用户名: 密码: 验证码:
交流电场对导线覆冰及其电晕起始特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国幅员辽阔、地形地貌复杂且微气候特征繁多,约70%的国土面积处于高海拔地区,因此在“西电东送、南北互供、全国联网”的电力发展战略下,输电线路不可避免地需要穿越覆冰(雪)等极端恶劣的大气环境地区。覆冰后的导线表面由于粗糙程度发生变化,因此导线表面会出现局部电晕放电和沉积放电等现象,由起晕电压下降引起的输电线路电晕损耗、电磁污染、线路老化等问题愈加受到国内外重视。目前各国学者通过人工气候室对导线覆冰进行了大量试验研究,但大多数研究均忽略了运行导线发生带电覆冰的实际情况,也未深入研究覆冰对导线起晕电压以及电晕放电特性的影响规律,因此本文开展不同类型覆冰对输电线路电晕放电起始特性影响的研究具有重要的学术意义和工程价值。
     本文首次结合紫外成像技术和曲线拟合法在人工气候室内针对7种类型(不同直径、结构和分裂数)导线覆冰前后的起晕电压值进行测量研究。试验结果表明:电场强度对导线表面的覆冰形态影响极为明显;覆冰会对导线起晕电压值产生较大影响,覆冰前后导线表面的起晕电压值相差约为40%~60%左右;覆冰电场强度从0~20kV/cm增加过程中,雨凇和混合凇覆冰导线的起晕电压会先下降后上升,而雾凇覆冰导线则出现上下波动的趋势,这是由于覆冰导线表面的粗糙程度不同引起的;覆冰时间的增加会使雨凇和混合凇覆冰导线起晕电压持续下降,而雾凇覆冰导线起晕电压则先下降后升高,但起晕电压的变化速度均会逐渐变慢并最终趋于饱和。覆冰水电导率对交流电场下的导线覆冰形态几乎没有影响,也不会对雾凇和混合凇覆冰导线的起晕电压产生影响,但电导率的增加会使湿冰表面放电区域扩大,因此雨凇覆冰导线起晕电压会下降。
     本文首次提出了覆冰粗糙系数W以表征覆冰对导线表面电场及起晕电压的影响程度。为研究覆冰对导线电场的影响规律,本文根据不同覆冰形态建立了导线表面的电场分布模型,利用有限元法计算了冰棱尖端的电场强度。结果表明:不同电场强度覆冰后的导线由于粗糙程度不同,因此覆冰对导线电场的畸变影响也不同;和清洁导线相比,覆冰会使导线表面电场强度增大,这是由于尖锐的冰棱会使电场分布发生畸变引起的;覆冰程度的增加会使雨凇表面电场强度继续增大;雾凇由于干增长特性会在导线表面生成较粗的冰厚,从而弱化冰树枝对电场畸变的影响,故雾凇表面电场强度程度随覆冰时间的增加而逐渐减小;相同覆冰时间内,覆冰对导线表面电场的畸变作用,始终是细导线>粗导线>分裂导线的趋势;利用Matlab对覆冰粗糙系数W和起晕电压Uc进行拟合,所得到的经验公式可以快速计算雨凇和雾凇覆冰后的导线起晕电压。
     本文首次在湖南省雪峰山自然覆冰试验现场研究了大气环境中过冷却水滴靠近导线表面时的受力情况和电晕放电现象,利用三段式电晕笼和Q-V法对导线覆冰前后的电晕放电量和放电功率等信号进行了测量研究。结果表明:空间离子浓度决定了水滴荷电后在电场中的受力情况,随着电场强度的增加水滴受力也会更大;覆冰之初的电晕放电主要由沉积放电引起,覆冰过程中的电晕放电主要由沉积放电和冰棱尖端放电引起,而覆冰停止后的电晕放电几乎全部来源于冰棱尖端的放电作用;覆冰过程的沉积放电和冰面电晕放电量均具有随机性且近似服从正态分布;正、负半周期的电晕放电量会随覆冰时间的增加而出现峰值,之后电晕放电量会继续增加直至出现饱和,最后略微减少;正、负半周期的总放电量几乎都相同,仅少部分周期的放电量不一致;5~10kV/cm电场强度下雨凇的放电量、放电功率比雾凇下小,而15~20kV/cm情况则正好相反;不同电导率对雾凇覆冰导线的电晕放电量几乎没有影响,而雨凇覆冰后导线的放电量与放电功率均随电导率的增加而增加,但雨凇覆冰在20kV/cm下的放电量幅值受电导率的影响小于10kV/cm时的情况。
China has a large land area and most places about70%are at high altitudes whilethe micro climate characteristics are various, due to the development strategy of “powertransmission from west to East, mutual supply between South and North, nationwideinterconnection”, the transmission lines have to go across some extremely complexenvironments such as icy, snowy or rainy climates and so on during the transmissionprocess. And roughness brought by external surroundings will directly affect the safetyoperation of the power grid. Super-cooled water droplets may cause the micro-dischargeunder the affection of winds when they are close to the transmission line surface, andthe ice on conductor surface will change the original shapes or even causes the partialcorona effect, which may lead to the conductor’s corona onset voltage decline andcorona loss. Electromagnetic pollution, circuit aging problems caused by thisphenomenon should be paid more attention. At present, the domestic and foreignscholars have carried out some researches on transmission line icing, but most of themignored the practical significance of energized icing, so there are some differencesbetween the theoretical conclusions and engineering practices. And in addition, theydidn’t study the influence law of ice on corona onset voltage and corona dischargethoroughly. Therefore in this paper, researches were carried out on the impact ofdifferent ice coating types on the corona onset characteristics of transmission line whichhas important academic significance and engineering value.
     In this paper, the artificial climate chamber was used to simulate three kinds ofcommon icing types, namely glaze, rime and mixed-phase icing, while seven different(in diameters, types and splits) kinds of conductors were iced in this chamber underdistinct field strength. Optical radiation mechanism based on the cathode surface,combined with the UV imaging technology and the photon number fitting were firsttime used to analyze the corona onset voltage of conductors before and after the icecoating. Results show that: the shapes of conductors’ surfaces are very different whenthey were iced in different fields. Corona onset voltage values of bare wire are largerthan those of iced conductors, even minimal icing will decline the corona onset voltagevalues to about40%~60%of bare wires’ values. As the field strength increases from0to20kV/cm, the inception voltage of glaze and hard rime icing surface firstlydecreased and then increased, while the soft rime surface showed a fluctuation trend which dropped, rose, dropped again and rose again, the difference was due to thedistinct ice shapes which formed in diverse field strengths. Corona onset voltage of theglaze and mixed-phase icing surface declined continuously along with the increase ofthe ice extent, while the rime surface first decreased and then increased, the change rateof them slowed down gradually with the ice amount saturated. The conductivity withdifferent concentrations had little effect on the ice morphology, and it would not affectthe corona inception voltage of rime and mixed-phase icing, higher conductivityincreased the discharge area of glaze surface and led to corona inception voltage dropeventually.
     This paper presents for the first time the ice roughness coefficient W tocharacterize how the icing affects the field strength and corona onset voltage. To studythe influence of ice coating on the wire surface field, this paper established the fielddistribution model according to the different icing shapes, maximum field strength oficed surface was calculated by using the finite element method, the concept of icingroughness coefficient W was put forward to characterize the how the icing affect thefield distribution and corona onset voltage. Results show that: different AC field leads todistinct ice morphology and roughness, so the electric field distortion on the wiresurface by icicle is different. Compared to the bare wire, ice will raise the electric fieldstrength on conductor surface greatly, this is because the ice surface is so rough that theicicle tips will distort the field. Increase of ice extent will distort the electric field ofglaze surface more seriously, while the increase speeds of partial field strength slowsdown. Rime’s dry growth characteristics will produce greater ice thickness, thus mayweaken the distortion effect of ice-tree, so the maximum field strength of rime surfacewill be reduced with the increasing icing time. During the same icing time, distortioneffect on electric field always shows a trend namely a thin wire> coarse wire> bundleconductor. The ice roughness coefficient W and corona onset voltage Ucare fitted byMatlab, the empirical formula obtained can quickly calculate the glaze and rime icingconductor’s corona onset voltage.
     To study the corona discharge caused by super-cooled water droplets close to thewire surface, the test was established for the first time in Hunan province Xuefengmountain, combined with the corona cage and Q-V method to analyze the coronadischarge quantity and discharge power during the energized icing, results show that:the force tendency of water droplets in the field after charged was decided by the ionconcentration, the force extent will increase as the background field strength rises. At the beginning of icing, corona discharge on the wire surface is the mainly caused by themicro discharge, then during the icing process is mainly caused by the water dropletsand rough surface, and the corona discharge was mostly caused by the icicle tips afterthe icing stops. Micro discharge and corona discharge on the conductor surface are allrandom which approximate the normal distribution. The positive and negative coronadischarge will reach the peak level with the increase in icing time, and then the coronadischarge will be saturated or even slightly reduced later. The total discharge quantitiesof positive and negative are almost the same, only a small part of the discharge cycle isnot consistent. Discharge capacity and power of glaze are smaller than the rime under5~10kV/cm, but in15~20kV/cm the situation is opposite. Different conductivity hasno effect on the rime discharge capacity, while the discharge quantity and dischargepower of glaze increased as the conductivity rose, the glaze discharge amplitude in20kV/cm influenced less than10kV/cm by conductivity.
引文
[1]李庆峰,范峥,吴穹,等.全国输电线路覆冰情况调研及事故分析[J].电网技术,2008,32(9):33-36.
    [2]阳林,郝艳捧,黎卫国,等.输电线路覆冰与导线温度和微气象参数关联分析[J].高电压技术,2010,36(3):775-781.
    [3] Liu Y, Gao S, Huang D, et al. Icing flashover characteristics and discharge process of500kVAC transmission line suspension insulator strings[J]. IEEE Transactions on Dielectrics andElectrical Insulation,2010,17(2):434-442.
    [4]张志劲,黄海舟,蒋兴良,等.交流输电导线覆冰增长及临界防冰电流的试验研究[J].高电压技术,2012,38(2):469-475.
    [5] Otto A J, Reader H C. Wideband and narrowband HVDC conductor corona test methods forradio noise prediction [J]. IEEE Transactions on Power Delivery,2010,25(4):2950-2957.
    [6]李敏,曾嵘,余占清,等.高海拔地区直流输电线路的电晕损耗[J].高电压技术,2011,37(3):746-751.
    [7]赵宇明,麻敏华,关志成,等.导线污秽对高压直流输电线路电晕特性的影响[J].高电压技术,2007,33(12):49-54.
    [8]林晓宇,陈仕修,张晓敏,等.高压输电线路电晕放电电磁辐射影响分析[J].电力环境保护.2004,20(3):60-62.
    [9]付启明,袁建生.绞线花纹导线表面电场强度计算与分析[J].高电压技术,2007,33(4):77-79.
    [10] Merbahi N, Yousfi M, Gardou J P. Electric and Spectroscopic Analysis of Surface CoronaDischarges in Ambient Air and Comparison With Volume Corona Discharges[J]. IEEETransactions on Plasma Science,2012,40(4):1167-1176.
    [11]舒立春,宫林,蒋兴良,等.水滴或污秽对导线电晕放电起始特性的影响[J].高电压技术,2008,34(4):633-637.
    [12] Hu Q, Shu L, Jiang X, et al. Effect of atmospheric parameters on AC corona onset voltage ofconductors[C]. IEEE International Conference on High Voltage Engineering and Application(ICHVE),2010:417-420.
    [13] Farzaneh M, Teisseyre Y. Mechanical vibration of HV conductors induced by corona: roles ofthe space charge and ionic wind[J]. IEEE Transactions on Power Delivery,1988,3(3):1122-1130.
    [14] Trinh N G, Maruvada P S, Poirier B. A comparative study of the corona performance ofconductor bundles for1200kV transmission lines[J]. IEEE Transactions on Power Apparatusand Systems,1974,93(3):940-949.
    [15]蒋兴良,张满,舒立春,等.分裂导线混合凇带电覆冰后的起晕电压跌落研究[J].电工技术学报,2013,28(10):47-58.
    [16]胡琴,舒立春,蒋兴良,等.不同大气参数及表面状况下导线交流起晕电压的预测[J].高电压技术,2010,36(7):1669-1674.
    [17] Yamazaki K, Olsen R G. Application of a corona onset criterion to calculation of coronaonset voltage of stranded conductors[J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2004,11(4):674-680.
    [18]范建斌,谷琛,殷禹,等.特高压直流输电设备电晕特性的海拔校正[J].高电压技术,2009,35(12):2881-2885.
    [19]陈吉,蒋兴良,舒立春,等.雨凇对导线起晕电压影响规律的研究[J].电网技术,2013,37(7):2035-2040.
    [20]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2001.
    [21] Huneault M, Langheit C, Caron J. Combined models for glaze ice accretion and de-icing ofcurrent-carrying electrical conductors[J]. IEEE Transactions on Power Delivery,2005,20(2):1611-1616.
    [22]苑吉河,蒋兴良,易辉,等.输电线路导线覆冰的国内外研究现状[J].高电压技术,2004,30(1):6-9.
    [23]蒋兴良,申强.环境参数对导线覆冰厚度影响的试验分析[J].高电压技术,2010,36(5):1096-1100.
    [24] Hu Q, Li T, Shu L, et al. Dynamic characteristics of the corona discharge during the energisedicing process of conductors[J]. IET Generation, Transmission&Distribution,2013,7(4):366-373.
    [25]舒立春,李特,蒋兴良,等.交流电场强度对导线雾凇覆冰特性的影响[J].中国电机工程学报,2012,32(19):140-147.
    [26]蒋兴良.带电导线覆冰及电场对导线覆冰的影响[J].高电压技术,1999,25(2):58-60.
    [27]蒋兴良,杜珍,王浩宇,张志劲.重庆地区输电线路导线覆冰特性[J].高电压技术,2011,37(12):3065-3069.
    [28] Jaiswal V, Farzaneh M, Lowther D A. Calculation of potential distributions alongsemiconducting glazed insulator for impulse voltages under icing conditions[C]. IEEECanadian Conference on Electrical and Computer Engineering,2003,1:631-634.
    [29]律方成,戴日俊,王胜辉,等.基于紫外成像图像信息的绝缘子表面放电量化方法[J].电工技术学报,2012,27(2):261-268.
    [30] Jiang X, Ma J, Zhang Z, et al. Effect of hydrophobicity coating on insulator icing and DCflashover performance of iced insulators[J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2010,17(2):351-359.
    [31] I. Imai and Ichiro. Studies on Ice Accretion [J]. Researches on Snow and Ice,1953,7(1):35-44.
    [32] Makkonen L. Models for the Growth of Rime, Glaze, Icicles and Wet Snow on Structures[J].Philosophical Transactions: Mathematical, Physical and Engineering Sciences.2000,358(1776):2913-2939.
    [33]马俊.电场对输电线路绝缘子覆冰及放电特性的影响研究[D].重庆:重庆大学,2010.
    [34] Barry R G. Icing on Electric Wires[J]. Reviews of Geophysics.1983,21(3):765-776.
    [35] Teisseyre Y, Farzaneh M. On The Mechanisms of The Ice Accretion on HV Conductors[J].Cold Regions Science and Technology.1990,18(1):1-8.
    [36]李特.交流电场强度对导线覆冰特性的影响研究[D].重庆:重庆大学,2012.
    [37]邵德军,尹项根,陈庆前,等.2008年冰雪灾害对我国南方地区电网的影响分析[J].电网技术.2009,33(5):38-43.
    [38] Bian X B, Yu D Y, Chen L C, et al. Influence of aged conductor surface conditions on ACcorona discharge with a corona cage[J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2011,18(3):809-818.
    [39]黄宏新,刘士源.交流电晕放电特性的影响因素研究[J].河北电力技术,2010,29(3):42-45.
    [40]陈勇,万启发,霍锋,等.1000kV交流输电线路导线的电晕特性[J].高电压技术,2007,33(11):43-45.
    [41]曹晶,张勤,杨迎建,等.高海拔交流输电线路金具电晕放电特性[J].高电压技术,2011,37(12):2924-2929.
    [42]杨津基.气体放电[M].科学出版社,1983.
    [43] Ohyama R, Kaneko K, Chang J S. Flow visualization and image analysis of gas-phase ACcorona discharge induced electrohydrodynamic liquid flow in a stratified fluid[J]. IEEETransactions on Dielectrics and Electrical Insulation,2003,10(1):57-64.
    [44]梁曦东,陈昌渔,周远翔.高电压工程[M].清华大学出版社,2003.
    [45]胡琴.低气压下输电线路导线电晕特性及影响因素的研究[D].重庆:重庆大学博士学位论文,2010.
    [46] Abdel-Salam M, Farghaly M, Abdel-Sattar S. Monopolar corona on bundle conductors[J].IEEE Transactions on Power Apparatus and Systems,1982,101(10):4079-4089.
    [47]朱德恒,严璋.高电压绝缘[M].北京;清华大学出版社,1992.
    [48]孙才新,电工技术,司马文霞,等.大气环境与电气外绝缘[M].中国电力出版社,2002.
    [49]宫林.低气压下导线表面状况对电晕放电起始特性影响的研究[D].重庆大学,2008.
    [50] Abdel-Salam M, Al-Hamouz Z. A finite-element analysis of bipolar ionized field[J]. IEEETransactions on Industry Applications,1995,31(3):477-483.
    [51]米俊锋.磁场,雾化共同作用下电晕放电机理及对微小颗粒荷电与捕集的研究[D].东北师范大学,2010.
    [52]郑亚利,俞集辉,汪泉弟,等.电晕放电对超高压输电线路工频电场的影响[J].高电压技术,2009,35(4):872-876.
    [53]尤少华.基于电晕笼的特高压交流输电线路导线电晖损失特性研究[D].华北电力大学,2012.
    [54] Abdel-Salam M, Abdel-Sattar S. Calculation of corona V-I characteristics of monopolarbundles using the charge simulation method [J]. IEEE Transactions on Electrical Insulation,1989,24(4):669-679.
    [55]冯治国.高压输电导线电晕放电的数值解析[D].哈尔滨理工大学,2010.
    [56] Newell H H, Liao T W, Warburton F W. Corona and RI Caused by Particles On or Near EHVConductors: II-Foul Weather[J]. IEEE Transactions on Power Apparatus and Systems,1968,87(4):911-927.
    [57] L. Boulet J J. A-C Corona in Foul Weather: corona loss Above Freezing Point[J]. IEEETransactions on Power Apparatus and Systems.1964,83(5):508-512.
    [58]胡琴,舒立春,蒋兴良,等.大气参数对导线交流起晕电压的影响及校正[J].电网技术,2010,34(11):70-76.
    [59] Jaiswal V, Farzaneh M. Flashover performance of a semi-conducting glazed post stationinsulator under icing conditions based on electric field distributions[C]. IEEE Annual ReportConference on Electrical Insulation and Dielectric Phenomena,2005:10-13.
    [60] Hu Q, Li T, Shu L, et al. Dynamic characteristics of the corona discharge during the energisedicing process of conductors[J]. IET Generation, Transmission&Distribution,2013,7(4):366-373.
    [61]蒋兴良,孙才新,顾乐观,陆宠惠.三峡地区导线覆冰的特性及雾凇覆冰模型[J].重庆大学学报:自然科学版,1998,21(2):16-19.
    [62] Peek F W. Dielectric phenomena in high voltage engineering[M]. McGraw-Hill BookCompany, Incorporated,1920.
    [63] Maruvada P S, Menemenlis H, Malewski R. Corona characteristics of conductor bundlesunder impulse voltages[J]. IEEE Transactions on Power Apparatus and Systems,1977,96(1):102-115.
    [64] Harid N, Waters R T. Statistical study of impulse corona inception parameters on lineconductors[J]. IEE Proceedings A (Science, Measurement and Technology),1991,138(3):161-168.
    [65]欧阳科文.直流导线电晕起晕电压的影响因素及计算方法研究[D].华北电力大学,2012.
    [66]王伟,丁燕生,李成榕,等.空气温度对电晕笼中导线直流电晕特性的影响[J].高电压技术,2009,35(3):613-617.
    [67] Sarkar M D, Gill N L, Whitehead J B, et al. Effect of monomer functionality on themorphology and performance of the holographic transmission gratings recorded on polymerdispersed liquid crystals[J]. Macromolecules,2003,36(3):630-638.
    [68]任雷剑.输电线路导线电晕特性及起晕电压的海拔校正研究[D].华北电力大学,2008.
    [69]安冰,丁燕生,王伟,等.湿度对电晕笼中导线直流电晕特性的影响[J].电网技术,2008,32(24):98-100.
    [70]孟晓波,卞星明,赵雪松,等.环境因素对正直流架空导线起晕电压的影响[J].高电压技术,2010,36(8):1916-1922.
    [71]马维存.高海拔地区大气条件对500千伏输变电工程用绝缘子金具和导线起晕电压及绝缘子串电压分布的影响[R].武汉高压研究所,云南省电力试验研究所,1989.
    [72]陆宠惠等.高海拔外绝缘及电晕特性的研究报告[R].武汉高压研究所,1990.
    [73]邱毓昌.高电压工程[M].西安交通大学出版社,1995.
    [74]邱毓昌. GIS装置及其绝缘技术[M].水利电力出版社,1994.
    [75] Parekh H, Srivastava K D. Effect of avalanche space charge field on the calculation of coronaonset voltage[J]. IEEE Transactions on Electrical Insulation,1979,14(4):181-192.
    [76]钟一俊.特高压输电技术研究和应用综述[D].杭州:浙江大学,2008.
    [77]蒋兴良,张满,胡建林,等.混合凇覆冰对导线起晕电压的影响研究[J].电网技术,2013,37(9):2534-2540.
    [78] El-Makkawy S M. Computation of electric stress and corona onset voltage in air gaps withfloating particles[C]. IEEE12th International Middle-East Power System Conference,2008:90-95.
    [79] Yamada K. An empirical formula for negative corona discharge current in point-gridelectrode geometry[J]. Journal of applied physics,2004,96(5):2472-2475.
    [80]林锐.直流正极性下导线电晕放电特性及影响因素的研究[D].重庆大学,2009.
    [81]刘正响,陆宠惠.海拔高度对导线起晕电压影响的研究[J].高电压技术,1988,14(3):38-41.
    [82] Sebo S A, Heibel J T, Frydman M, et al. Examination of ozone emanating from EHVtransmission line corona discharges[J]. IEEE Transactions on Power Apparatus and Systems,1976,95(2):693-703.
    [83] Salama M M A, Parekh H, Srivastava K D. A comment on the methods of calculation ofcorona onset voltage[J]. Applied Physics Letters,1977,30(3):139-141.
    [84]刘有为,李继红,李斌.空气密度和湿度对导线电晕特性的影响[J].电网技术,1990,14(4):46-50.
    [85]谢书勇,王韵.高压输电导线电晕特性探讨[J].高压电器,1996,32(5):20-22.
    [86]王会斌.基于紫外成像的不同海拔下导线起晕特性的研究[D].华北电力大学硕士学位论文,2009.
    [87] Ray-Chaudhuri A K, Krenz K D, Fields C H. At-wavelength characterization of an extremeultraviolet camera from low to mid-spatial frequencies with a compact laser plasma source[J].Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures,1997,15(6):2462-2466.
    [88]戴利波.紫外成像技术在高压设备带电检测中的应用[J].电力系统自动化,2003,27(20):97-98.
    [89]迟殿林,曾庆立.用紫外成像检测电气设备外绝缘状况[J].东北电力技术,2005,26(1):22-23.
    [90]肖猛,文曹.一种新型绝缘子带电检测方法-紫外成像法[J].高电压技术,2006,32(6):42-44.
    [91]傅晨钊,周建国,肖嵘,等.紫外电晕检测仪检测线路绝缘子的模拟试验[J].华东电力,2005,33(6):50-53.
    [92]马斌,周文俊,汪涛,等.基于紫外成像技术的极不均匀电场电晕放电.高电压技术,2006,32(7):13~16.
    [93] Jiang X, Chen L, Zhang Z, et al. Equivalence of influence of pollution simulating methods onDC flashover stress of ice-covered insulators[J]. IEEE Transactions on Power Delivery,2010,25(4):2113-2120.
    [94]蒋兴良,申强.环境参数对导线覆冰厚度影响的试验分析[J].高电压技术,2010,36(5):1096-1100.
    [95]范松海.输电线路短路电流融冰过程与模型研究[D].重庆大学,2010.
    [96] Jiang X, Chao Y, Zhang Z, et al. DC flashover performance and effect of sheds configurationon polluted and ice–covered composite insulators at low atmospheric pressure[J]. IEEETransactions on Dielectrics and Electrical Insulation,2011,18(1):97-105.
    [97]唐剑,杨迎建,何金良,等.1000k级特高压交流电晕笼设计关键问题探讨[J].高电压技术,2007,33(4):1-5.
    [98] You S, Lu F, Liu Y, et al. Discussion on problems of single conductor small corona cage'sdesign[C]. IEEE International Conference on Electrical and Control Engineering (ICECE),2011:2187-2190.
    [99]冯天佑,陈豫朝,张广洲,等.嵌套在人工气候罐中的电晕笼设计[J].高电压技术,2010,36(12):2930-2936.
    [100] Zangeneh A, Gholami A, Zamani V. A new method for calculation of corona inceptionvoltage in stranded conductors of overhead transmission lines[C]. IEEE International Powerand Energy Conference,2006:571-575.
    [101] Andrews J G, Shrapnel A J. Electric-field distribution around an isolated strandedconductor[J]. Proceedings of the Institution of Electrical Engineers,1972,119(8):1162-1166.
    [102] Huneault M, Langheit C, Caron J. Combined models for glaze ice accretion and de-icing ofcurrent-carrying electrical conductors[J]. IEEE Transactions on Power Delivery,2005,20(2):1611-1616.
    [103]蒋兴良,林锐,胡琴,等.直流正极性下绞线电晕起始特性及影响因素分析[J].中国电机工程学报,2009,29(34):108-114.
    [104]慧建峰.不同气压湿度条件下电晕及流注放电特性的研究[D].北京:清华大学,2007.
    [105] Abdel-Salam M. Positive wire-to-plane coronas as influenced by atmospheric humidity[J].IEEE Transactions on Industry Applications,1985,21(1):35-40.
    [106] Xu M, Tan Z, Li K. Modified peek formula for calculating positive DC Corona inceptionelectric field under variable humidity[J]. IEEE Transactions on Dielectrics and ElectricalInsulation,2012,19(4):1377-1382.
    [107] Zheng Y, He J, Zhang B, et al. Surface electric field for negative corona discharge inatmospheric pressure air[J]. IEEE Transactions on Plasma Science,2011,39(8):1644-1651.
    [108]郑天茹.特高压输电线路上尖端电晕放电的研究[D].山东大学,2010.
    [109]雷晓燕.有限元法[M].中国铁道出版社,2000.
    [110]马俊,蒋兴良,张志劲,等.交流电场对绝缘子覆冰形成的影响机理[J].电网技术,2008,32(5):7-11.
    [111]王凤鸣.静电除尘器荷电粒子在电场中运动方式研究[D].保定:河北大学,2006.
    [112] O'Konski C T, Thacher H C. The Distortion of Aerosol Droplets by an Electric Field[J]. TheJournal of Physical Chemistry.1953,57(9):955-958.
    [113]杨长河.气水混合两相体放电现象及机制的理论与实验研究[D].武汉:华中科技大学,2005.
    [114] Abdelsalam M, Shamloul D. Computation of Ion-flow Fields of AC Coronating Wires ByCharge Simulation Techniques[J]. IEEE Transactions on Electrical Insulation.1992,27(2):352-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700