用户名: 密码: 验证码:
复杂环境下锅炉受热面的失效机理及寿命预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的发展,火电机组逐步向大容量、高参数方向发展,对锅炉受热面材料的要求更为严格。由于材质的使用不当和对受热面材料的高温失效特性的研究不足,导致高温对流受热面的爆管增多。在高温高压的环境下工作的受热面管道,除了承受复杂的多轴应力作用,同时在管道的外侧和内侧还存在磨损与氧化腐蚀的作用;因此,研究在复杂环境下高温管道的失效机理和进行管道的寿命评估,对于电站锅炉受热面的安全运行具有重要作用。
     在多轴应力下,对高温材料的蠕变失效机理及模型的研究还不是很充分,本文通过对铁素体钢T92进行单轴和多轴的蠕变实验,研究了在不同温度和不同多轴载荷下的材料力学行为,对材料的断口形貌和微观组织的变化进行分析,建立了多轴载荷与微观组织变化的定性关系;从断口形貌中,分析材料在长期多轴蠕变过程中,脆性与韧性之间的相互转换与多轴度的关系,从微观角度解释了T92的缺口增强现象。在模型研究方面,针对普通的蠕变模型无法描述在高温条件下,应力应变的对数关系呈现非线性的问题,提出了一种新的改进模型,并给出了模型参数的确定办法。通过有限元软件的二次开发,对改进模型进行了验证,并对T92钢的缺口增强现象进行了模拟。结果表明,文中的改进模型能够对缺口试样进行有效的蠕变寿命预测。
     管道内侧的氧化腐蚀是引起管道超温和爆管的重要因素之一,本文针对T24和P92钢在高温条件下的氧化皮的成型和脱落机理进行研究。分别在550℃和600℃,25MPa超临界水蒸汽中,针对无氧、100ppb、300ppb和2000ppb四种溶解氧浓度,对T24和P92钢进行了氧化实验研究。分析了蒸汽温度、金属Cr含量和溶解氧量对T24和P92钢氧化腐蚀速度的影响,并建立了对应氧化腐蚀模型。
     通过火电厂的实时监测系统进行数据通讯,对炉膛的进行实时的热力计算,求得实时的管道温度值;在此基础上,实现在对直管段或管道弯头的应力及蠕变变形计算,动态得到管道的蠕变寿命损耗。在化学水测量的基础上,对管道的氧化皮生长进行动态预测。结合离线监测数据,形成一整套对锅炉管道进行综合风险评估的信息管理平台,可对火电厂的锅炉受热面的检修进行合理的指导。
With a development of industrial technology, thermal power units are involving gradually to the high-capacity and high-parameter direction and it is more stringent to choose materials for boiler heating surface. Improper use of material and lack of research on failure mechanism of high-temperature heating surface material results in an increase in high-temperature convection heating surface tube explosion. The heating surface working at high temperature is restrained to multi-axial stress as well as wearing on the fire-side and oxidation corrosion on the steam-side of the tube; therefore, investigation on the failure mechanism of tubes at elevated temperature in a complex environment and life assessment plays an important role to the safe operation of power plant boiler heating surface.
     The study on creep failure mechanism and model of high-temperature under multiaxial stress is not sufficient. In this paper, uniaxial and multiaxial creep tests of ferritic steel T92have been conducted and the mechanical behaviors of materials at different temperatures and multiaxial loads have been studied. The fracture morphology and the microstructure evolution of the material were analyzed and the qualitative relationship between multixial loads and microstructure evolution was proposed. The correlation of the transformation from brittle to ductile and multiaxis degree during the process of long time creep has been analyzed from the fracture morphology and the explanation of notched strengthening enhancement phenomenon was given from a micro perspective. In terms of the model, the present model can not describe the nonlinear problem of the creep stress-strain constitutive relation at the elevated temperatures. A modified model has been developed and the way to determine the model parameters was presented. With the help of user programmable features of finite element software, the model was validated and the notched strengthening phenomenon of T92steel was simulated. The results showed that the proposed improved model can predict the creep life of notched specimens effectively.
     One of the important factors leading to tube overheat and explosion is the steam-side oxidation corrosion. Study on mechanism of oxide scale forming and shedding of T24and P92steel in high temperature has been studied. For four types of dissolved oxygen concentration, namely, no oxygen,100ppb,300ppb and2000ppb, the oxidation experiments of T24and P92steel under an environment of25MPa supercritical water were conducted at550℃and600℃respectively. The effects of steam temperature, the amount of Cr and dissolved oxygen content on the corrosion rate of oxidation of T24and P92steel has been analyzed and the corresponding oxidation corrosion model has been built.
     Through the real-time monitoring system of thermal power plant data communications, the real-time thermal calculation on the furnace was conducted and the real-time tube temperature was obtained. On this basis, the calculation of the stress and creep deformation of straight pipe or pipe elbows could be done and the pipe creep life loss can be dynamically obtained. According to the chemical water measurements, the growth of oxide scale of pipes could be predicted dynamically. Combined with off-line monitoring data, a set of information management platform for comprehensive risk assessment of boiler tubes has been designed and it could help guide the overhaul of thermal power plant boiler heating surface reasonably.
引文
[1]Kachanov LM. Rupture time under creep conditions[J]. International journal of fracture, 1999,97(1-4):11-18.
    [2]Kachanov LM. The theory of creep[M]. England:IX, X. Boston Spa,1967.
    [3]Rabotnov YN. Creep problems in structural members[M]. North Holland, Amsterdam Springer Berlin Heidelberg,1969:342-349.
    [4]Deschanels H, Escaravage C, Thiry J, et al. Assessment of industrial components in high temperature plant using the "ALIAS-HIDA"-A case study[J]. Engineering Failure Analysis, 2006,13(5):767-779.
    [5]Jovanovic A, Maile K, Wagemann G, et al. Assessment of cracks in power plant components by means of the HIDA knowledge-based system (KBS)[J]. International journal of pressure vessels and piping,2001,78(11):1053-1069.
    [6]Jovanovic A, Wagemann G. Knowledge-Based System (KBS) for creep crack growth of hightemperature components in HIDA project[J]. Materials at high temperatures,1998, 15(3-4):347-355.
    [7]张保衡.大容量火电机组寿命管理与调峰运行[M].水利电力出版社,1988.
    [8]李耀君,于新颖.火电厂设备状态检修技术[J].中国电力,2005,38(4):9-15.
    [9]杜保华,李耀君,刘振宇等.基于B/S结构构建火电厂高温锅炉管寿命管理系统[J].热力发电,2007,36(1):12-14.
    [10]姚华堂,轩福贞,王正东等.基于蠕变孔洞长大理论的高温构件蠕变强度设计准则研究[J].核动力工程,2008,(04):74-78.
    [11]姚华堂,轩福贞,王正东等.基于孔洞长大理论的多轴蠕变设计模型及其工程应用[J].核动力工程,2007,(03):72-77.
    [12]姚华堂,轩福贞,王正东等.基于连续损伤理论的多轴蠕变设计[J].中国机械工程,2007,(12):1438-1443.
    [13]姚华堂,轩福贞,沈树芳等.高温材料的多轴蠕变实验方法[J].机械工程材料,2008,(01):5-9+62.
    [14]Yao HT, Xuan FZ, Wang Z, et al. A review of creep analysis and design under multi-axial stress states[J]. Nuclear Engineering and Design,2007,237(18):1969-1986.
    [15]Yao HT, Shen SF, Xuan FZ, et al. Multiaxial creep strength design for high temperature components in coal-fired power plants[J]. Journal of Pressure Equipment and Systems,2006, 4:7-12.
    [16]束国刚,赵彦芬,薛飞等.P91钢蠕变损伤实验研究与数值模拟[J].中国电机工程学报,2010,(23):103-107.
    [17]Harry K. Creep analysis[M].1980. Wiley New York.
    [18]Penny RK, Marriott DL, Boresi AP. Design for creep[M]. London:Chapman and Hall, 1995.
    [19]Viswanathan R. Damage mechanisms and life assessment of high temperature components[M]. ASM International,1989.
    [20]Cane BJ. Damage accumulation and failure criteria-in creep brittle ferritic weldment structures[C]. Proceedings of the international conference on welding technology for energy applications, Gatlinburg, Tennessee. American Welding Society/Oak Ridge National Laboratory, Oak Ridge,1982:623-639.
    [21]Cane BJ. Creep fracture of dispersion strengthened low alloy ferritic steels[J]. Acta metallurgies,1981,29(9):1581-1591.
    [22]Cane BJ. Creep damage accumulation and fracture under multiaxial stresses[C]. ICF5, Cannes (France) 1981,1981.
    [23]Hull D, Rimmer DE. The growth of grain-boundary voids under stress[J]. Philosophical Magazine,1959,4(42):673-687.
    [24]Edward GH, Ashby MF. Intergranular fracture during power-law creep[J]. Acta Metallurgica, 1979,27(9):1505-1518.
    [25]Beere W, Speight MV. Creep cavitation by vacancy diffusion in plastically deforming solid[J]. Metal Science,1978,12(4):172-176.
    [26]Beere W, Speight MV. Diffusive crack growth in plastically deforming solid[J]. Metal Science,1978,12(12):593-599.
    [27]Nicolaou PD, Semiatin SL, Ghosh AK. An analysis of the effect of cavity nucleation rate and cavity coalescence on the tensile behavior of superplastic materials[J]. Metallurgical and Materials Transactions A,2000,31(5):1425-1434.
    [28]Rice JR, Tracey DM. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids,1969,17(3):201-217.
    [29]Hancock JW. Creep cavitation without a vacancy flux[J]. Metal Science,1976,10(9): 319-325.
    [30]Dyson BF. Constraints on diffusional cavity growth rates[J]. Metal Science.1976,10(10): 349-353.
    [31]Cocks ACF, Ashby MF. Intergranular fracture during power-law creep under multiaxial stresses[J]. Metal Science,1980,14(8-9):395-402.
    [32]Tvergaard V. On the creep constrained diffusive cavitation of grain boundary facets[J]. Journal of the Mechanics and Physics of Solids,1984,32(5):373-393.
    [33]Kwon O, Thomas CW, Knowles D. Multiaxial stress rupture behaviour and stress-state sensitivity of creep damage distribution in Durehete 1055 and 2.25 CrlMo steel[J]. International journal of pressure vessels and piping,2004,81(6):535-542.
    [34]Kwon O, Tack AJ, Thomas CW, et al. The development of a multiaxial stress rupture criterion for bolting steels using new and service aged materials [J]. International Journal of Pressure Vessels and Piping,2000,77(2):91-97.
    [35]Yatomi M, Bettinson AD, O'dowd NP, et al. Modelling of damage development and failure in notched-bar multiaxial creep tests[J]. Fatigue & Fracture of Engineering Materials & Structures,2004,27(4):283-295.
    [36]Huddleston RL. An improved multiaxial creep-rupture strength criterion[J]. Journal of pressure vessel technology,1985,107(4):421-429.
    [37]Hales R. The role of cavity growth mechanisms in determing creep-rupture under multiaxial stresses[J]. Fatigue & Fracture of Engineering Materials & Structures,1994,17(5):579-591.
    [38]王飞,郭万林.钛合金材料IMI834高温蠕变和蠕变断裂的连续损伤力学分析[J].机械强度,2005,27(4):530-533.
    [39]荆建平,孙毅.高温蠕变分析的非线性连续损伤力学模型[J].推进技术,2001,22(2): 139-142.
    [40]Jiang YP, Guo WL, Yue ZF, et al. On the study of the effects of notch shape on creep damage development under constant loading[J]. Materials Science and Engineering:A,2006,437(2): 340-347.
    [41]Jiang YP, Guo WL, Yue ZF. On the study of the creep damage development in circumferential notch specimens[J]. Computational materials science,2007,38(4):653-659.
    [42]Chen JN, Chen JJ, Tu SD. Case study of strain based criterion for high temperature design[J]. China Pressure Vessel Technology,2003,1(2):131-135.
    [43]Becker AA, Hyde TH, Sun W, et al. Benchmarks for finite element analysis of creep continuum damage mechanics[J]. Computational Materials Science,2002,25(1):34-41.
    [44]Othman AM, Hayhurst DR, Dyson BF. Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations[J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1993,441(1912):343-358.
    [45]Hayhurst DR, Dyson BF, Lin J. Breakdown of the skeletal stress technique for lifetime prediction of notched tension bars due to creep crack growth [J]. Engineering fracture mechanics,1994,49(5):711-726.
    [46]Yang J. Hsiao JS, Fong M, et al. The application of physically based CDM modeling in prediction of materials properties and component lifetime[J]. Journal of pressure vessel technology,2004,126(3):369-375.
    [47]Xu Q, Hayhurst DR. The evaluation of high-stress creep ductility for 316 stainless steel at 550℃ by extrapolation of constitutive equations derived for lower stress levels[J]. International journal of pressure vessels and piping,2003,80(10):689-694.
    [48]Kowalewski ZL, Hayhurst DR, Dyson BF. Mechanisms-based creep constitutive equations for an aluminium alloy [J]. The Journal of Strain Analysis for Engineering Design,1994, 29(4):309-316.
    [49]Lin J, Kowalewski ZL, Cao J. Creep rupture of copper and aluminium alloy under combined loadings-experiments and their various descriptions[J]. International journal of mechanical sciences,2005,47(7):1038-1058.
    [50]Hayhurst RJ, Mustata R, Hayhurst DR. Creep constitutive equations for parent, Type IV, R-HAZ, CG-HAZ and weld material in the range 565-640 C for Cr-Mo-V weldments[J]. International journal of pressure vessels and piping,2005,82(2):137-144.
    [51]Xu Q. Development of constitutive equations for creep damage behaviour under multi-axial states of stress[C]. Advances in mechanical behaviour, plasticity and damage,2000.
    [52]Spindler MW. The multiaxial creep ductility of austenitic stainless steels[J]. Fatigue & Fracture of Engineering Materials & Structures,2004,27(4):273-281.
    [53]Xu Q. The development of validation methodology of multi-axial creep damage constitutive equations and its application to 0.5 CrO.5Mo0.25V ferritic steel at 590℃[J]. Nuclear engineering and design,2004,228(1):97-106.
    [54]Wang L, Wang J, Wang H, et al. Interaction of fatigue and creep of GH33 under multi-axial stress at high temperature[J]. Journal of University of Science and Technology Beijing,2003, 10(2).
    [55]Yoshizawa M, Igarashi M, Moriguchi K, et al. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants[J]. Materials Science and Engineering:A,2009,510:162-168.
    [56]Noguchi Y. Miyahara M. Multiaxial creep-fatigue life evaluation under proportional loading[J]. Acta Metallurgica Sinica (English letters),2004,17(4):355-360.
    [57]Betten J. Creep damage and life analysis of anisotropic materials[J]. Archive of Applied Mechanics,2001,71(2-3):78-88.
    [58]Skelton RP, Goodall IW, Webster GA, et al. Factors affecting reheat cracking in the HAZ of austenitic steel weldments[J]. International journal of pressure vessels and piping,2003, 80(7):441-451.
    [59]Manonukul A, Dunne FPE, Knowles D, et al. Multiaxial creep and cyclic plasticity in nickel-base superalloy C263[J]. International journal of plasticity,2005,21(1):1-20.
    [60]Goyal S, Laha K, Das CR, et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behaviour of 2.25 Cr-1Mo steel[J]. Materials Science and Engineering:A,2013,563:68-77.
    [61]Yaguchi M, Ogata T, Sakai T. Creep strength of high chromium steels welded parts under multiaxial stress conditions[J]. International Journal of Pressure Vessels and Piping,2010, 87(6):357-364.
    [62]Seliger P. Life assessment of creep exposed components, new challenges for condition monitoring of 9Cr steels[J],2002.
    [63]Hyde TH, Sun W, Williams JA. Life estimation of pressurised pipe bends using steady-state creep reference rupture stresses[J]. International journal of pressure vessels and piping,2002, 79(12):799-805.
    [64]Hyde TH, Becker AA, Sun W, et al. Influence of geometry change on creep failure life of 90° pressurised pipe bends with no initial ovality[J]. International journal of pressure vessels and piping,2005,82(7):509-516.
    [65]Gampe U, Seliger P. Creep crack growth testing of P91 and P22 pipe bends[J]. International journal of pressure vessels and piping,2001,78(11):859-864.
    [66]Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-Boiler materials:Part 1[J]. Journal of Materials Engineering and Performance,2001,10(1):81-95.
    [67]Stubbe M D. Personal communication to D.A. Roberts of G.A. Technologies from Laboretec Company, Belgium[J],1986.
    [68]Roberts D I. Magnetic oxide thickness time-temperature models for 2-1/4Cr-1Mo operating in high pressure steam[J]. Letter to S Paterson from DI Roberts, GA Technologies, San Diego, CA,1986, Letter to S Paterson from DI Roberts, GA Technologies, San Diego, CA.
    [69]Rettig S R P a TW. Remaining Life Estimation of Boiler Pressure Parts-2-1/4Cr-1Mo Superheater and Reheater Tubes[R]. Electric Power Research Institute,1987.
    [70]Fujii C, Meussner R. Oxide Structures Produced on Iron-Chromium Alloys by a Dissociative Mechanism[J]. Journal of the Electrochemical Society,1963,110(12): 1195-1204.
    [71]Effertz P, Meisel H. Scaling of high temperature steels in high pressure steam after long service[J]. Maschinenschaden,1971,55(44):14-20.
    [72]Metcalfe MA, Proceedings of International Conference on Ferritic Steels for Fast Reactor Steam Generators[C],1977:36-113.
    [73]Eberle F, Kitterman J. Behaviour of Superheater Alloys in High Temperature, High Pressure Steam[J]. American Society of Mechanical Engineers,1968:67.
    [74]Grobner P, Clark C, Andreae P, et al. Steamside Oxidation and Exfoliation of Cr-Mo Superheater and Reheater Steels[J]. NACE Corrosion/80, paper,1980,172.
    [75]Nakagawa K, Kajigaya I, Yanagisawa T, et al. Study of corrosion resistance of newly developed 9-12% Cr steels for advanced units[C]. Advanced heat resistant steels for power generation. Conference,1998.
    [76]Naoi H, Mimura H, Ohgami M, et al. NF616 pipe production and properties and welding consumable development[C]. Conference New Steels for Advanced Plant up to,1995.
    [77]Quadakkers W, Ehlers J, Shemet V, et al. Development of Oxidation Resistant Ferritic Steels for Advanced High Efficiency Steam Power Plants [J]. Materials Aging and Life Management, 2000,2:885-892.
    [78]施惠基,马显锋,于涛.高温结构材料的蠕变和疲劳研究的一些新进展[J].固体力学学报,2010,6:011.
    [79]Gasca-Neri R, Ahlquist C, Nix W. A phenomenological theory of transient creep[J]. Acta Metallurgica,1970,18(6):655-661.
    [80]Betten J. Creep mechanics[M]. Springer,2002.
    [81]Esposito L, Bonora N. Primary Creep Modeling Based on the Dependence of the Activation Energy on the Internal Stress[J]. Journal of Pressure Vessel Technology,2012,134(6): 061401.
    [82]RWTH-Aachen. Kriechverhalten metallischer Werkstoffe bei zeitveranderlicher Spannug[EB/OL].
    [83]Josef B. Creep mechanics[M]. Berlin:Springer,2003.
    [84]Hayhurst DR, B. Wilshire DR. Owen. "On the Role of Continuum Damage on Structural Mechanics," Engineering Approaches to High Temperature Design[M]. Swansea:Pineridge Press,1983:85-176.
    [85]涂善东.高温结构完整性原理[M].北京:科学出版社,2003.
    [86]Stewart CM. Tertiary Creep Damage Modeling of a Transversely Isotropic Ni-Based Superalloy[D]. University of Central Florida Orlando, Florida,2009.
    [87]Stewart CM, Gordon AP. Analytical Method to Determine the Tertiary Creep Damage Constants of the Kachanov-Rabotnov Constitutive Model[C]. ASME 2010 International Mechanical Engineering Congress and Exposition,2010:177-184.
    [88]徐鸿,倪永中,王树东.30CrMoNiV5-11转子钢疲劳-蠕变交互行为实验及模型研究[J].中国电机工程学报,2009,(32):88-91.
    [89]倪永中,徐鸿.耦合蠕变损伤的Chaboche粘塑性模型的研究[J].固体力学学报,2009,30(1):79-83.
    [90]李海燕,聂景旭.粘塑性损伤统一本构模型中材料常数的一种确定方法[J].航空动力学报,2003,18(3):388-393.
    [91]Boyle JT, Spence J,1983. Stress Analysis for Stress. Camelot Press, London.
    [92]Norton FH,1929. The Creep of Steel at High Temperatures. McGraw-Hill,London.
    [93]Doe U. A technology roadmap for generation IV nuclear energy systems[C]. Nuclear Energy Research Advisory Committee and the Generation IV International Forum,2002.
    [94]Dooley RB. Cycle Chemistry Guidelines for Fossil Plants:Oxygenated Treatment[J]. Electric Power Research Institute:California,2005.
    [95]TD.超临界火力发电机组水汽质量标准[S].2005.
    [96]Viswanathan R, Sarver J, Tanzosh J. Boiler materials for ultra-supercritical coal power plants-Steamside oxidation[J]. Journal of Materials Engineering and Performance,2006, 15(3):255-274.
    [97]Potter E, Mann G. The fast linear growth of magnetite on mild steel in high-temperature aqueous conditions[J]. British Corrosion Journal,1965,1(1):26-35.
    [98]Surman P, Castle J. Gas phase transport in the oxidation of Fe and steel[J]. Corrosion Science, 1969,9(10):771-777.
    [99]Mayer P, Manolescu A. The role of structural and compositional factors in corrosion of ferritic steels in steam[J]. High-temperature corrosion,1983:368-379.
    [100]Rehn I. Corrosion problems in coal-fired boiler superheater and reheater tubes:steam-side oxidation and exfoliation. Development of a chromate-conversion treatment. Final report[R]. Foster Wheeler Development Corp., Livingston, NJ (USA),1981.
    [101]Armitt J, Holmes D, Manning M, et al. The Spalling of Steam Grown Oxide from Superheater and Reheater Tube Steels, EPRI Report No[R]. FP,1978.
    [102]Osgerby S, Fry T. Simulating steam oxidation of high temperature plant under laboratory conditions:practice and interpretation of data[J]. Materials Research,2004,7(1):141-145.
    [103]Jansson S, Hiibner W, stberg G, et al. Oxidation Resistance of Some Stainless Steels and Nickel-Based Alloys in High-Temperature Water and Steam[J]. British Corrosion Journal, 1969,4(1):21-31.
    [104]Cox M, Mcenaney B, Scott V. Kinetics of initial oxide growth on Fe-Cr alloys and the role of vacancies in film breakdown[J]. Philosophical Magazine,1975,31(2):331-338.
    [105]Fujii C, Meussner R. The Mechanism of the High-Temperature Oxidation of Iron-Chromium Alloys in Water Vapor[J]. Journal of the Electrochemical Society,1964,111(11): 1215-1221.
    [106]Maxwell W, Griess J, Devan J. The Effect of a High Heat Flux on the Oxidation of 2-1/4 Cr-1 Mo Steel Tubing in Superheated Steam.1980.
    [107]Nevzorov B, Starkov O, Baranov N. HIGH-TEMPERATURE OXIDATION OF STEELS IN WATER VAPOUR[J]. ZASHCHITA METALLOV,1970,6(3):349-352.
    [108]Knodler R, Ennis P. Oxidation of High-Strength Ferritic Steels in Steam at 650 C: Preliminary Results of COST 522 Projects[C]. Proceedings of VTT Symposium, Baltica V, 2001:6-8.
    [109]Young DJ. High temperature oxidation and corrosion of metals[M].1. Elsevier,2008.
    [110]Yin K, Qiu S, Tang R, et al. Corrosion behavior of ferritic/martensitic steel P92 in supercritical water[J]. The Journal of Supercritical Fluids,2009,50(3):235-239.
    [111]王正品,张路,刘江南等.电站用T22及与T91管高温蒸汽氧化的失效分析[J].铸造技术,2004,25(7):523-5
    [112]王力园.超临界锅炉高温受热面氧化皮剥落的原因及防治[J].电力安全技术,2011,13(5):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700