用户名: 密码: 验证码:
大规模电力系统动态等值方法及相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力系统的发展,现代电力系统逐渐形成了巨大的互联模式,以求提高电能质量和供电可靠性。如何保证大系统的安全稳定运行是一个重大而迫切的问题。一方面,由于系统元件众多,对其详细建模进行暂态稳定分析是很困难的;另一方面,受到软件资源规模的限制(如RTDS、EMTDC等软件),不可能对系统中所有元件进行详细建模。采用动态等值技术化简系统是解决这个问题的有效措施。本文针对大规模电力系统的动态等值方法及相关问题进行了较为深入的探讨,主要工作成果包括:
     1、提出用于发电机同调识别的粒子群-模糊c均值聚类算法(PSO-FCM)。该算法把聚类中心数作为粒子进行编码,利用粒子群优化的并行性和全局搜索能力,通过不断更新粒子的速度和位置实现寻优,并克服了模糊c均值聚类对初值的依赖和易陷入局部极值的缺点。文中还构造了3个聚类有效性函数进行聚类效果的评价。IEEE10机39节点系统仿真表明,该算法具有快速、准确、简单、易实现的特点,有效解决了同调发电机的识别问题,可用于电力系统不同运行方式下的发电机同调识别。
     2、提出用于发电机同调识别的改进PSO-FCM算法。为提高PSO-FCM算法的收敛性能,在PSO速度公式中增加收敛因子和随机选取粒子的某个个体极值为扰动量,目的是增加粒子的多样性、避免粒子产生聚集而出现早熟,从而使算法收敛到全局最优。仿真表明,改进的PSO-FCM算法除保留了PSO-FCM的优点外,还改善了算法的收敛性,改进的PSO-FCM算法适用于同调发电机的识别。
     3、基于电力系统大型分析工具PSD-BPA和等值软件PSDEP,以海南电网为背景对同调等值法进行工程应用研究。首先,给出等值的总体原则。其次,为弥补PSDEP中等值机Powell优化聚合算法的不足,用加权法作为等值机参数聚合的补充,并提出用于等值机加权聚合参数优化的自适应差分进化算法。其中,差分进化算法(DE)中的缩放因子和交叉概率因子采用自适应策略。最后仿真表明,海南电网数据规模被压缩近6倍,等值前后系统的潮流分布基本相同、动态特性基本一致。DE的自适应设计改善了算法的收敛性,提高了等值机参数聚合的精度。基于改进加权法的同调等值方法可用于大规模电力系统的动态等值化简。
     4、基于小扰动分析程序PSD-SSAP,提取系统特征值分析的相关因子为特征量,并提出基于大型统计软件SPSS的k均值聚类和系统聚类相结合的发电机同调分群方法。根据同调分群结果,可把同调发电机组进行聚合从而化简系统,亦可作为安装PSS机组的选择依据。本文提出强相关同调机组安装PSS的策略,并给出多机PSS参数整体协调优化的混沌粒子群算法(CPSO)。CPSO克服了粒子群早熟和混沌搜索对初值敏感的缺点,具有不依赖初值、搜索快速、遍历性的特点。海南电网SSAP仿真表明,基于发电机同调分群的PSS协调优化配置有效提高了系统的阻尼。该方法不但解决了小扰动时发电机同调分群问题,且对多机PSS的合理配置提出了解决方案,提高了系统的小干扰稳定性,具有较好的工程应用前景。
     5、提出新的在线估计等值方法。该方法首先给出等值发电机+综合负荷的等值系统模型。其中,发电机采用较精细的六阶模型,综合负荷模型包括静态ZIP负荷和三阶动态感应电动机负荷。其次,提出基于差分进化算法(DE)的等值系统参数辨识策略。为解决DE存在的早熟收敛问题,构造变异方式不同的两个差分进化群,两群并行进化,且定时交换信息,目的是增加种群的多样性、改善算法的收敛性。仿真表明,改进的双群体差分进化算法有效解决了等值系统的参数辨识问题,算法简单、收敛快、鲁棒性好,辨识的参数精度较高。建立的等值系统模型更符合电网实际,等值后外部系统的动态特性基本被保留。所提新的估计等值法可用于在线大规模系统外部系统的等值化简。
     6、提出感应电动机负荷的同调分群和聚合方法。首先,根据提取的反映电动机动态特性的特征量,提出用于同调电动机负荷分群的混沌粒子群-模糊c均值聚类算法(CPSO-FCM)。用CPSO的快速性、随机初始化和并行寻优能力,克服FCM依赖于初值和易陷入局部最优的缺点,并用有效性函数对聚类结果进行评价。其次,提出同调感应电动机负荷聚合的辨识策略,并提出等值负荷参数辨识的改进双群体差分进化算法。仿真表明:分群算法收敛快、鲁棒性好,辨识的负荷参数精度高,等值系统完全保留了原始系统的动态特性。该方法可用于在线估计等值中大量感应电动机负荷的等值化简。
     本文研究工作得到了国家高技术研究发展计划(863计划)(No.2011AA05A102)的资助。
With power system development, modern power system is gradually grown up towardsinterconnection of large scale so as to enhance the quality of electric energy and the reliabilityof power supply. Thus, how to guarantee safe and stable operation for large scale powersystems becomes a significant and urgent issue. Major challenges include the difficulty toanalyze transient stability for such large scale power systems with numerous elements modeledin detail on one hand, and the limited professional software capability on the other hand, suchas Real Time Digital Simulator (RTDS), Electro Magnetic Transient in DC System (EMTDC),etc. Using dynamic equivalence technology to reduce power systems is considered to be aneffective measure to solve this problem. In order to improve dynamic equivalence method andits related technology for large scale power systems, some research has been done in thedissertation, and main key points as follows:
     1. An algorithm marked as PSO-FCM, namely, the Fuzzy c-means Clustering (FCM)based on the Particle Swarm Optimization (PSO), is presented to solve the partition problem ofcoherent generators. In this algorithm, the cluster center is taken as a particle for encoding, andthe parallel property and the global searching capacity of the PSO algorithm are applied to theoptimization through continuously renewing the velocity and position of the particles. Thus,the dependency of the FCM algorithm upon the initial value and the risk of falling into localoptimum are largely reduced. Moreover, in order to evaluate the clustering validity, threevalidity functions are constructed. Simulated results on IEEE10-generator39-bus system showthat the PSO-FCM algorithm is suitable for the partition of coherent generators of powersystems in various operation modes because it is of simplicity, easy realization, high accuracyand high speed.
     2. An algorithm marked as modified PSO-FCM is presented to solve the partitionproblem of coherent generators. In order to improve PSO-FCM convergence performance, twoways are presented: convergence factor and disturbance introduced to the formula ofPSO velocity by randomly selecting optimal position of particle, which can increase diversityof particle swarm and avoid premature on account of aggregation of particle. The modifiedalgorithm can easily converge to global optimum. Simulated results show that the MPSO-FCM algorithm is suitable for the partition of coherent generators due to the improved convergenceperformance the original advantages of PSO-FCM.
     3. The dynamic equivalent based on coherency is studied on Hainan Power Grid by thePower System Dynamic Equivalence Program (PSDEP) and large simulation tool PSD-BPAfor power systems. First, the overall principle of dynamic equivalence is presented. Second, inorder to remedy the deficiency of Powell optimization algorithm in PSDEP which is used toaggregate equivalent generators, weighting method is presented as supplement to aggregateparameter of coherent generators, and then Differential Evolution (DE) algorithm which hasexcellent property is presented to optimize parameter of equivalent generators acquired byweighting method. Self-adaptive strategy is adopted for zoom factor and crossover probabilityfactor in DE. Finally, simulated results show that the data scale of Hainan Power Grid isreduced six times approximately, and the power flow of equivalent system is almost identicalwith original system, and the main dynamic characteristics of original system retain well. Thealgorithm convergence and precision of equivalent generators’ parameters are improved byself-adaptive strategy in DE. The coherency-based dynamic equivalent method by modifiedweighting method is suitable for reducing large scale power systems.
     4. Based on small signal analysis procedure SSAP, correlation factor of eigenvalueanalysis for systems is selected as characteristic quantity, and a method combining k-meansclustering and hierarchical clustering is proposed to identify generators with large-scalestatistical software-Statistical Package for Social Sciences (SPSS). On the basis of result ofcoherent generators’ identification, it can aggregate coherent generators to simplify powersystems, and also serve as selecting principle of generators with PSS installed. It proposes thatPSS is installed in strongly correlated generators, and Chaotic Particle Swarm Optimization(CPSO) algorithm for PSS parameters optimization is presented. The disadvantage of PSO,leading into local optimum, and that of chaotic search, sensitive to initial value, are overcomein CPSO. CPSO is independent on initial value, high speed and good ergodic property. Bytesting on Hainan Power Grid based on SSAP, it is concluded that the damp of system isimproved after coordinated optimization of PSS parameters based on coherent identificationresult of generators. The method is effective to solve the problem of identification coherentgenerators in small signal analysis, and also presents a solution of reasonable allocation of multi-generator’ PSS. The small signal stability is enhanced for power systems with themethod, which has a better prospect in engineering application.
     5. A new method of estimation dynamic equivalence used for online is presented. First,the model of external equivalent system which comprised equivalent generator and compositeload is given. In equivalent system model, refined six-order model of generator is adopted, andstatic state ZIP load combining three-order dynamic inductive motor are included in compositeload model. Then, it is presented the identification strategy based on Differential Evolution(DE) algorithm. In order to solve premature problem of DE, double differential evolutionswarms with different variation are formed, and considering double swarms parallel evolution,and exchange message at regular time. The aim is to increase diversity of swarms and improveconvergence of DE. Simulated result shows that the method is effective to parameteridentification problem of equivalent system. The algorithm is simple and rapid, and it is higheraccuracy and better robustness for identified parameter. Equivalent system model obtained isbetter accord with practical power system, and equivalent system can preserve main dynamiccharacteristics of external system well. The new estimation equivalent method can be used toreduce external system of large scale power systems online.
     6. A method for identification and aggregation coherent inductive motor loads is proposed.Firstly, it is presented the algorithm of Fuzzy c-means Clustering by Chaotic Particle SwarmOptimization (CPSO-FCM) to identify coherent motors, on the basis of the characteristicswhich reflect the dynamic performance of motor. The merits of CPSO algorithm areconvergence to optimal value rapidly, independence initial value, and parallel search so as toovercome FCM’ disadvantage which is upon the initial value and has the risk of falling intolocal optimum. A validity function is constructed so as to evaluate the clustering validity.Secondly, identification strategy is employed to aggregate coherent inductive motor loads, andthe parameter of equivalent motor load is acquired by using modified double swarms DE. Bytesting on IEEE10-generators39-bus system, the conclusion is presented that CPSO-FCMalgorithm is rapid convergence and robust. It has high accuracy of identified load parameter,and equivalent system can preserve the main dynamic characteristics of original system well.The method can be used to simplify mass inductive motor loads in online estimationequivalence.
     This dissertation is supported by the National High Technology Research andDevelopment Program of China (863Program)(2011AA05A102).
引文
[1]丁道齐.现代电网的发展与安全[M].北京:清华大学出版社,2012
    [2]韩祯祥,薛禹胜,邱家驹.2000年国际大电网会议系列报道——电网互联的现状和前景[J].电力系统自动化,2000,24(24):1-4
    [3]王梅义,吴竟昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995
    [4]谢惠藩.交直流互联电网紧急直流功率支援研究[D].广州:华南理工大学,2009
    [5]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6
    [6]韩祯祥,吴浩,薛禹胜.2006年国际大电网会议系列报道——(一)主题报告及综合讨论会[J].电力系统自动化,2006,30(20):1-4
    [7]黄河,徐光虎,余畅.2008年南方电网冰灾期间孤网运行经验[J].南方电网技术,2008,2(5):6-9
    [8]赵建军,王春莉.2012年国际大电网会议系列报道——开幕式及综合研讨会[J].电力系统自动化,2012,36(22):1-5
    [9]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(l):8-16
    [10] Robin Podmore, Margaret Goodrich, David Becker, et al. Building a topologyestimator for large inter-regional networks [C]. Proceedings of the33rd HawaiiInternational Conference on System Sciences, Hawaii, USA,2000:1-7
    [11] Yixin Yu, Zhaofei Feng, Kefeng Hou, et al. Application of dynamic equivalentsin determining practical dynamic security region [C].2005IEEE/PESTransmission and Distribution Conference and Exhibition: Asia and Pacific,Dalian, China,2005:1-6
    [12] Kim H., Jang G., Song K. Dynamic reduction of the large-Scale power systemsusing relation factor [J]. IEEE Transactions on Power Systems,2004,19(3):1696-1699
    [13]胡学浩.美加联合电网大面积停电事故的反思和启示[J].电网技术,2003,27(9): T2-T6
    [14]辛耀中.2010年国际大电网会议系列报道——电力系统运行与控制[J].电力系统自动化,2010,34(23):1-4
    [15]袁季修.电力系统安全稳定控制[M].北京:中国电力出版社,1996
    [16]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002
    [17] Ourari M.L., Dessaint L.A., Do V.Q. Dynamic equivalent modeling of largepower systems using structure preservation technique [J]. IEEE Transactions onPower Systems,2006,21(3):1284-1295
    [18] Omer M. Awed-Badeeb. Decomposition and aggregation of multi-machinepower system models [D]. New York: Clarkson University,1993
    [19] Ramirez J.M. Power system reduced model by artificial neural networks [C].Proceedings of International Joint Conference on Neural Neworks, Montreal,Canada,2005:2607-2612
    [20] Pires de Souza E.J.S., Leite da Silva A.M. An efficient methodology forcohereney-based dynamic equivalents [J]. IEE Proeeedings C Generation,Transmission and Distribution,1992,139(5):371-382
    [21]杨靖萍.大规模互联电力系统动态等值方法研究[D].杭州:浙江大学,2007
    [22]姚海成,周坚,黄志龙,等.一种工程实用的动态等值方法[J].电力系统自动化,2009,33(19):111-115
    [23] Raymond R. Shoults, William Bierck Jr. Buffer system selection of asteady-state external equivalent model for real-time power flow using anautomated sensitivity analysis procedure [J]. IEEE Transactions on PowerSystems,1988,3(3):1104-1111
    [24] Xin Nie. Real-time digital simulation of large power systems based on a robusttwo-layre network equivalent [D]. Edmonton, Canada: University of Alberta,2005
    [25] Mohamed Abdel-Rahman. Frequency dependent hybrid equivalents of largenetworks [D]. Toronto, Canada: University of Toronto,2001
    [26]余贻鑫,陈礼义.电力系统的安全性和稳定性[M].北京:科学出版社,1985
    [27] Fang D.Z., Chung T.S., David A.K. Fast transient stability estimation using anovel dynamic equivalent reduction technique [J]. IEEE Transactions on PowerSystems,1994,9(2):995-1001
    [28] Miah A.M. Simple dynamic equivalent for fast online transient stabilityassessment [J]. IEE Proeeedings C Generation, Transmission and Distribution,1998,145(l):49-55
    [29] Lo C.M., Tse C.T. Application of cohereney-based dynamic equivalents in smallperturbation stability studies [C]. The2nd International Conference on Advancesin Power System Control, Operation and Management, HongKong,1993:916-921
    [30]张风营,朱守真.基于网络实时动态等值的自适应可控串补控制器[J].电网技术,2006,30(5):38-43
    [31] Wang Yu-peng, Wang Zhong-hong, Han Ying-Duo. A new external equivalentmodel for decentralized control design in multimachine power system [C].International Conference on Advances in Power System Contro1, Operation andManagement, HongKong,1991, l:86-89
    [32] Saeki M., Matsuoka H., Nagae Y., et al. Development and application of a newapproach to the construction of external equivalents for use by power systemstabilizing controllers [J]. Electrical Engineering in Japan,2001,134(4):1-9
    [33]汤勇,贺仁睦,鞠平,等.电力受端系统的动态特性及安全性评价[M].北京:清华大学出版社,2010
    [34]吴际舜.电力系统静态安全分析[M].上海:上海交通大学出版社,1987
    [35]张伯明,陈寿孙.高等电力网络分析[M].北京:清华大学出版社,1996
    [36]诸骏伟.电力系统分析(上册)[M].北京:水利电力出版社,1995
    [37] Podmore R. A comprehensive program for computing cohereney-based dynamicequivalents [C]. IEEE Conference Proceedings Power Industry ComputerApplications,1979, PICA-79:298-306
    [38] Ourari M.L., Dessaint L.A., Do V.Q. Generating units aggregation for dynamicequivalent of large power systems [C]. IEEE Power Engineering Society GeneralMeeting, Denver, CO, United States,2004,2:1535-1541
    [39]许剑冰,薛禹胜,张启平,等.电力系统同调动态等值的述评[J].电力系统自动化,2005,29(14):91-95
    [40]文俊,刘天琪,李兴源.在线识别同调机群的优化支持向量机算法[J].中国电机工程学报,2008,28(25):80-85
    [41] Alsafih H.A., Dunn R. Determination of coherent clusters in a multi-machinepower system based on wide-area signal measurement [C]. IEEE Power andEnergy Society General Meeting, Minneapolis, MN, United States,2010:1-8
    [42] Eduardo J. S. Pires de Souza. Identification of coherent generators consideringthe electrical proximity for drastic dynamic equivalents [J]. Electric PowerSystems Research,2008,78(7):1169-1174
    [43] Tao Chen, Jingyan Yang, Jianhua Zhang, et al. A new approach to coherencyidentification of generators clusters based on wide area measurement system [C].Asia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan,China,2009:1-4
    [44]周海强,鞠平,孔德超.基于机电距离的聚类方法在动态等值中的应用[J].电力系统自动化,2008,32(9):14-17
    [45] Sung-Kwan Joo, Chen-Ching Liu, Jones L.E., et al. Coherency and aggregationtechniques incorporating rotor and voltage dynamics [J]. IEEE Transactions onPower Systems,2004,19(2):1068-1076
    [46] Pyo G.C., Park J.W., Moon S.I. A new method for dynamic reduction of powersystem using PAM algorithm [C]. IEEE Power and Energy Society GeneralMeeting, Minneapolis, MN, United states,2010:1-7
    [47] Lee S.T.Y., Schweppe F.C. Distance measures and coherency recognition fortransient stability equivalents [J]. IEEE Transactions on Power ApparatusSystems,1973, PAS-92(5):1550–1557
    [48] Mariotto L., Pinheiro H., Cardoso G., et al. Power systems transient stabilityindices: an algorithm based on equivalent clusters of coherent generators [J]. IETGeneration, Transmission&Distribution,2010,4(11):1223–1235
    [49] Kamwa I., Pradhan A.K., Joos G. Automatic segmentation of large powersystems into fuzzy coherent areas for dynamic vulnerability assessment [J].IEEE Transactions on Power Systems,2007,22(4):1974-1986
    [50] Mang-Hui Wang, Hong-Chan Chang. Novel clustering method for coherencyidentification using artificial neural networks [J]. IEEE Transactions on PowerSystems,1994,9(4):2056-2062
    [51]史坤鹏,穆钢,李婷,等.基于经验模式分解的聚类树方法及其在同调机组分群中的应用[J].电网技术,2007,31(22):21-25
    [52] Cai G.W., Chan K.W., Yuan W.P., et al. Identification of the vulnerabletransmission segment and cluster of critical machines using line transientpotential energy [J]. International Journal of Electrical Power&Energy Systems,2007,29(3):199-207
    [53] Agrawal R., Thukaram D. Identification of coherent synchronous generators in amulti-machine power system using support vector clustering [C]. InternationalConference on Power and Energy Systems (ICPS), Chennai, India,2011:1-6
    [54] Lei Wang, Meir Klein, Solomon Yirga, et al. Dynamic reduction of large powersystems for stability studies [J]. IEEE Transactions on Power Systems,1997,12(2):889-895
    [55] Yusof S.B., Rogers G.J., Alden R.T.H. Slow coherency based networkpartitioning including load buses [J]. IEEE Transactions on Power Systems,1993,8(3):1375-1382
    [56] Sung-Kwan Joo, Chen-Ching Liu, Jong-Woong Cheo. Enhancement ofcoherency identification techniques for power system dynamic equivalents [C].IEEE Power Engineering Society Summer Meeting, Vancouver, BC, Canada,2001,3:1811-1816
    [57] Yang B., Vittal V., Heydt G.T., et al. A novel slow coherency based graphtheoretic islanding strategy [C]. IEEE Power Engineering Society GeneralMeeting, Tampa, FL, United states,2007:1-7
    [58] Chow J.H. Time-scale modelling of dynamic networks with applications topower systems [M]. Lecture Note in Control and Information Sciences. NewYork Springer-Verlag,1982
    [59]刘明波.用于多机电力系统动态等值的慢同调分区算法[J].华南理工大学学报(自然科学版),1996,24(1):122-129
    [60]谭伟,沈沉,李颖,等.基于轨迹特征根的机组分群方法[J].电力系统自动化,2010,34(1):8-14
    [61]谭伟,张雪敏,沈沉.新的同调识别方法及其在切机算法中的应用[J].西南交通大学学报,2009,44(4):507-512
    [62] Gacic N., Zecevic A.I., Siljak D.D. Coherency recognition using epsilondecomposition [J]. IEEE Transactions on Power Systems,1998,13(2):314-319
    [63] Germond A.J., Podmore R. Dynamic aggregation of generating unit model [J].IEEE Transactions on Power Apparatus and Systems,1978, PAS-97(4):1060-1069
    [64]腾林,刘万顺,李贵存.一种基于摇摆曲线的电力系统同调机群识别新方法[J].电力自动化设备,2002,22(4):18-20
    [65] Podmore R. Identification of coherent generators for dynamic equivalents [J].IEEE Transactions on Power Apparatus and Systems,1978, PAS-97(4):1344-1354
    [66] De Tuglie E., Iannone S.M., Torelli F. A coherency recognition based onstructural decomposition procedure [J]. IEEE Transactions on Power Systems,2008,23(2):555-563
    [67] Rios M.A., Gomez O. Identification of coherent groups and PMU placement forinter-area monitoring based on graph theory [C]. IEEE PES Conference onInnovative Smart Grid Technologies Latin America, Medellin, Colombia,2011:1-7
    [68]印永华,卜广全.电力系统动态等值程序技术和使用手册[R].北京:中国电力科学研究院,1993
    [69]蒋志勋.南方电网动态等值研究[D].广州:华南理工大学,2009
    [70]王成山,杜瑞建,张家安.区域互联电力系统同调机群的分布式协同识别[J].电网技术,2005,29(11):9-13
    [71]鞠平,代飞.电力系统广域测量技术[M].北京:机械工业出版社,2008
    [72]潘炜,刘文颖,杨以涵.采用受扰轨迹和独立分量分析技术识别同调机群的方法[J].中国电机工程学报,2008,28(25):86-92
    [73]袁季修.试论防止电力系统大面积停电的紧急控制——电力系统安全稳定运行的第三道防线[J].电网技术,1999,23(4):1-4
    [74]邵玉槐,李肖伟,程晋生. REI等值法用于多点配电系统短路计算的研究[J].中国电机工程学报,2000,20(4):64-67
    [75] Housos E., Hrisarri H. Real time result with on-line network equivalents forcontrol center applications [J]. IEEE Transactions on Power Apparatus andSystems,1981, PAS-100(12):4830-4837
    [76] Troullinos G., Dorsey J., Wong H., et al. Reducing the order of very large powersystem models [J]. IEEE Transactions on Power Systems,1988,3(1):127-133
    [77] Zhang Baozhen, Zhang Yao, Lin Lingxue, et al. Study on two dynamicaggregation algorithms of coherent generators [C]. IEEE Fourth InternationalConference on Computational Intelligence and Communication Networks(CICN), Mathura, Uttar Pradesh, India,2012:676-680
    [78] Galarza R.J., Chow J.H., Price W.W., et al. Aggregation of exciter models forconstructing power system dynamic equivalents [J]. IEEE Transactions onPower Systems,1998,13(3):782-788
    [79] Joe H. Chow, Galarza R., Raccari, et al. Inertial and slow coherency aggregationalgorithms for power system dynamic model reduction [J]. IEEE Transactions onPower Systems,1995,10(2):680-685
    [80] Bargiotas D.T., Lawler J.S. Effects of aggregation methods on individual modeson reduced order power system models [C]. Conference Proceedings IEEESoutheastcon, Knoxville, USA,1988:579-586
    [81] Date R.A., Chow J.H. Aggregation properties of linearized two-time-scale powernetworks [J]. IEEE Transactions on Circuits and Systems,1991,38:720-730
    [82] Ramaswamy G.N., Verghese G.C., Rouco L., et al. Synchrony, aggregation, andmulti-Area eigenanalysis [J]. IEEE Transactions on Power Systems,1995,10(4):1986-1993
    [83] Ramaswamy G.N., Evrard C., Verghese G.C., et al. Extensions, simplifications,and tests of synchronic modal equivalencing (SME)[J]. IEEE Transactions onPower Systems,1997,12(2):896-905
    [84]胡杰,余贻鑫.电力系统动态等值参数聚合的实用方法[J].电网技术,2006,30(24):26-30
    [85] Zin A.A.M., Kok B.C., Mustafa M.W., et al. Time domain dynamic aggregationof generating unit based on structure preserving approach [C]. ProceedingsNational Power Engineering Conference,2003:154-160
    [86]刘丽芳.大型互联电力系统动态等值发电机组参数辫识[D].武汉:武汉大学,2004
    [87]闻丹银,孙黎霞,黄桦,等.电力系统动态等值中励磁系统参数聚合方法对比研究[J].河海大学学报(自然科学版),2012,40(3):350-356
    [88]陈礼义,孙丹峰.电力系统动态等值中发电机组详细模型的参数集合[J].中国电机工程学报,1989,9(5):30-39
    [89]张一荻,管霖.蚁群算法在发电机动态参数聚合中的应用[J].电力系统保护与控制,2012,20(2):23-27
    [90]岳程燕.大规模电力系统动态等值中聚合问题的研究[D].北京:中国电力科学研究院,2001
    [91] Ruiz V.D., Messina A.R., Pabella M. Online assessment and control of transientoscillations damping [J]. IEEE Transactions on Power Systems,2004,19(2):1038-1047
    [92]朱方,赵红光,刘增煌,等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7
    [93]毛晓明,吴小辰.南方交直流并联电网运行问题分析[J].电网技术,2004,28(2):6-9
    [94]南方电网公司,南方电网2009年运行方式[R].广州:中国南方电网公司,2009
    [95]周双喜,苏小林.电力系统小干扰稳定性研究的新进展[J].电力系统及其自动化学报,2007,19(2):6-15
    [96]陈柔伊.互联电力系统低频振荡的分析与控制研究[D].广州:华南理工大学,2009
    [97] James Toal. Learning to live with power system oscillations [C]. IEEColloquium on Power System Dynamics Stabilisation, London, UK,1998,7/1-7/8.
    [98] Yija Cao, Lin Jiang, Shijie Cheng, et al. A nonlinear variable structure stabilizerfor power system stability [J]. IEEE Transactions on Energy Conversion,1994,9(3):489-495
    [99] IEEE std421.4-2004. IEEE guide for the preparation of excitation systemspecifications [S].2004
    [100]郑希云,李兴源,王渝红.基于混沌优化算法的PSS和直流调制的协调优化[J].电工技术学报,2010,25(5):170-175
    [101]孙勇.电力系统附加阻尼控制器的优化配置与设计方法研究[D].哈尔滨:哈尔滨工业大学,2009
    [102]彭波,史慧杰,陈陈,等.南方电网低频振荡问题及PSS参数分析[J].南方电网技术,2009,3(4):31-35
    [103]刘红超,雷宪章,李兴源,等.互联电力系统中PSS的全局协调优化[J].电网技术,2006,30(8):1-6
    [104]芦晶晶,郭剑,田芳.基于Prony方法的电力系统振荡模式分析及PSS参数设计[J].电网技术,2004,28(15):31-44
    [105] Jalilzadeh S., Shayeghi H. Robust coordinated design of UPFC dampingcontroller and PSS using chaotic optimization algorithm [C]. IEEE6thInternational Conference on Electrical Engineering/Electronics, ComputerTelecommunications and Information Technology, Chonburi, Thailand,2009,1:24-27
    [106] Abido M.A. Optimal design of power-system stabilizers using particle swarmoptimization [J]. IEEE Transactions on Energy Conversion,2002,17(3):406-413
    [107] Abdel-Magid Y.L., Abido M.A., Al-Baiyat S., et al. Simultaneous stabilization ofmultimachine power systems via genetic algorithms [J]. IEEE Transactions onPower Systems,1999,14(4):1428-1439
    [108]牛振勇,杜正春,方万良,等.基于进化策略的多机系统PSS参数优化[J].中国电机工程学报,2004,24(2):22-27
    [109] Prabha Kundur. Power system stability and control [M]. New York:McGraw-Hill,1994
    [110]余贻鑫,王成山.电力系统稳定性理论与方法[M].北京:科学出版社,1999
    [111]汤勇,卜广全,仲悟之,等. PSD-SSAP电力系统小干扰稳定性分析程序培训手册[R].北京:中国电力科学研究院,2006
    [112]沈梁.小干扰稳定分析软件包SSAP的完善和在交直流并行输电系统中的应用[D].上海:上海交通大学,2008
    [113] Price W.W., Joe H Chow, Haqgave A.W., et al. Large-scale system testing ofpower system dynamic equivalencing program [J]. IEEE Transactions on PowerSystems,1998,13(3):768-774
    [114] De Oliveira S.E.M, De Queiroz J.F. Modal dynamic equivalent for electricpower systemsⅠ. Theory [J]. IEEE Transactions on Power Systems,1988,3(4):1723-1730
    [115] De Oliveira S.E.M, Massaud A.G. Modal dynamic equivalent for electric powersystems Ⅱ. Stability simulation tests [J]. IEEE Transactions on Power Systems,1988,3(4):1731-1737
    [116] Haibo You, Vijay Vittal, Xiaoming Wang. Slow coherency-based islanding [J].IEEE Transactions on Power Systems.2004,19(1):481-493
    [117]李健,陈涵,李大路.电力系统动态等值研究方法综述[J].广东电力,2007,20(2):1-4
    [118] Saitoh H., Miura K., Ishioka O., et al. On-line modal analysis based onsynchronized measurement technology [C]. IEEE Proceedings InternationalConference on Power System Technology,2002,2:817-822
    [119]胡家声,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识[J].电力系统自动化,2004,28(6):35-40
    [120] Ju P., Ni L.Q., Wu F. Dynamic equivalent of power systems with on-linemeasurements. Part1: Thoery [J]. IEE Proceedings Generation Transmission andDistribution,2004,151(2):175-178
    [121] Ju P., Wu F., Yang N.G., et al. Dynamic equivalents of power systems with onlinemeasurements. Part2: Applications [J]. IEE Proceedings GenerationTransmission and Distribution,2004,151(2):179-182
    [122] Karrari M., Malik O.P. Identification of Heffron-Phillips model parameters forsynchronous generators using online measurements [J]. IEE ProceedingsGeneration Transmission and Distribution,2004,151(3):313-320
    [123] Karrari M., Malik O.P. Identification of physical parameters of a synchronousgenerator from online measurements [J]. IEEE Transcations on EnergyConversion,2004,19(2):407-415
    [124] Dehghani M., Nikravesh S.K.Y. Nonlinear state space model identification ofsynchronous generators [J]. Electric Power Systems Research,2008,78(5):926-940
    [125]沈善德.电力系统辨识[M].北京:清华大学出版社,1993
    [126] Ghomi M., Najafi Sarem Y. Review of synchronous generator parametersestimation and model identification [C]. The42nd International UniversitiesPower Engineering Conference (UPEC), Brighton, United kingdom,2007:228-235
    [127] Wei Chen, Qingwu Gong, Tao Wang, et al. A real-parameter genetic algorithmapplication in parameters identification for synchronous generator [C]. The3thIntelligent Computing and Intelligent Systems, Shanghai, China,2009:762-766
    [128] Ma J.T., Wu Q.H. Generator parameter identification using evolutionaryprogramming [J]. Electrical Power&Energy Systems,1995,17(6):417-423
    [129] Lixia Sun, Ping Qu, Qixin Huang, et al. Parameter identification of synchronousgenerators by using ant clongy optimization algorithm [C]. The2nd IEEEConference on Industrial Electronics and Applications, Harbin, China,2007:2834-2838
    [130] Hua Bai, Pei Zhang, Venkataramana Ajjarapu. A novel parameter identificationapproach via hybrid learning for aggregate load modeling [J]. IEEE Transactionson Power Systems,2009,24(3):1145-1154
    [131]王爽心,姜妍,韩芳.一种综合负荷模型参数辨识的混沌优化策略[J].中国电机工程学报,2006,26(12):111-116
    [132]李晓辉,罗敏,刘丽霞,等.动态等值新方法及其在天津电网中的应用[J].电力系统保护与控制,2010,38(3):61-66
    [133] Jingping Yang, Jing Zhang, Wulue Pan. Dynimic equivalents of power systemsbased on extended two particle swarm optimization [C]. The3th InternationalConference on Natural Computation, Haikou, China,2007,(5):609-613
    [134]康义,周献林,谢国恩,等.用NETOMAC程序进行电力系统动态等值研究[J].电网技术,1998,22(5):21-24
    [135]郑三立,韩英铎,雷宪章,等. NETOMAC在电力系统实时仿真中的应用[J].电网技术,2003,27(1):18-21
    [136]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2005
    [137]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001
    [138]黄席樾.现代智能算法理论及应用[M].北京:科学出版社,2005
    [139]韩祯祥,文福拴,张琦.人工智能在电力系统中的应用[J].电力系统自动化,2000,1:2-10
    [140]盛戈皞,涂光瑜,罗毅.人工智能技术在电力系统无功电压控制中的应用[J].电网技术,2002,26(6):22-27
    [141]张雪霞.智能优化算法及其在电力系统无功优化中的应用研究[D].成都:西南交通大学,2011
    [142]戴朝华.搜寻者优化算法及其应用研究[D].成都:西南交通大学,2010
    [143] Hackwood S., Beni G. Self-organization of sensors for swarm intelligence [C].IEEE International conference on Robotics and Automation,1992,1:819-829
    [144] Dorigo M., Maniezzo V. Ant colony optimization [M]. MIT Press, Cambridge,MA,2004
    [145] Bonabeau E., Dorigo M., Theraulaz G. Swarm intelligence: from natural toartificial systems [M]. New York: Oxford University Press,1999
    [146] Russell C. Eberhart, Yuhui Shi, James Kennedy. Swarm intelligence [M]. SanFrancisco: Morgan Kaufman Publishers,2001
    [147] Nadia Nedjah, Luiza de Macedo Mourelle. Swarm intelligent systems [M].Netherlands: Springer-Verlag Berlin Heidelbeg,2006
    [148]程鲁文.交直流混联系统送受端规模对电力系统稳定性影响[D].广州:华南理工大学,2012
    [149]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003
    [150]西安交通大学等六院校合编.电力系统计算[M].北京:水力电力出版社,1978
    [151]余耀南.动态电力系统[M].北京:水利电力出版社,1985
    [152]中华人民共和国电力行业标准DL755-2001.电力系统安全稳定导则[S].2001
    [153]宋新立,汤涌,卜广全,等.大电网安全分析的全过程动态仿真技术[J].电网技术,2008,32(22):23-28
    [154]中国南方电网公司.交直流电力系统仿真技术[M].北京:中国电力出版社,2007
    [155]岳程燕.电力系统电磁暂态与机电暂态混合实时仿真的研究[D].北京:中国电力科学研究院,2004
    [156]徐政.交直流电力系统动态行为分析[M].北京:机械工业出版社,2004
    [157]何仰赞,温增银.电力系统分析(第三版)(上册)[M].武汉:华中科技大学出版社,2002
    [158]中国电力科学研究院.中国版BPA暂态稳定程序4.0版用户手册[R].北京:中国电力科学研究院,2007
    [159]鞠平,马大强.电力系统负荷建模(第二版)[M].北京:中国电力出版社,2008
    [160]鞠平,马大强.电力系统负荷建模[M].北京:水利电力出版社,1995
    [161]章健.电力系统负荷模型与辨识[M].北京:中国电力出版社,2007
    [162] Renmu H., Jin M., Hill D.J. Composite load modeling via measurementapproach [J]. IEEE Transactions on Power Systems,2006,21(2):663-672
    [163]谷鹏,石国萍.基于遗传算法的电力系统综合负荷模型的建模与仿真[J].节能,2010,9:9-13
    [164]管秀鹏.南方电网暂态电压稳定分析研究[D].北京:清华大学,2004
    [165] Wen-Shiow Kao. The effect of load models on unstable low-frequencyoscillation damping in Taipower system experience w/wo power systemstabilizers [J]. IEEE Transactions on Power Systems,2001,16(3):463-472
    [166] Jin Ma, Dong Han, Ren-Mu He, et al. Reducing identified parameters ofmeasurement-based composite load model [J]. IEEE Transactions on PowerSystems,2008,23(1):76-83
    [167] Kosterev D.N., Taylor C.W., Mittelatadt W.A. Model validation for the August10,1996WSCC system outage [J]. IEEE Transactions Power Systems,1999,14(3):967-979
    [168] Wen-Shiow Kao, Lin Chia-Jen, Chiang-Tsang Huang, et al. Comparison ofsimulated power system dynamics applying various load models with actualrecorded data [J]. IEEE Transactions Power Systems,1994,9(1):248-254
    [169]邵正炎.考虑配电网络的综合负荷模型研究[D].南京:河海大学,2006
    [170]胡杰.电力系统动态等值参数聚合[D].天津:天津大学,2007
    [171]翁华,徐政,王兴刚,等.南方电网交直流系统的简化方法[J].电网技术,2012,36(3):108-112
    [172]张一荻,管霖.交直流互联电网动态等值的实用化方法[J].电力自动化设备,2013,33(2):120-125
    [173] Rainer S., Price K. Differential evolution-a simple and efficient heuristic forglobal optimization over continuous spaces [J]. Journal of Global Optimization,1997,11(4):341-359
    [174] Price K. Differential evolution a fast and simple numerical optimizer [C].1996Biennial Conference of the North American Fuzzy Information ProcessingSociety, Berkeley, CA, United states,1996:524-527
    [175]郭鹏.差分进化算法改进研究[D].天津:天津大学,2011
    [176] Storn R., Price K. Differential evolution-a simple and efficient adaptive schemefor global optimization over continuous spaces [R]. Technical reportInternational Computer Science Institute, Berkley,1995
    [177] Rainer Storn. On the usage of differential evolution for function optimization [C].1996Biennial Conference of the North American Fuzzy Information ProcessingSociety (NAFIPS), Berkeley, CA, United states,1996:519-523
    [178]谢晓峰,张文俊,张国瑞等.差异演化的实验研究[J].控制与决策,2004,19(1):49-52
    [179]吴亮红.差分进化算法及应用研究[D].长沙:湖南大学,2007
    [180]贾东立.改进的差分进化算法及其在通信信号处理中的应用研究[D].上海:上海大学,2011
    [181]杨振宇,唐珂.差分进化算法参数控制与适应策略综述[J].智能系统学报,2011,6(5):415-423
    [182]刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729
    [183]吴亮红,王耀南,袁小芳,等.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902
    [184] Qin A.K., Huang V.L., Suganthan P.N. Differential evolution algorithm withstrategy adaptation for global numerical optimization [J]. IEEE Transactions onEvolutionary Computation,2009,13(2):398-417
    [185] Brest J., Greiner S., Boskovic B., et al. Self-adapting control parameters indifferential evolution: a comparative study on numerical benchmark problems [J].IEEE Transactions on Evolutionary Computation,2006,10(6):646-657
    [186]赵勇,俞悦,周剑,等.联网对海南电网内部故障稳定性的影响与措施研究[J].南方电网技术,2009,3(5):41-45
    [187]潘晓强,吴清,魏国清,等.海南电网与南方电网主网联网后的安全运行措施研究[J].南方电网技术,2009,3:98-102
    [188]张尧,钟庆,武志刚.云广特高压直流输电控制保护系统测试数据库开发和试验等值系统分析技术报告[R].广州:南方电网技术研究中心,2009
    [189] Baozhen Zhang, Yao Zhang, Qing Zhong, et al. Application of dynamicequivalence based on coherency in South China Power Grid [C]. IEEEAsia-Pacific Power and Energy Engineering Conference (APPEEC), Wuhan,China,2011:1-4
    [190]蒋志勋.南方电网动态等值研究[D].广州:华南理工大学,2009
    [191] Baozhen Zhang, Yao Zhang, Mingyang Liao, et al. Study on dynamic equivalentcoherency-based of Hainan Power Grid [C]. IEEE Asia-Pacific Power andEnergy Engineering Conference (APPEEC), Shanghai, China,2012:1-4
    [192]张宝珍,张尧,林凌雪,等.基于PSO-FCM算法的同调发电机识别[J].华南理工大学学报(自然科学版),2013,41(4):8-13
    [193]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004
    [194] Kamwa I., Pradhan A.K., Joos G. Automatic segmentation of large powersystems into fuzzy coherent areas for dynamic vulnerability assessment [J].IEEE Transactions on Power Systems,2007,22(4):1974-1986
    [195]贺仲雄.模糊数学及其应用[M].天津:天津科学技术出版社,1983
    [196]张园园,龚庆武,陈道君,等.应用改进粒子群优化的模糊均值聚类算法的暂态稳定机组分群方法[J].电网技术,2011,35(9):92-98
    [197] Kennedy J., Eberhart R. Particle swarm optimization [C]. Proceedings IEEEInternational Conference on Neural Networks,1995:1942-1948
    [198]刘明波.用多层前馈神经网络进行同调发电机的在线识别[J].华南理工大学学报:自然科学版,1996,24(1):164-172
    [199]温重伟,李荣钧.改进的粒子群优化模糊C均值聚类算法[J].计算机应用研究,2010,27(7):2520-2522
    [200] Tang L., Huang P.Z., Xie W.X. A new method of FCM considering thedistribution of data [J]. Geomatic and Information Science of Wuhan University,2003,28(4):476-479
    [201] Havens T.C., Bezdek J.C., Christopher Leckie, et al. Fuzzy c-means algorithmsfor very large data [J]. IEEE Transactions on Fuzzy Systems,2012,20(6):1130-1146
    [202]何晓峰,王钢,李海锋.电力系统粒子群优化模糊聚类算法及其应用[J].继电器,2007,35(22):40-45
    [203]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社,2007
    [204] Eberhart Russell, Kennedy James. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micro Machine andHuman Science, Nagoya, Japan,1995:39-43
    [205]刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论和实践,2005,(6):54-59
    [206] AlRashidi M.R., El-Hawary M.E. A survey of particle swarm optimizationapplications in electric power systems [J]. IEEE Transactions on EvolutionaryComputation,2009,13(4):913-918
    [207]黄平.粒子群算法改进及其在电力系统的应用[D].广州:华南理工大学,2012
    [208]谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134
    [209] Yamille del Valle, Ganesh Kumar Venayagamoorthy, Salman Mohagheghi, et al.Particle swarm optimization: basic concepts, variants and applications in powersystems [J]. IEEE Transactions on Evolutionary Computation,2008,12(2):171-195
    [210]丁玉凤,文劲宇.基于改进PSO算法的电力系统无功优化研究[J].继电器,2005,33(6):20-24
    [211]范九伦,裴继红,谢维信.聚类有效性函数:熵公式[J].模糊系统与数学,1998,12(3):68-74
    [212]孟令奎,胡春春.基于模糊划分测度的聚类有效性指标[J].计算机工程,2007,33(11):15-17
    [213]乔颖,沈沉,卢强.大规模电网解列控制可行性判断[J].中国电机工程学报,2008,28(25):50-55
    [214] SPSS Statistics Base17.0用户指南[Z], SPSS Inc.,2008
    [215]马斌荣. SPSS17.0在医学统计中的应用[M].北京:科学出版社,2010
    [216]邢冀鹏,邹雪城,刘政林,等. K均值聚类和模拟退火融合的软硬件划分[J].计算机工程与应用,2006,(16):61-62
    [217]李弼程,邵美珍,黄洁.模式识别原理与应用[M].西安:西安电子科技大学出版社,2008
    [218] DeMello F.P., Concordia C. Concepts of synchronous machine stability asaffected by excitation control [J]. IEEE Transactions on Power Apparatus andSystems,1969, PAS-88(4):316-329
    [219] Abido M.A. Parameter optimization of multimachine power system stabilizersusing genetic local search [J]. International Journal of Electrical Power&Energy Systems,2001,23(8):785-794
    [220]刘华蓥,林玉娥,张君施.基于混沌搜索解决早熟收敛的混合粒子群算法[J].计算机工程与应用,2006(13):77-79
    [221]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论及应用,1997,14(4):613-615
    [222]司风琪,顾慧,叶亚兰,等.基于混沌粒子群算法的火电厂厂级负荷在线优化分配[J].中国电机工程学报,2011,31(26):103-109
    [223]张玖利.基于电网全频域稳定的多机PSS参数优化研究[D].上海交通大学,2008
    [224] Wilson W.J., Aplevich J.D. Dynamic equivalent power system modles [J]. IEEETransactions on Power Apparatus and Systems,1983, PSA-102(12):3753-3759
    [225]李靖霞,倪腊琴,鞠平,等.同步电机参数的可辨识性研究[J].电力系统自动化,1998,22(3):9-12
    [226]谢宏杰.双端口互联电力系统动态等值问题的研究[D].南京:河海大学,2005
    [227]鞠平.电力系统非线性辨识[M].南京:河海大学出版社,1999
    [228]鞠平,王卫华,谢宏杰,等.3区域互联电力系统动态等值的辨识方法[J].中国电机工程学报,2007,27(13):29-34
    [229] Ali M.M. Differential evolution with preferential crossover [J]. EuropeanJournal of operational Research,2007,181(3):1137-1147
    [230]吴亮红,王耀南,袁小芳,等.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458
    [231]王凌,黄付卓,李灵坡.基于混合双种群差分进化的电力系统经济负荷分配[J].控制与决策.2009,24(8):1156-1160
    [232]周海强,鞠平,杨辉,等.计及电动机负荷的互联电网动态等值方法[J].中国科学:技术科学,2010,(40):704-710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700