用户名: 密码: 验证码:
永磁同步电机高温超导电枢绕组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导电机具有高功率密度、高效率的优势,是高温超导材料应用的一个重要领域,可以广泛应用于船舶推进、风力发电、飞轮储能等多个领域中,具有重要的学术研究价值和经济应用前景。现有的高温超导电机多利用高温超导线圈作为转子的励磁线圈,以提高电机磁负荷的方式来提高电机的功率密度,这种结构的高温超导电机的冷却温度低(10K-50K),冷却介质为液氖或冷气氦,且冷却成本高、冷却结构复杂。本文针对现阶段高温超导电机的研究现状和高温超导线材的性能水平,提出一种具有高温超导电枢绕组的高温超导永磁同步电机系统,开展其高温超导线材及定子超导电枢绕组特性的研究,突破高温超导线圈在复杂磁场条件下载流能力下降、超导永磁同步电机设计和制造的关键难点问题。
     本文首先针对普通永磁同步电机极限输出转矩的理论和试验进行分析,揭示了永磁同步电机极限功率与其电、磁负荷之间的影响关系,得到了限制永磁同步电机输出特性的主要因素不是铁心材料的饱和,而是由于定子电枢绕组的损耗。因此,本文提出利用高温超导线圈代替普通的铜绕组线圈作为定子电枢绕组,以提升永磁同步电机的功率密度与效率。将高温超导线材/线圈的载流特性规律引入到传统电机学理论中,通过数值解析方法得到高温超导线圈表面磁场密度,揭示了高温超导永磁同步电机定子电枢绕组临界电流的影响因素,进而得到了超导电枢绕组类同步电机相似性类比方法。通过铜绕组超导永磁同步样机的试验和有限元仿真结果,验证了超导电枢永磁同步电机类比方法的正确性,为高温超导永磁同步电机的研制奠定了理论基础。
     针对YBCO高温超导线材在复杂变化磁场环境下的交流载流特性进行了研究。在美国Superpower公司的SCS12050超导线材性能的基础上,建立了高温超导线材复杂磁场条件下临界电流测试平台。通过此平台分别对YBCO高温超导线材进行了不同幅值的恒定外加磁场、不同幅值和频率正弦磁场条件下的线材交流载流特性进行了试验研究,通过试验数据,揭示了高温超导线材在复杂磁场环境中的交流载流特性规律,为高温超导线圈的特性及高温超导电机的研发奠定了试验基础。
     分析高温超导电枢绕组永磁同步电机定子槽内的磁场分布特性,针对这种分布特性,提出了一种磁场调制方法,可以有效减小高温超导线圈表面垂直磁场的分布,从而提高高温超导电枢绕组的载流能力,进一步提升高温超导永磁同步电机的功率密度。建立不同结构、不同尺寸参数的高温超导绕组磁场调制方法的有限元模型,通过有限元软件的分析和计算,揭示高温超导线圈磁场调制方法的结构参数与线圈表面磁场、槽漏磁场之间的影响规律。磁场调制方法的仿真数据表明,该方法可以降低高温超导线圈表面垂直磁场4倍左右。根据分析计算的数据,研制高温超导线圈和相应的磁场调制作用的导磁片,通过在液氮温度(77K)下的测量,验证了具有磁场调制方法的超导线圈临界电流提升了35%,在不增加额外的制冷成本和线材成本的条件下,提升了高温超导线圈的性能。
     研制一套等效高温超导电机槽内磁场环境的高温超导线圈测试系统,通过该测试系统测试了绕制的12个高温超导线圈,测试结果表明绕制完成的高温超导线圈在液氮温度下(77K)的临界电流均为250A左右,达到了预先的设计指标。
     通过上述理论和试验研究,揭示具有高温超导电枢绕组的超导永磁同步电机电磁功率同其电、磁负荷之间的规律,提出具备高电枢电流承载能力的超导同步电机电负荷选取策略及超导电枢绕组永磁电机相似性类比方法;明确高温超导线材/线圈在复杂磁场条件下的载流能力规律,提高高温超导电枢绕组的载流能力,突破超导同步电机高温超导电枢绕组的关键技术,推进高温超导材料在工业领域内的应用。
High temperature superconducting (HTS) motor has many merits: high power density, high torque density, little volume, light weight, so it would be an important application field of high temperature superconductor because it can apply in the ship thrust, wind power, flywheel energy storage, ects. HTS motor has high research value and market prospect. Now, HTS motor mostly applied the superconducting magnets as the excitation magnets of the motor rotor which improves the power density from the higher magnetic load (air flux density). This structure need lower cool temperature that is cooled by liquid neon or air helium, so its cost is high and its cool structure is complicate. This paper presents a novel HTS permanent magnet synchronous motor with superconducting armature coils, researches the characteristic of HTS wire and armature coils, makes a breakthrough in the field of HTS wire carrying ability with complicate magnetic field and HTS motor design, manufacture.
     Firstly, based on the normal permanent magnet synchronous motor (PMSM) theory and test, this paper reveals the influence between the PMSM ultimate power and electrical, magnetic load, and obtains main factor which influences the characteristic of PMSM output is not the the saturation of iron, but is the the copper loss of stator winding. Therefore, this paper prensents the superconducting coils replaces the copper coils as the stator armature winding for improving the output characteristic of PMSM. Then, the superconducting wire's carrying ability is introduced to traditional motor theory, the influencing law between PMSM armature winding current and HTS wire's critical current are revealed based on HTS wire's surface flux density calculated by numercial analysis, then the similarity method of HTS PMSM with superconducting armature winding is obtained. Through the experiment result of HTS copper prototype and finite element simulation, the accuracy of the similarity method is verified.
     Secondly, the paper researches the YBCO superconducting wire's carrying ability that is the key part of HTS motor. Based on the characteristic of SCS12050HTS wire which produced by American Superconducting. INC, the superconducting wire critical current test instrument which could test critical current in complicate magnetic field is established. With the test instrument, the superconducting wire alternating critical current in the condition of different extra constant magnetic field, different amplitude and frequecy magnetic field is measured. Through the measure data, the superconducting wire alternating current carrying ability is revealed. Those carrying ability rules could be the test basement of HTS motor reserach.
     Thirdly, this paper analyzes the magnetic field distribution of superconducting armature winding in motor stator slot. So this paper presents a novel magnetic screening method for decreasing the perpendicular magnetic density on the superconducting coils surface. This method could improve the superconducting coils' carrying ability and the power density of HTS motor. The magnetic screening method 's different shapes models are established for analyzing its effects by finite element method (FEM), its different structure parameters are also analyzed in the same method. Then, the influence law between superconducting coil surface magnetic density and the magnetic field modulation parameters is revealed by the FEM software. From the FEM analysis and loss result, the magnetic field value could be decreased four times through the magnetic field modulation method. Then the ferromagnetic slabs for magnetic field modulation are manufactured, the superconducting coils with or without ferromagnetic slabs are tested in liquid nitrogen temperature (77K). The test result proves the magnetic screening method could increase35%critical current. So the characteristic of superconducting coils would be improved without no additional extra cooling and wire cost.
     Finally, an equivalent HTS armature winding test system whose magnetic field could be equal to the magnetic environment of HTS armature winding in the HTS motor is established. This test system measures twelve HTS armature coils. The result achieves the design value.
     Through those researches, the influence law between electromagnetic power of the HTS PMSM with superconducting armature winding and electrical, magnetic load is revealed. This paper presents the electrical load selection method of HTS PMSM with large armature current, and presents the similarity design method of the HTS motor with superconducting armature winding. The current ability of superconducting wire and coil in complex magnetic field is tested, and the superconducting armature winding critical current is improved through a novel magnetic field modulation method. Those research content make a breakthrough in key technology of superconducting armature winding, promote the industry application of HTS wire.
引文
[1]世界第一台1000HP高温超导电机研制成功[J].电器工业,2001,(3):52.
    [2]唐绍栋.高温超导交流同步电动机:一种理想的舰船推进动力设备[J].船电技术,2004,(1):4-8.
    [3]李亚旭,李琳.美国1000hp高温超导电动机[J].船电技术,2005,(1):9-13.[4]徐晓燕.美国超导公司研制的36.5MW高温超导电机通过工厂验收测试[J].稀有金属快报,2007,(9):47.
    [5]美国舰用36.5MW高温超导推进电机成功完成满功率试验[J].船电技术.2009,(7):31.
    [6]36.5兆瓦高温超导船舶推进电机[J].军民两用技术与产品,2009,(3):17.
    [7] Díaz-González F, Sumper A, Gomis-Bellmunt O, et al. A Review of EnergyStorage Technologies for Wind Power Applications[J]. Renewable andSustainable Energy Reviews,2012,16(4):2154-2171.
    [8] Wei G, Guisheng Z, Xiao C, et al. The Study of Multiple Thermal Cycle ofHTS YBCO Bulk[J]. Physica C: Superconductivity,2012,474(0):25-28.
    [9] Ainslie M D, Flack T J, Campbell A M. Calculating Transport AC Losses inStacks of High Temperature Superconductor Coated Conductors withMagnetic Substrates Using FEM[J]. Physica C: Superconductivity,2012,472(1):50-56.
    [10] Maki N, Izumi M, Numano M, et al. Design Study of High-temperatureSuperconducting Motors for Ship Propulsion Systems[C]. Proceeding ofInternational Conference on Electrical Machines and Systems, Seoul Korea,2007:1523-1527.
    [11] Heller R, Fietz W H, Kienzler A, et al. High temperature superconductorcurrent leads for fusion machines[J]. Fusion Engineering and Design,2011,86(6–8):1422-1426.
    [12] Yumura H, Ashibe Y, Ohya M, et al. Test results of a30-m HTS cablepre-demonstration system in Yokohama project[J]. Physica C:Superconductivity,2010,470(20):1558-1562.
    [13] Rupich M W, Xiaoping L, Sathyamurthy S, et al. Second Generation WireDevelopment at AMSC[J]. Applied Superconductivity, IEEE Transactions on,2013,23(3):6601205.
    [14] Superconductors.ORG. Colossal Dielectric Constant Produces Colossal Tc
    [EB/OL].(2014-2-14)[2014-03-15]. http://www. superconductors. org/77C.htm.
    [15] Kajikawa K, Uchida Y, Nakamura T, et al. Development of Stator Windingsfor Fully Superconducting Motor With MgB2Wires[J]. AppliedSuperconductivity, IEEE Transactions on,2013,23(3):5201604.
    [16] Xu M, Shi D and Fox R.F. Generalized Critical-state Model for HardSuperconductors[J]. phys. Rev. B,1990(42):10773-10776.
    [17] Doan N. Nguyen, Pamidi V. P, Sastry S. S, et al. Temperature Dependence ofTotal AC Loss in High-Temperature Superconducting Tapes[J]. IEEETransactions on Applied Superconductivity,2009,19(4):3637-3644.
    [18] Minzhang G, Knoll DC. Temperature Dependence of Critical Currents and ACTransport Losses in (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Oy Tapes[J].Superconductor Science and Technology,2007:516-521.
    [19]曹永青,张正臣. Bi-2223带材在拉伸应力下的临界电流.低温与超导[J],2006,35(4):365-368.
    [20]王丽芝,祁烁.弯曲对Bi-2223/Ag带材临界电流Ic的影响[J].沈阳化工学院学报,2003:25-29.
    [21] Qu T. M, Gu C. V–I Properties and n-value of Degraded Bi-2223/AgSuperconducting Tapes[J]. Physica C,2005,426(5):1159–1163.
    [22]王超,黄晖. Bi-2223/Ag高温超导带临界电流各向异性的实验测量及分析[J].低温物理学报,2004,26(3):239-241.
    [23]王银顺,赵祥.高温超导带材的临界电流各向异性的实验研究[J],2003,25:239-242.
    [24] Nakamura T, Tsuchiya S. Influence of Magnetic Field and MagneticAnisotropy on the Quench Characteristics of Bi-2223/Ag MultifilamentaryTapes[J]. IEEE transactions on applied superconductivity,2009,2(1):303-311.
    [25]张国民.高温超导带材及线圈的交流损耗[D].北京:中科院研究生院博十学位论文,2003:45-48.
    [26]韩正男.高温超导带材及线圈载流特性的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011:29-35.
    [27] Steurer M, Woodruff S, Boenig H, et al. Hardware-In-the-Loop Experimentswith a5MW HTS Propulsion Motor at Florida State University's Power TestFacility[C]. Proceeding of power engineering society general, Tampa,2007:1-4.
    [28] Masson P J, Luongo C A. HTS Machines for Applications in All-ElectricAircraft[C]. Proceeding of power engineering society general, Tampa,2007:1-6.
    [29] Kalsi S S, Gamble B B, Snitchler G, et al. The Status of HTS Ship PropulsionMotor Developments[C]. Proceeding of Power Engineering Society General,Montreal Que,2006:1-5.
    [30] Masson P J, Luongo C A. High Power Density Superconducting Motor forAll-Electric Aircraft Propulsion[J]. Applied Superconductivity, IEEETransactions on.2005,15(2):2226-2229.
    [31] Masson P J, Soban D S, Upton E, et al. HTS Motors in Aircraft Propulsion:Design Considerations[J]. Applied Superconductivity, IEEE Transactions on.2005,15(2):2218-2221.
    [32] Di W, Chen E. Stator Design for a1000kW HTSC Motor With Air-gapWinding[J]. Applied Superconductivity, IEEE Transactions on,2011,21(3):1093-1096.
    [33] Zhang B, Driscoll D, Dombrovski V. Construction and Testing of a1000HPHigh-Temperature Superconducting Motor[C]. Petroleum and ChemicalIndustry Conference, New Orleans, LA, USA,2002:223-228.
    [34] Snitchler G, Gamble B, Kalsi S S. The Performance of a5MW HighTemperature Superconductor Ship Propulsion Motor[J]. AppliedSuperconductivity, IEEE Transactions on.2005,15(2):2206-2209.
    [35] Gamble B, Snitchler G, MacDonald T. Full Power Test of a36.5MW HTSPropulsion Motor[J]. Applied Superconductivity, IEEE Transactions on,2011,21(3):1083-1088.
    [36] Baik S K, Kwon Y K, Kim H M, et al. Electrical Performance Analysis ofHTS Synchronous Motor Based on3D FEM[J]. Physica C: Superconductivity.2010,470(20):1763-1767.
    [37] Frank M, Frauenhofer J, van Hasselt P, et al. Long-term OperationalExperience With First Siemens400kW HTS Machine in DiverseConfigurations[J]. Applied Superconductivity, IEEE Transactions on.2003,13(2):2120-2123.
    [38] Sugimoto H, Tsuda T, Morishita T, et al. Design of an Axial Flux InductorType Synchronous Motor With the Liquid Nitrogen Cooled Field andArmature HTS Windings[J]. Applied Superconductivity, IEEE Transactionson.2007,17(2):1571-1574.
    [39] Iwakuma M, Hase Y, Satou T, et al. Production and Test of a REBCOSuperconducting Synchronous Motor[J]. Applied Superconductivity, IEEETransactions on.2009,19(3):1648-1651.
    [40] Iwakuma M, Tomioka A, Konno M, et al. Development of a15kW MotorWith a Fixed YBCO Superconducting Field Winding[J]. AppliedSuperconductivity, IEEE Transactions on.2007,17(2):1607-1610.
    [41] Hyun-Man J, Muta I, Hoshino T, et al. Design and Electrical CharacteristicsAnalysis of100HP HTS Synchronous Motor in21st Century Frontier Project,Korea[J]. Applied Superconductivity, IEEE Transactions on.2003,13(2):2197-2200.
    [42] Bailey W, Huaming W, Al-Mosawi M, et al. Testing of a LightweightCoreless HTS Synchronous Generator Cooled by Subcooled LiquidNitrogen[J]. Applied Superconductivity, IEEE Transactions on,2011,21(3):1159-1162.
    [43] Kim H M, Yoon Y S, Kwon Y K, et al. Design of Damper to Protect the FieldCoil of an HTS Synchronous Motor[J]. Applied Superconductivity, IEEETransactions on.2009,19(3):1683-1686.
    [44] Tixador P, Simon F, Daffix H, et al.150-kW Experimental SuperconductingPermanent-Magnet Motor[J]. Applied Superconductivity, IEEE Transactionson.1999,9(2):1205-1208.
    [45] Thome R J, Creedon W, Reed M, et al. Homopolar Motor TechnologyDevelopment[C]. Power Engineering Society Summer Meeting, Chicago, IL,USA,2002:260-264.
    [46] Jungwook S, Kwangyoun L, Guesso C, et al. Development of a HTS SquirrelCage Induction Motor with HTS Rotor Bars[J]. Applied Superconductivity,IEEE Transactions on.2004,14(2):916-919.
    [47] Jungwook S, Myungjin P, Lim H, et al. Test of an Induction Motor with HTSWire at End Ring and Bars[J]. Applied Superconductivity, IEEE Transactionson.2003,13(2):2231-2234.
    [48] Nakamura T, Miyake H, Ogama Y, et al. Fabrication and Characteristics ofHTS Induction Motor by the Use of Bi-2223/Ag Squirrel-Cage Rotor[J].Applied Superconductivity, IEEE Transactions on.2006,16(2):1469-1472.
    [49] Nakamura T, Ogama Y, Miyake H. Performance of Inverter Fed HTSInduction-Synchronous Motor Operated in Liquid Nitrogen[J]. AppliedSuperconductivity, IEEE Transactions on.2007,17(2):1615-1618.
    [50] Moulin R, Leveque J, Durantay L, et al. Superconducting Multistack Inductorfor Synchronous Motors Using the Diamagnetism Property of BulkMaterial[J]. Industrial Electronics, IEEE Transactions on,2010,57(1):146-153.
    [51] Qiu M, Xu Z, Yao Z H, et al. Design and performance of a small HTS bulkreluctance motor[J]. Applied Superconductivity, IEEE Transactions on,2005,15(2):1480-1483.
    [52] Zhiyong H, Yudong J, Ruilin P, et al. Numerical Analysis of theDemagnetization Effect in a Superconducting Machine With Bulk HTSMaterial on the Rotor[J]. Applied Superconductivity, IEEE Transactions on,2009,19(3):2897-2900.
    [53] Yu Y, Zhiyong H, Quan L, et al. Thermally Actuated Magnetization Methodin High Temperature Superconductor Bulks[J]. Applied Superconductivity,IEEE Transactions on,2010,20(3):1823-1826.
    [54] Aydiner A, Yanmaz E. Numerical Calculation of Trapped Magnetic Field forSquare Multiple Bulk Superconductors[J]. Physica C: Superconductivity.2010,470(20):1193-1197.
    [55] Ainslie M D, Jiang Y, Xian W, et al. Numerical Analysis and Finite ElementModelling of an HTS Synchronous Motor[J]. Physica C: Superconductivity.2010,470(20):1752-1755.
    [56] Shin H S, Dedicatoria M J, Dizon J R C, et al. Bending Strain Characteristicsof Critical Current in REBCO CC Tapes in Different Modes[J]. Physica C:Superconductivity.2009,469(15-20):1467-1471.
    [57] Kajikawa K, Nakamura T. Proposal of a Fully Superconducting Motor forLiquid Hydrogen Pump With MgB2Wire[J]. Applied Superconductivity, IEEETransactions on.2009,19(3):1669-1673.
    [58] Mosawi M K, Goddard K, Beduz C, et al. Coreless HTS SynchronousGenerator Operating at Liquid Nitrogen Temperatures[J]. AppliedSuperconductivity, IEEE Transactions on.2007,17(2):1599-1602.
    [59] Klaus G, Wilke M, Frauenhofer J, et al. Design Challenges and Benefits ofHTS Synchronous Machines[C]. Power Engineering Society General Meeting,Tampa, FL,2007:1-8.
    [60] Baik S. K,Kwon Y. K,Kim H. M,etc. Electrical Parameter Evaluation of a1MW HTS Motor via Analysis and Experiments[J]. Cryogenics Fourth AsianConference on Applied Superconductivity and Cryogenics.2009,49(6):271-276.
    [61] Oomen M. AC Loss in Superconducting Tapes and Cables[D]. DEN HAAG:universiteit twente,2000:28-46.
    [62] Bean C P. Magnetisation of High-Field Superconductors[J]. Review ofModern Physics.1964,36:31.
    [63] Bean. C P. Magnetisation on Hard Superconductors[J]. Physical ReviewLetters.1962,8:250.
    [64] Wilson M N. Superconducting Magnets[M]. Oxford,UK: Clarendon Press,1983.
    [65] Muller K. H, Andrikidis C, Liu H. K, et al. AC Hysteresis Losses inMonofilamentary Pb-Bi-Sr-Cu-O/Ag Tapes[J]. Physica C.1995,247:74.
    [66] Clerc S. AC Losses of Mon and Multifilamentary High-Tc Superconducting(Bi,Pb)2Sr2Ca2Cu2O10/Ag Tapes[D]. Iurich,Switzerland: Swiss FederalInstitute of Technology,1995:45-61.
    [67] Norris W T. Calculation of Hysteresis Losses in Hard SuperconductorsCarrying as: Isolated Conductors and Edges of Thin Sheets[J]. Journal ofPhysics. D.1970,3:489.
    [68] M. P. Oomen, J. Rieger, M. Leghissa, et al. Dynamic Resistance in aSlab-Like Superconductor with Jc(B) Dependence[J]. Superconductor Scienceand Technology.1999,12:382.
    [69] Carr W J. AC Loss and Macroscopic Theory of Superconductors[M].NewYork, USA: Gordon and Breach,1983.
    [70] DíazGonzález F, Sumper A, Gomis-Bellmunt O, et al. A Review of EnergyStorage Technologies for Wind Power Applications[J]. Renewable andSustainable Energy Reviews,2012,16(4):2154-2171.
    [71] Zhang J, Dai S, Zhang D, et al. The Electric Characteristics of HTSDouble-Pancake Coil with AC Pulse Over Currents[J]. Cryogenics,2012,52(1):45-50.
    [72] Aprea C, Greco A, Maiorino A. Modelling an Active Magnetic RefrigerationSystem: A Comparison with Different Models of Incompressible FlowThrough a Packed Bed[J]. Applied Thermal Engineering,2012,36(0):296-306.
    [73] Oka T, Muraya T, Kawasaki N, et al. Magnetizing of Permanent MagnetsUsing HTS Bulk Magnets[J]. Cryogenics,2012,52(1):27-31.
    [74] LópezLarrubia P, Cauli O. Alterations of Apparent Diffusion Coefficient(ADC) in the Brain of Rats Chronically Exposed to Lead Acetate[J].Toxicology,2011,281(1-3):1-6.
    [75] Liu S, Ren L, Li J, et al. Analysis of Quench Propagation Characteristics ofthe YBCO Coated Conductor[J]. Physica C: Superconductivity,2011.
    [76] Gohardani A S, Doulgeris G, Singh R. Challenges of Future AircraftPropulsion: A Review of Distributed Propulsion Technology and its PotentialApplication for the All Electric Commercial Aircraft[J]. Progress inAerospace Sciences,2011,47(5):369-391.
    [77] Chen X P, Yu X W, Xiao R, et al. Critical Current Enhancement inBi-2223/Ag Superconducting Tapes by Controlling Its First SinteringProcess[J]. Journal of Alloys and Compounds,2011,509(3):1090-1093.
    [78] Ruan J, Xu Z. Environmental Friendly Automated Line for Recovering theCabinet of Waste Refrigerator[J]. Waste Management,2011,31(11):2319-2326.
    [79] Zhao J, Zheng T Q, Zhang W, et al. Influence Analysis of StructuralParameters on Electromagnetic Properties of HTS Linear Induction Motor[J].Physica C: Superconductivity,2011,471(21):1474-1478.
    [80] Ye C L, Li M Y, Chen X P, et al. Microstructure and Critical Current ofBimetallic Sheathed Bi-2223Tapes[J]. Physica C: Superconductivity,2011,471(21):1107-1109.
    [81] Kim D, Kim J, Kim A R, et al. Ripple Current Loss Measurement with DCBias Condition for High Temperature Superconducting Power Cable UsingCalorimetry Method[J]. Physica C:Superconductivity,2010,470(20):1601-1605.
    [82] Ainslie M D, Jiang Y, Xian W, et al. Numerical Analysis and Finite ElementModelling of an HTS Synchronous Motor[J]. Physica C: Superconductivity,2010,470(20):1752-1755.
    [83] Kim S B, Kadota T, Joo J H, et al. A Study on Electromagnetic andMechanical Characteristics of the Field Coil in HTS Motor[J]. Physica C:Superconductivity,2010,470(20):1756-1762.
    [84] Jeong S, Kim Y. Thermal Anchoring of Conduction-cooled Current Leads forSuperconductivity Applications Near Liquid Nitrogen Temperature[J].Cryogenics,2010,50(4):287-291.
    [85] Otabe E, Kiuchi M, Matsushita T, et al. Fabrication of a Working Bi-2223Superconducting Magnet Cooled by Liquid Nitrogen[J]. CryogenicsFourthAsian Conference on Applied Superconductivity and Cryogenics,2009,49(6):267-270.
    [86] Konishi T, Nakamura T, Nishimura T, et al. Analytic Evaluation of HTSInduction Motor for Electric Rolling Stock[J]. IEEE Transactions on AppliedSuperconductivity,2011,21(3):1123-1126.
    [87] Oswald, B, Best, K-J, Soll, M, et al. Reluctance Motors with Bulk HTSMaterial[J]. Superconductor Science and Technology,2005,18(2):24.
    [88] Nishimura T, Nakamura T, Quan L, et al. Potential for Torque DensityMaximization of HTS Induction/Synchronous Motor by Use ofSuperconducting Reluctance Torque[J]. Applied Superconductivity, IEEETransactions on,2014,24(3):1-4.
    [89] Ohtani I, Matsuzaki H, Kimura Y, et al. Pulsed-Field Magnetization of BulkHTS magnets in Twinned Rotor Assembly for Axial-type RotatingMachines[J]. Journal of Physics: Conference Series,2006,43(1):385.
    [90]张江鹏.具有高过载能力永磁同步电机的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011:72-74.
    [91] Koshiba Y, Yuan S, Maki N, et al. Critical Current and Electric Loss UnderMagnetic Field at30K on Bi-2223Superconducting Coil for Ship PropulsionMotor[J]. IEEE Transactions on Applied Superconductivity,2011,21(3):1127-1130.
    [92] Inacio D, Pina J M, Luis G, et al. Experimental Characterization of aConventional (Aluminum) and of a Superconducting (YBCO) Axial Flux DiscMotor[J]. IEEE Transactions on Applied Superconductivity,2011,21(3):1146-1150.
    [93] Xian W, Yan Y, Yuan W, et al. Pulsed Field Magnetization of a HighTemperature Superconducting Motor[J]. IEEE Transactions on AppliedSuperconductivity,2011,21(3):1171-1174.
    [94] Ainslie M D, Jiang Y, Xian W, et al. Numerical Analysis and Finite ElementModelling of an HTS Synchronous Motor[J]. Physica C,2010,470(20):1752-1755.
    [95] Kim S B, Kadota T, Joo J H, et al. A Study on Electromagnetic andMechanical Characteristics of the Field Coil in HTS Motor[J]. Physica C:Superconductivity,2010,470(20):1756-1762.
    [96] Sugyo D, Kimura Y, Sano T, et al. Bi-2223Field-poles without Iron Core foran Axial Type of HTS Propulsion Motor[J]. IEEE Transactions on AppliedSuperconductivity,2009,19(3):1687-1691.
    [97] Snitchler G, Gamble B, King C, et al.10MW Class Superconductor WindTurbine Generators[J]. IEEE Transactions on Applied Superconductivity,2011,21(3):1089-1092.
    [98] Granados X, Bartolome E, Obradors X, et al. Iron-YBCO Heterostructures andTheir Application for Trapped Field Superconducting Motor[J]. Journal ofPhysics: Conference Series,2006,43(1):788.
    [99] Kosa, Janos. Theoretical and Experimental Results of DC and AC MagneticFlux Transformation Using HTS Superconducting Closed Loop[C].2011International Conference on Energy, Environment and SustainableDevelopment, Shanghai, China,2012:1265-1272.
    [100] Souc J, Gomory F, Klincok B, et al. AC Loss Measurement of YBCO CableModel[J], IEEE Transactionson Applied Superconductivity,2007,17(2):1718-1721.
    [101] Li Q, Amemiya N, Nishino R, et al. AC Loss Reduction of
    [102] Ainslie M D, Flack T J, Campbell A M. Calculating Transport AC Losses inStacks of High Temperature Superconductor Coated Conductors withMagnetic substrates using FEM[J]. Physica C: Superconductivity,2012,472(1):50-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700