宰金珉.广义剪切位移法分析桩-土-承台非线性共同作用原理[J].岩土工程学报,1994,16(6):103-116.
    [61]宰金珉.群桩与土和承台非线性共同作用分析的半解析半数值方法[J].建筑结构学报,1996,17(1):63-73.
    [62] Mylonakis, M.F., Wroth, C.P., An analysis of vertical deformation of pilegroups[J]. Geotechnique,1979,29(4):157-166.
    [63]田管凤,吴起星.群桩基础的剪切位移法分析[J].东莞理工学院学报,2002,9(2):35-39.
    [64]赵明华,张玲,杨明辉.基于剪切位移法的长短桩复合地基沉降计算[J].岩土工程学报,2005,27(9):994-998.
    [65]高盟,高广运,杨成斌,冯世进,季瑜君.层状地基群桩沉降计算的剪切位移解析算法[J].岩土力学,2010,31(4):1072-1077.
    [66]韩晓林,王五平.桩基承载力检测的准静载灰色方法[J].岩土工程学报,2000,22(1):131-132.
    [67]唐其贵.单桩极限承载力的灰色预测[J].长沙铁道学院学报,2001,19(3):37-39.
    [68]罗战友,董清华,龚晓南.未达到破坏的单桩极限承载力的灰色预测[J].岩土力学,2004.25(2):304-307.
    [69] Lee I M, Lee J H. Prediction of pile bearing capacity using artificial neuralnetworks[J]. Computers and Geotechnics,1996,18(3):189-199.
    [70]冯紫良,孙海涛,王树娟.用人工神经网络预测单桩竖向极限承载力[J].同济大学学报,1999,27(4):397-401.
    [71] Nawari N O, Liang R, Nusairat J. Artificial intelligence techniques for thedesign and analysis of deep foundations[J]. Electronic Journal of GeotechnicalEngineering,1999,4.
    [72]王成华,赵志民.用神经网络法预测单桩竖向极限承载力[J].福建建筑,1999,(1):40-43.
    [73] Chan W T, Chou Y K, Liu L F. Neural network: an alternative to pile drivingformulas[J]. Computers and Geotechnics,1995,17(2):136-156.
    [74] The C I, Wang K S, Goh A T C, et al. Prediction of pile capacity using neuralnetworks[J]. Journal of Computing in Civil Engineering,1997,11(2):129-138.
    [75]王宏祥,王胜斌.南照淮河公路大桥静压试桩与分析[J].华东公路,1999,(6):28-31.
    [76]何剑,尹德文,冷元宝,赵海生.荆州长江大桥试桩极限承载力分析[J].水利水电快报,2001,22(7):18-20.
    [77]杨太华,郑庆华.上海武宁路桥桩基础承载力的试验分析[J].华东公路,2002,(4):12-13.
    [78]张迈,王林素.温州市江滨西路防洪堤PHC管桩静荷载试验及分析[J].浙江水利水电专科学校学报.,2002,14(4):50-52.
    [79]董金荣,林胜天,戴一鸣.大口径钻孔灌注桩荷载传递性状[J].岩土工程学报,1994,16(6):123-130.
    [80]李永辉,吴江斌.基于载荷试验的大直径超长桩承载特性分析[J].地下空间与工程学报,2011,7(5):895-902.
    [81]柯洪,吴翔,王继华,曾云川,赵春宏,冯庆高.天津厚地层超长钻孔灌注桩单桩承载特性研究[J].岩土力学,2011,32(9):2821-2826.
    [82]徐先坤,水伟厚,陈国栋.软土地区超长灌注桩竖向承载力性能实测研究[J].岩土工程学报,2011,33(Supp.2):502-507.
    [83] Osterberg JO. A new device for load testing driven piles[J]. FoundationsDrilling Magazine,1984:177-180.
    [84] Osterberg JO. The Osterberg load test method for drilling shafts and drivenpiles-the first ten years[J]. Colorado, USA,1998.
    [85]史佩栋.桩的静载荷试验新技术—Osterberg试桩法[J].铁道建筑技术,1996,(3):5-6.
    [86]史佩栋.关于Osterberg静载荷试桩法的进一步探讨[J].工业建筑,1998,28(2):56-58.
    [87]史佩栋,陆怡. Osterberg静载荷试桩法10年的发展[J].工业建筑,1999,29(12):17-18.
    [88]龚维明,薛国亚,蒋永生.桩承载力自平衡法研究[C].中国土木工程学会第八届土力学及岩土工程学术会议论文集,1999,209-211.
    [89]龚维明,蒋永生,翟晋.桩承载力自平衡测试法[J].岩土工程学报,2000,22(5):532-536.
    [90]龚维明,戴国亮,蒋永生,薛国亚.桩承载力自平衡测试理论与实践[J].建筑结构学报,2002,23(1):82-87.
    [91]黄生根,龚维明.苏通大桥一期超长大直径试桩承载特性分析[J].岩石力学与工程学报,2004,23(19):3370-3375.
    [92]罗耀武,佴磊.基于自平衡法的泥岩地基中大型灌注桩的承载特性分析[J].世界地质,2005,24(4):382-387.
    [93]张帆,龚维明,戴国亮.大直径超长灌注桩荷载传递机理的自平衡试验研究[J].岩土工程学报,2006,28(4):464-469.
    [94]杨宇,马晔,宋春霞.中风化花岗岩层与基桩侧摩阻力性能现场试验研究[J].岩石力学与工程学报,2013,32(1):97-106.
    [95]何春林,龚成中.大直径深嵌岩短桩竖向承载力原位试验研究[J].中外公路,2013,33(6):144-147.
    [96]王明恕,王韶群.关于Osterberg测桩法的讨论[J].施工技术,1999,28(9):32.
    [97]吴献.试分析Osterberg测桩法的局限性[J].建筑技术开发,1999,26(1):18-19.
    [98]董鸣毅.自平衡加载法试桩探讨[J].土工基础,2000,14(1):17-20.
    [99]冷晨曦,佴磊,刘永平.自平衡法桩基承载力测试中一些问题的探讨[J].地震工程与工程震动,2005,25(2):160-164.
    [100]龚成中,何春林,龚维明,戴国亮.基于自平衡试桩法大直径嵌岩桩尺寸效应分析[J].岩土力学,2012,33(8):2403-2407.
    [101] Hoonil Seol, Sangseom Jeong. Load-settlement behavior of rock-socketeddrilled shafts using Osterberg-Cell tests[J]. Computers and Geotechinics,2009,36:1134-1141.
    [102]聂如松,冷伍明,魏巍.自平衡试桩法一种等效转换法[J].岩土工程学报,2011,(S2):188-191.
    [103]朱向荣,汪胜忠,叶俊能,王文军.自平衡试桩荷载传递模型及荷载-沉降曲线转换方法改进研究[J].岩土工程学报,2010,32(11):1717-1721.
    [104] Jose Leo C. Mission, Hyeong-Joo Kim. Design charts for elastic pile shorteningin the equivalent top-down loading-settlement curve from a bidirectional loadtest[J]. Computers and Getechnics,2011,38:167-177.
    [105] Jong-Sub Lee, Yung-Ho Park. Equivalent pile load-head settlement curve usinga bi-directional pile load test [J]. Computers and Getechnics,2008,35:124-133.
    [106]卢成原,孟凡丽,吴坚,戴林海.不同土层对支盘桩荷载传递影响的模型试验研究[J].岩石力学与工程学报,2004,23(20):3547-3551.
    [107]陈仁朋,任宇,陈云敏.刚性单桩竖向循环加载模型试验研究[J].岩土工程学报,2011,33(12):1926-1933.
    [108]秋仁东,刘金砺,高文生,秋明兵.长群桩基础承载力性状的大比例尺模型试验研究[J].岩土工程学报,2012,34(12):2233-2242.
    [109]张永亮,陈兴冲,孙建飞.桥梁群桩基础非线性静力计算模型及拟静力试验研究[J].岩石力学与工程学报,2013,32(9):1799-1806.
    [110]刘锟,赵春风.不同桩端土承压钻孔灌注桩模型试验研究[J].岩土工程学报,2011,33(3):490-495.
    [111]陈小强,赵春风,甘爱明.砂土中抗拔桩与抗压桩模型试验研究[J].岩土力学,2011,32(3):738-744.
    [112]方焘,刘新荣,耿大新等.大直径变桩竖向承载特性模型试验研究[J].岩土力学,2012,33(10):2947-2952.
    [113] Yin Z Z, Zhu H, Xu G H. A study of deformation in the interface between soiland concrete[J]. Computers and Geotechnics,1995,17(1):75-92.
    [114] Reddy E.S., Chapman D.N., Sastry V.V.R.N., Direct shear interface test for shaftcapacity of piles in sand[J]. Geotech. Test. J.,2000,23(2):199-205.
    [115] Uesugi M, Kishida H. Frictional resistance at yield between dry sand and mildsteel[J]. Soils and Foundations,1986,26(4):139-149.
    [116] Boulon M., Basic features of soil structure interface behaviour[J]. Computersand Geotechnics,1989,7(1-2):115-131.
    [117] Fakharian K, Evgin E. Cyclic simple-shear behavior of sand-steel interfaceunder constant normal stiffness condition[J]. Journal of Geotechnical andGeoenvironmental Engineering,1997,123(12):1098-1105.
    [118]张嘎,张建民.循环荷载作用下粗粒土与结构接触面变形特性的试验研究[J].岩土工程学报,2004,26(2):254-258.
    [119]张嘎,张建民.粗粒土与结构接触面统一本构模型及试验验证[J].岩土工程学报,2005,27(10):1175-1179.
    [120]张治军,苏华,饶锡保,丁红顺.砂砾石与结构接触面强度与变形特性试验研究[J].三峡大学学报(自然科学版),2008,30(1):64-68.
    [121]冯大阔,张建民,侯文俊.初始静剪应力下土与结构接触面静力特性研究[J].工程力学,2012,29(11):93-98.
    [122]冯大阔,张建民,侯文峻.三维加载条件下粗粒土与结构接触面力学特性的试验研究[J].地震工程与工程震动,2010,30(6):154-161.
    [123]冯大阔,侯文峻,张建民.法向常刚度切向应力控制接触面动力特性试验研究[J].岩土工程学报,2011,33(6):846-852.
    [124]冯大阔,侯文峻,张建民.粗粒土与结构接触面三维力学特性的直剪试验研究[J].土木工程学报,2012,45(5):169-176.
    [125]徐泽友,卢廷浩,丁明武.高塑性黏土与混凝土接触面剪切特性[J].河海大学学报(自然科学版),2009,37(1):71-74.
    [126]周爱兆,卢廷浩,明武,徐泽友.接触面等应力增量比路径单剪试验及模型研究[J].四川大学学报(工程科学版),2009,41(4):76-81.
    [127]刘方成,尚守平,王海东.粉质黏土-混凝土接触面特性单剪试验研究[J].岩石力学与工程学报,2011,30(8):1720-1728.
    [128]高俊合,于海学,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报,2000,33(4):42-46.
    [129]王伟,卢廷浩,宰金珉,孙斌祥.土与混凝土接触面反向剪切单剪试验[J].岩土力学,2009,30(5):1303-1306.
    [130]张嘎,张建民.夹有泥皮粗粒土与结构接触面力学特性试验研究[J].岩土力学,2005,26(9):1374-1378.
    [131]赵春风,龚辉,赵程,廖乾旭.考虑法向应力历史的黏土-混凝土界面弹塑性分析[J].岩石力学与工程学报,2012,31(4):848-855.
    [132]钱建固,陈宏伟,贾鹏等.注浆成型螺纹桩接触面特性试验研究[J].岩石力学与工程学报,2013,32(9):1744-1750.
    [133] Ellison, R.D., Dappolonia, E.G.R., Load-deformation mechanism for boredpiles[J]. Proc. J. Soil Mechanics and Foundation Div.ASCE,1971,97(4):661-678.
    [134]陈轮,常冬冬,李广信. DX桩单桩承载力的有限元分析[J].工程力学,2002,19(6):67-72.
    [135]杨淼,张忠苗,刘念武等.新型螺旋成孔根植注浆竹节管桩抗压性状数值模拟研究[J].岩土力学,2013,34(7):2119-2126.
    [136]王丽娟.沉桩过程中挤土效应的三维有限元分析[D].天津:天津大学建筑工程院,2003.
    [137] Tskashi Hara, Yuzhen Yu, Keizo Ugai. Behaviour of piled bridge abutments onsoft ground: A design method proposal based on2D elasto-plastic-consolidationcoupled FEM[J]. Computers and Geotechnics,2004,31:127-135.
    [138]李晋,冯忠居,谢永利.大直径空心桩承载性状的数值仿真[J].长安大学学报,2004,24(4):37-39.
    [139]洪鑫.单桩静载荷试验的理论模拟及影响因素分析[J].岩土工程学报,2012,34(1):176-183.
    [140]周健,陈小亮,王冠英,周凯敏.开口管桩沉桩过程试验研究与颗粒流模拟[J].同济大学学报(自然科学版),2012,40(2):173-178.
    [141]叶建忠,周健,韩冰.基于离散元理论的静压沉桩过程颗粒流数值模拟[J].岩石力学与工程学报,2007,26(Supp.1):3058-3064.
    [142] I. Said, V. De Gennaro, R. Frank. Axisymmetric finite element analysis of pileloading tests[J]. Computers and Geotechnics,2009,36:6-19.
    [143]徐文强,文松霖.竖向载荷下GRF承载机制数值模拟研究[J].岩土力学,2012,33(5):1542-1548.
    [144]盛志强,石玉成,孙军杰等.基于ABAQUS的竖向荷载下三维桩土沉降变形分析[J].岩土工程学报,2013,(S1):366-371.
    [145]聂如松,冷伍明,杨奇,岳健.低承台桥台桩基侧向受力性状试验与数值分析[J].中南大学学报,2012,43(5):1877-1884.
    [146]张明远,黎生南,彭文韬,宋华珠.基于FLAC3D的超长大直径钢管桩竖向承载特性模拟[J].岩土力学,2011,32(9):2856-2860.
    [147] J. Dijkstra, W. Broere, O.M. Heeres, Numerical simulation of pile installation[J].Computers and Geotechnics,2011,38:612-622.
    [148] Ottaviani, M., Three dimensional finite element analysis of vertically loadedpile groups[J]. Geotechnique.1975,25(2):159-174.
    [149] Emilios M.Comodromos, Christos T.Anagnostopoulos, Michael K.Georgiadis,Numerical assessment of axial pile group response based on load test.[J].Computers and Geotechnics,2003,30:505-515.
    [150] Emilios M. Comodromos, Mello C. Papadopoulou, Ioannis K. Rentzeperis, Pilefoundation analysis and design using experimental data and3-D numericalanalysis[J]. Computers and Geotechnics,2009,36:819-836.
    [151]杜家庆,杜守继,赵丹蕾,唐文勇.竖向荷载下群桩-土-承台相互作用数值分析[J].岩土力学,2013,34(8):2414-2420.
    [152] Jinoh Won, Sang-Yong Ahn, Sangseom Jeong, Jinhyung Lee, Seo-Yong Jang.Nonlinear three-dimensional analysis of pile group supported columnsconsidering pile cap flexibility[J]. Computers and Geotechnics,2006,33:355-370.
    [153]王成华,刘庆晨.考虑基坑开挖影响的群桩基础竖向承载性状数值分析[J].岩土力学,2012,33(6):1851-1856.
    [154] Panich Voottipruex, Taweephong Suksawat, D. T. Bergado, Pitthaya Jamsawang.Numerical simulations and parametric study of SDCM and DCM piles underfull scale axial and lateral loads[J]. Computers and Geotechnics,2011,38:318-329.
    [155] Goodman, R.E., Taylor, R.L., Breekle, T.L., A model for the mechanics of jointsand interfaces[J]. J. Soil Meth. Found. ASCE,94,1968.
    [156]于丙子,陈连礼,叶伟泉.三维空间的节理单元[J].岩土工程学报,1983,15(3):1-11.
    [157]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及其数学模拟[J].岩土工程学报,1994,16(3):14-21.
    [158]雷晓燕,Swoboda G.,杜庆华.接触摩擦单元的理论及其应用[J].岩土工程学报,1994,16(3):23-31.
    [159]雷晓燕.三维接触问题新模型研究[J]土木工程学报,1996,29(3):24-33.
    [160]徐斌,王大通,高大钊.群桩沉降验算中接触单元模型应用的若干问题[J].同济大学学报,1998,26(2):149-152.
    [161]赵健利,冯旭.基于薄层单元法的单桩挤土效应数值模拟[J].上海大学学报(自然科学版),2013,19(2):60-63.
    [162]刘涛,彭华中,王勇,王艳丽.桩-土接触面静动力特性研究进展[J].长江科学院院报,2013,(12):74-81.
    [163]董必昌.岩土工程仿真中接触单元和相关参数研究[D].武汉:华中科技大学,2005.
    [164]《建筑桩基技术规范》(JGJ94-2008),中华人民共和国住房和城乡建设部,2008年10月1日.
    [165]《建筑基桩检测技术规范》(JGJ106-2003),中华人民共和国建设部,2003年7月1日.
    [166]龚维明,戴国亮.桩承载力自平衡测试技术及工程应用[M].中国建筑工程出版社,2005, pp:7-11.
    [167]陈凡等.基桩质量检测技术[M].中国建筑工业出版社,2011,pp.98-217.
    [168]佴磊,于清杨.岩土工程数值法[M].吉林大学出版社,2007.
    [169]彭文斌. FLAC3D实用教程[M].机械工业出版社,2009.
    [170]孙书伟,林杭,任连伟. FLAC3D在岩土工程中的应用[M].中国水利水电出版社,2011.
    [171]陈似华.大直径钻孔灌注桩载荷试验与承载性能分析[D].长沙:中南大学,2009.
    [172]蒋建平.大直径灌注桩竖向承载性状[M].上海:上海交通大学出版社,2007.
    [173]曾友金,章为民,王年香,徐光明.基桩有效桩长几个问题的探讨[J].岩土力学,2003,24(Supp.):529-534.
    [174]贾义鹏.桩土接触面切向刚度数据拟合研究[D].西安:西安建筑科技大学,2009.
    [175]李立新,石程云.岩土工程位移反分析方法综述[J].沈阳建筑工程学院院报,1996,12(3):354-358.
    [176]龚晓南.土工计算机分析[M].中国建筑工业出版社,2000.
    [177]陈斌,卓家寿,刘宁.岩土工程反分析的非确定性模型研究与发展[J].水利水电科技进展,2001,21(5):5-8.
    [178] Yang L, Sterling R L. Back analysis of rock tunnel using boundary elementmethod [J]. Journal of Geotechnics Engineering,1985,15(8):1163-1169.
    [179]周萍.基于神经网络和遗传算法的岩体参数反分析研究[D].南京:河海大学,2003.
    [180]高纬,刘泉声.基于仿生计算智能的地下工程反分析——理论与应用[M].北京:科学出版社,2009.
    [181]李晓红,靳晓光,亢会明,等.隧道位移智能化反分析及其应用[J].地下空间,2001,(4):299-304.
    [182]冯建龙,张孟喜. BP网络在双连拱隧道围岩参数反分析中的应用[J].上海大学学报(自然科学版),2005,11(3):293-302.
    [183]王春波,丁文其,王军.深基坑工程土层参数反分析方案探讨研究[J].地下空间与工程学报,2011,7(22):1638-1642.
    [184]贠永峰,范永慧,孙杨.基于BP神经网络的隧道围岩力学参数反分析方法[J].沈阳建筑大学学报(自然科学版),2011,27(2):292-296.
    [185]雷鹏,苏怀智,张贵金.基于RNN模型的坝体和岩基区间参数反演方法研究[J].岩土力学,2011,32(2):547-552.
    [186]陈卫兵,宋丰波,高鹏.京珠高速K108边坡软弱夹层流变参数的智能反演[J].地下空间与工程学报,2011,7(3):485-490.
    [187]狄圣杰,单治钢,李良权。不规则柱状节理玄武岩变形参数反分析研究[J].水力发电,2013,39(12):16-20.
    [188]高纬,郑颖人.一种新的岩土工程进化反分析算法[J].岩石力学与工程学报,2003,22(2):192-196.
    [189]高纬.新型进化神经网络模型[J].北京航空航天大学学报,2004,30(11):1101-1105.
    [190]高纬.岩土工程逆反分析的进化神经网络研究[J].矿业研究与发展,2005,25(3):26-30.
    [191]高纬.基于免疫连续蚁群算法的岩土工程反分析研究[J].岩石力学与工程学报,2005,24(23):4266-4271.
    [192]高纬.基于粒子群优化的岩土工程反分析研究[J].岩土力学,2006,27(5):795-798.
    [193]王洪元,史国栋.人工神经网络技术及其应用[M].北京:中国石化出版社,2002.
    [194] Werbos P. J. Beyond regression: New tools for prediction and analysis in thebehavioral sciences, Theis. Harvard University,1974.
    [195]周萍.基于神经网络和遗传算法的岩体参数反分析研究[D].南京:河海大学,2003.
    [196]邓聚龙.灰色控制系统[M].武昌:华中工学院出版社,1985.
    [197] Reese L G, Hudson W R, Vijayvergiga V N. An investigation of the interactionbetween bored piles and soil. In: Proc7thInter Conf Soil Mech Found Eng.Mexico City,1969,2:211-215.
    [198]洪毓康,陈强华译.桩与土体系的荷载传递(美:A.S Vesic),地基基础译文集[M].北京:中国建筑工业出版社,1982.
    [199]刘兴华.单桩竖向荷载传递的性状分析及工程应用[D].西安:长安大学,2007.
    [200]黄堂松.抗拔桩工作性状的荷载传递法研究[D]:杭州:浙江大学,2006.
    [201] Nanda, S.,Patra, N.R.. Theroretical load-tranfer carves along piles consideringsoil nonlinearing. Journal of geotechnical and geoenvironmental engineering,2014,140(1):91-101.
    [202]刘金砺.桩基础设计与计算.北京:中国建筑工业出版社,1990.95-174.
    [203]张明义,邓安福.桩-土滑动摩擦的试验研究.岩土力学,2002,23(2):246-249.
    [204]马晔.超长钻孔灌注桩桩基承载性能的研究[D].武汉:武汉理工大学,2008.
    [205]朱百里,沈珠江.计算土力学.上海:上海科技出版社,1990,223-251.
    [206]龚维明,戴国亮.桩承载力自平衡法的几个关键问题讨论[J].公路,2005,(8):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700