用户名: 密码: 验证码:
TiO_2基染料敏化太阳能电池光阳极薄膜结构的设计与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界能源问题主要是能源短缺与需求之间的矛盾以及能源利用与环境保护之间的矛盾。非再生能源的大量开采和利用,已经使其濒临枯竭。因此,人们将目光投向新型、清洁的可再生能源。其中,太阳能作为巨大和永恒的清洁可再生能源已成为人类最优先考虑开发的能源之一。太阳能的利用本质上是将光能转换为可利用的能量形式,例如,电能和热能,其中,基于光电转化原理的太阳能电池可直接将光能转换为电能,并且具有较高的理论转换效率,因此受到广泛关注。太阳能电池发展至今,已经发展到第三代,在第三代光伏器件当中,染料敏化太阳能电池(DSSCs)具有转换效率较高、制作工艺简单、成本较低、制作能耗回收周期较短等优点,被认为是第三代太阳能电池中最具潜力的候选者之一。
     在DSSCs电池结构中,光阳极材料发挥如下作用:一是作为染料的载体,二是作为入射光散射的媒介,三是作为载流子传输的平台,因此要求其具有大的比表面积、适中的尺寸和结构以及良好的导电性。TiO2不仅具有和染料匹配的能级位置和禁带宽度,而且具有上述的优良特性,因此是目前为止研究最多的光阳极材料。分等级结构TiO2兼具大比表面积和优良的光电特性,其设计、制备以及在构建高性能光阳极结构中的应用已成为近些年来国内外研究的热点。本论文面向高性能DSSCs光阳极的构筑,系统开展了分等级结构TiO2的设计和可控制备、新型光阳极结构的设计与制作以及TiO2的结构与电池特性间关系的研究。具体研究内容包括:
     (1)为了提高TiO2的比表面积和光电特性,以商用的P25TiO2粉体作为出发原料,在强碱环境下,通过不添加与添加双氧水,利用水热合成方法分别成功地制备出具有超大比表面积的三维纳米筛结构(nanomesh structure)和海胆状结构(urchin-like structure)TiO2纳米材料(424m2g-1和392m2g-1)。并以所制备的分等级结构的TiO2作为光散射层、P25作为透过层、P25+分等级结构作为混合层构建了新型的TiO2光阳极结构,DSSCs的光电转换效率的提升幅度分别为47%和36%。
     (2)融合水热生长和强碱腐蚀方法,在FTO衬底上成功地制备出顶层为TiO2纳米花冠、底层是TiO2纳米森林(TC-BF)的复合纳米结构,对其进行了形貌(SEM、TEM)和结构(XRD)表征。利用所制备的新颖光阳极结构制作了DSSCs,发现纳米森林密度最大的光阳极具有最大的光电转换效率,可归因于其光散射、染料吸附以及电子传输等性能的大幅度提升。
     (3)以钛酸四正丁酯为钛源,以二乙撑三胺为结构导向剂,利用水热合成法制备了具有核壳结构的介孔TiO2,以上述材料为散射层、P25为透过层制作了光阳极。由于核壳结构的“光阱”作用,光散射效果显著提升,介孔结构增强了对染料的吸附能力,所制备TiO2分等级结构的双重特性使得DSSCs的光电性能明显提升,与单纯的P25相比,光电转换效率上升了38%。
The world’s energy problems are mainly the contradiction between the shortageof energy and the demand and the contradiction between the energy utilizationand theenvironment. The excessive exploitation and utilization has caused thenon-renewableenergy to the verge of extinction. Therefore, People turned their attention to the new,clean and renewable energy. However, solar energy is one of hailed renewable energywith endless and clean. The optical energy is converted into a form of availableenergy on the nature of the solar energy, for example, electric energy and thermalenergy. The utilization of solar energy is the production of the solar cells which baseon photoelectric conversion principle, and is widespread concerned with hightheoretical conversion efficiency. Since the development of solar cells, dye sensitizedsolar cells (DSSCs) with prominent superiority and recognized high photoelectricconversion efficiency have been received widespread attention among the thirdgeneration of photovoltaic devices, and considered to be one of the most promisingcandidates in solar cells.
     In DSSCs structures, photoanode plays the following effects: Firstly, as a carrierof the dye, secondly, as a medium for scattering of the incident light, thirdly, as aplatform of the teleportation. Therefore, require it to have a large specific surface area,a temperate size and structure, and a good conductivity. As the preferred photoanodefilm materials of DSSCs, TiO2has the proper position of the band gap and energylevels, and has the excellent characteristics above. In recent years, the design andfabrication of hierarchical structure TiO2based on large specific surface area andexcellent optoelectronic properties for DSSCs are becoming research focus. In this paper, micro/nano-TiO2materials synthesis, fabrication and assembly processes ofDSSCs devices for technical support. In order to construct high specific surface areaand the strong scattering capacity of TiO2photoanode films structure. Thus achievethe ultimate goal for providing an experimental basis and theoretical guidance for therealization of high-performance photoanode films and efficient TiO2-based DSSCs.The specific studies include:
     (1) Commercial P25TiO2powder was used as a precursor, when the alkalisolution was without and with adding hydrogen peroxide (H2O2), the commercialTiO2nanoparticles (P25) were modified under hydrothermal conditions, in order toincrease the surface area and the optoelectronic properties of TiO2. To prepare3Dnanomesh structure and urchin-like structure TiO2nanomaterials with high specificsurface area (424m2g-1and392m2g-1). Prepared TiO2hierarchical structures wereused as scattering layer, P25was used as transparent layer, P25+hierarchicalstructures were used as blended layer to construct the new types of TiO2photoanodestructure, the energy conversion efficiency of DSSCs with these two structurematerials and special structure photoanodes have47%and36%increase comparedto those of P25electrode, respectively.
     (2) Combine the hydrothermal growth and alkali corrosion methods, aninnovative development of novel double layered photoanodes made of hierarchicalTiO2micro-corollas as the overlayer and TiO2nanoforest as the underlayer (TC-BF)on FTO (Fluorine-doped tin oxide) glass substrate for dye-sensitized solar cells(DSSCs) was developed. The different morphologies TC-BF double layeredphotoanodes with different conditions are characterized by SEM, TEM and XRD, andthen DSSCs devices are assembled and the photoelectricity characteristics are furtherdiscussed. It was found that the maximum density nano-forest photoanode had thehighest energy conversion efficiency, which due to its the most superior performanceon light scattering, dye adsorption and electronic transmission.
     (3) Tetra-n-butyl Titanate (TBT) was used as the titanium source, anddiethylenetriamine (DETA) was used as the structure-directing agent, core-shell structure materials with mesoporous were synthesized through hydrothermal method.Prepared TiO2above were used as scattering layer, P25was used as transparent layer,and the photoanodes were built with them. The optical path of the incident light iscontrolled by using core-shell structure and this unique structure act as a―light trap‖,scattering effect improved significantly. Meanwhile, the pores of mesoporousstructure can provide more dye adsorption, base on the factors above, thephotoelectricity performances of DSSCs devices are enhanced greatly. The energyconversion efficiency of the DSSCs had a38%increase compared to those of P25electrode.
引文
[1] Nathan S L, Toward cost-effective solar energy use [J]. Science,2007,315:798-801.
    [2] George W C, Nathan S L. Solar energy conversion [J]. Physics Today,2007,60:37-42.
    [3] Irgon J, Using solar energy [J]. Chemical and Engineering News,1974,52:4-5.
    [4] Brinkworth B J, Solar Energy [J]. Nature,1974,249:726-729.
    [5] Merriam M F, Solar energy absorption [J]. Science,1974,185:101-113.
    [6] Chapin D M, Fuller C S, Pearson G L, A New Silicon p-n Junction Photocell forConverting Solar Radiation into Electrical Power [J]. J. Appl. Phys.,1954,25:676-677.
    [7] Becquerel A E, Memoire surles effets electriques produits sous I'influence desrayons solaires [J].Comptes Rendus.,1839,9:561-567.
    [8] Fritts C E, Day R E, On a new form of selenium photocell [J]. Proc. Am. Assoc.Adv. Sci.,1883,33:97-108.
    [9] Pulfrey D L, McOuat R F, Schottky-barrier solar-cell calculations [J]. AppliedPhysics Letters,1974,2:167-169.
    [10] Goetzberger A, Hebling C, Schock HW, Photovoltaic materials, history, statusandoutlook [J]. Materials Science and Engineering Reports,2003,40:1-46.
    [11]英W.施罗特尔主编,甘骏人,夏冠群等译。半导体的电子结构与性能[M],北京:科学出版社,2001。
    [12] Anderson W W, Chai Y G, Becquerel effect solar cell [J]. Energy Conversion,1976,15:85-94.
    [13]杨术明,染料敏化纳米晶太阳能电池[M].郑州:郑州大学出版社,2007.
    [14] Shockley W, Queisser H J, Detailed balance limit of efficiency of pn junctionsolar cells [J]. Journal of Applied Physics,1961,32:510-519.
    [15] Krogstrup P, J rgensen H I, Heiss M, et al. Single-nanowire solar cells beyondtheShockley-Queisser limit [J]. Nature Photonics,2013,7:306-310.
    [16] Green M A, Emery K, Hishikawa Y, Solar cell efficiency tables [J]. ProgressinPhotovoltaics: Research and Applications,2012,20:12-20.
    [17] Green M A, Emery K, Hishikawa Y, Solar cell efficiency tables [J]. Progress inPhotovoltaics: Research and Applications,2013,21:1-11.
    [18] Hall R N, Silicon photovoltaic cells [J]. Solid State Electronics,1981,24:595-616.
    [19] Rittner E S, Arndt R A, Comparison of silicon solar cell efficiency for space andterrestrialuse [J]. Journal of Applied Physics,1976,47:2999-3002.
    [20] Gribov B G, Zinovev K V, Preparation of high-purity silicon for solar cells [J].Inorganic Materials,2003,39:653-662.
    [21] Wakisaka K, Kuwano Y, Terrestrial applications of amorphous silicon solar cells[J]. Progressin Photovoltaics: Research and Applications,1998,6:207-217.
    [22] Charles J H K, Ariotedjo A P, Review of amorphous and polycrystalline thin filmsilicon solarcell performance parameters [J]. Solar Energy,1980,24:329-339.
    [23] Nakano S, Kuwano Y, Ohnishi M, High performance a-Si solar cells and newfabricationmethods for a-Si solar cells [J]. Applied Physics A: Solids and Surfaces,1986,41:267-274.
    [24] Yang J, Banerjee A, Guha S, Amorphous silicon based photovoltaics-From earthto the―finalfrontier‖[J]. Solar Energy Materials&Solar Cells,2003,78:597-612.
    [25] Susumu Y, Sumio M, GaAs solar cell for space applications [J]. MitsubishiElectric Advance,1986,37,23-25.
    [26] Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H, Photovoltaic technology:The case for thin-film solarcells [J]. Science,1999,285:692-698.
    [27] Romeo N, Sberveglieri G, Tarricone L, Paorici C, Preparation and characteristicsof CuGaSe2/CdSsolar cells [J]. Applied Physics Letters,1977,30:108-110.
    [28] Kazmerski L L, Sanborn G A, CuInS2thin-film homojunction solar cells [J].Journal of Applied Physics,1977,48:3178-3180.
    [29] Ma Y Y, Fahrenbruch A L, Bube R H, Photovoltaic properties of n-CdS/p-CdTeheterojunctions prepared by spray pyrolysis [J]. Applied Physics Letters,1977,30:423-424.
    [30] Mitchel K M, Fahrenbruch A L, Bube R H, Evaluation of the CdS/CdTeheterojunction solarcell [J]. Journal of Applied Physics,1977,48:4365-4371.
    [31] Divan D M, Hasan M M, Maximisation of operating efficiency of solar cells [J].EnengyConversion,1977,17:183-188.
    [32] Botten L C, Ritchie I T, Improvements in the design of solar selective thin filmabsorbers [J].Optics Communications,1977,23:421-426.
    [33] Albery W J, Archer M D, Optimum efficiency of photogalvanic cells for solarenergyconversion [J]. Nature,1977,270:399-402.
    [34] Kearns D, Calvin M, Photovoltaic effect and photoconductivity in laminatedorganic systems [J]. Journal of Chemical Physics,1958,29:950-951.
    [35] Ghosh A K, Morel D L, Feng T, Photovoltaic and rectification properties ofAl/Mgphthalocyanine/Ag schottky-barrier cells [J]. Journal of Applied Physics,1974,45:230-236.
    [36] Weinberger B R, Akhtar M, Gau S C, Polyacetylene photovoltaic devices [J].SyntheticMetals,1982,4:187-197.
    [37] Glenis S, Tourillon G, Garnier F, Influence of the doping on the photovoltaicproperties ofthin films of poly-3-methylthiophene [J]. Thin Solid Films,1986,139:221-231.
    [38] Service R F, Outlook brightens for plastic solar cells [J]. Science,2011,332:293-293.
    [39] Heliatek erzielt mit10.7%Effizienz neuen Weltrekord für seine organischeTandemzelle, Heliatek http://www.heliatek.com/newscenter/latest news/heliatek-erzielt-mit-107-effizienz-neuenweltrekord-fur-seine-organische-tandemzelle/[2012-7-24].
    [40] Calvin M, Solar energy by photosynthesis [J]. Science,1974,184:375-381.
    [41] Kamat P V, Boosting the efficiency of quantum dot sensitized solar cells throughmodulationof interfacial charge transfer [J]. Accounts of Chemical Research,2012,45:1906-1915.
    [42] Mora-seró I, Giménez S, Fabregat-santiago F, Gómez R, Shen Q, Toyoda T,Bisquert J, Recombination in quantum dot sensitizedsolar cells [J]. Accounts ofChemical Research,2009,42:1848-1857.
    [43] Vogel R, Hoyer P, Weller H, Quantum-sized PbS, CdS, Ag2S, Sb2S3, andBi2S3particles assensitizers for various nanoporous wide-bandgap semiconductors [J].Journal of PhysicalChemistry,1994,98:3183-3188.
    [44] Lee H J, Chen P, Moon SJ, Ito S, Haque S A, Regenerative PbS and CdSquantum dot sensitized solarcells with a cobalt complex as hole mediator [J].Langmuir,2009,25:7602-7608.
    [45] Diguna L J, Shen Q, Kobayashi J, Toyoda T, High efficiency of CdSequantum-dot-sensitizedTiO2inverse opal solar cells [J]. Applied Physics Letters,2007,91:023116.
    [46] Shen Q, Kobayashi J, Diguna L J, Toyoda T, Effect of ZnS coating on thephotovoltaic propertiesof CdSe quantum dot sensitized solar cells [J]. Journal ofApplied Physics,2008,103:084304.
    [47] Nagasuna K, Akita T, Fujishima M, Tada H, Photodeposition of Ag2S quantumdots and application to photoelectrochemical cells for hydrogen production undersimulatedsunlight [J]. Langmuir,2011,27:7294-7300.
    [48] Itzhaik Y, Niitsoo O, Page M, Hodes G, Sb2S3-sensitized nanoporous TiO2solarcells [J]. TheJournal of Physical Chemistry Letters,2009,113:4254-4256.
    [49] Ernst K, Engelhardt R, Ellmer K, Contacts to a solar cell with extremely thinCdTeabsorber [J]. Thin Solid Films,2001,387:26-28.
    [50] Ma W, Swisher S L, Ewers T, Photovoltaic performance of ultrasmall PbSequantumdots [J]. ACS Nano,2011,5:8140-8147.
    [51] Gorer S, Hodes G, Quantum size effects in the study of chemical solutiondepositionmechanisms of semiconductor films [J]. Journal of Physical Chemistry,1994,98:5338-5346.
    [52] Cardoso J C, Grimes C A, Feng X J, Fabrication of coaxial TiO2/Sb2S3nanowirehybrids for efficient nanostructured organic-inorganic thin film photovoltaics[J]. Chemical Communications,2012,48:2818-2820.
    [53] Lim C S, Im S H, Kim H J, Enhancing the device performance ofSb2S3-sensitized heterojunction solar cells by embedding Au nanoparticles in thehole-conducting polymer layer [J]. Physical Chemistry Chemical Physics,2012,14:3622-3626.
    [54] Barea E M, Shalom M, Giménez S, Design of injection and recombination inquantumdot sensitized solar cells [J]. Journal of the American Chemical Society,2010,132:6834-6839.
    [55] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films [J]. Nature,1991,353:737-740.
    [56] Yella A, Lee H W, Tsao H N, Porphyrin-sensitized solar cells with cobalt(II/III)-based redoxelectrolyte exceed12percent efficiency [J]. Science,2011,334:629-634.
    [57] Han L, Islam A,Chen H,High-efficiency dye-sensitized solar cell with a novelco-adsorbent [J].Energy Environ. Sci.,2012,5:6057-6060.
    [58] Shao F, Sun J, Gao L, Growth of various TiO2nanostructures for dye-sensitizedsolar cells [J].The Journal of Physical Chemistry C,2011,115:1819-1823.
    [59] Zhang Q F, Cao G Z, Hierarchically structured photoelectrodes for dye-sensitizedsolarcells [J]. Journal of Materials Chemistry,2011,21:6769-6774.
    [60] Chen CY, Wang M K, Li JY, Pootrakulchote N, Alibabaei L, Decoppet J D,Highly efficient light-harvesting ruthenium sensitizer forthin-film dye-sensitized solarcells [J]. ACS Nano,2009,3:3103-3109.
    [61] Zeng W D, Cao Y M, Bai Y, Wang Y H, Shi Y S, Zhang M, Wang F F, Pan C Y,Wang P, Efficient dye-sensitized solar cells with an organic photosensitizer featuringorderly conjugated ethyleneioxythiophene and dithienosilole blocks [J].Chemistry ofMaterials,2010,22:1915-1925.
    [62] Cai N, Moon SJ, CeveyH L, An organic D-π-A dye for record efficiencysolid-state sensitized heterojunction solar cells [J]. Nano Letters,2011,11:1452-1456.
    [63] Lee H J, Leventis H C, Moon SJ, PbS and CdS quantum dot-sensitizedsolid-state solarcells:―Old concepts, new results‖[J]. Advanced Functional Materials,2009,19:2735-2742.
    [64] Itzhaik Y, Niitsoo O, Page M, et al. Sb2S3-sensitized nanoporous TiO2solar cells[J]. The Journal of Physical Chemistry Letters,2009,113:4254-4256.
    [65] Nezu S, Larramona G, Choné C, Hodes G, Light soaking and gas effect onnanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thinabsorber concept [J]. TheJournal of Physical Chemistry C,2010,114:6854-6859.
    [66] Pablo P B, Larramona G, Jacob A, Hole transport and recombination in all-solidSb2S3-sensitized TiO2solar cells using CuSCN as hole transporter [J]. The Journal ofPhysicalChemistry C,2012,116:1579-1587.
    [67] Hodes G, Cahen D, All-solid-state, semiconductor-sensitized nanoporous solarcells [J].Accounts of Chemical Research,2012,45:705-713.
    [68] Chang J A, Rhee J H, Im S H, Lee H Y, Kim H J, High-performancenanostructured inorganic-organic heterojunction solar cells [J]. Nano Letters,2010,10:2609-2612.
    [69] Im S H, Lim C S, Chang J A, Lee H Y, Kim H J, Toward interaction of sensitizerand functional moietiesin hole-transporting materials for efficientsemiconductor-sensitized solar cells [J]. NanoLetters,2011,11:4789-4793.
    [70] Chang J A, Im S H, Lee Y H, et al. Panchromatic photon-harvesting byhole-conducting materials in inorganic-organic heterojunction sensitized-solar cellthrough the formation of nanostructured electron channels [J]. Nano Letters,2012,12:1863-1867.
    [71] Hamann T W, Ondersma J W, Dye-sensitized solar cell redox shuttles [J].Energy Environ. Sci.,2011,4:370-381.
    [72] Boschloo G, Hagfeldt A, Characteristics of the iodide/triiodide redox mediator indye-sensitized solar cells [J]. Accounts of Chemical Research,2009,42:1819-1826.
    [73] Long H J, Zhou D F, Zhang M, et al. Probing dye-correlated interplay ofenergetics andkinetics in mesoscopic titania solar cells with4-tert-butylpyridine [J].The Journal of Physical Chemistry C,2011,115:14408-14414.
    [74] Bai Y, Cao Y M, Zhang J, et al. High-performance dye-sensitized solar cellsbased onsolvent-free electrolytes produced from eutectic melts [J]. Nature Materials,2008,7:626-630.
    [75] Bai Y, Yu Q J, Cai N, et al. High-efficiency organic dye-sensitized mesoscopicsolar cells with a copper redox shuttle [J]. Chemical Communications,2011,47:4376-4378.
    [76] Zhou D F, Yu Q J, Cai N, et al. Efficient organic dye-sensitized thin-filmsolarcells based on the tris (1,10-phenanthroline) cobalt (II/III) redox shuttle [J].Energy Environ. Sci.,2011,4:2030-2034.
    [77] Bai Y, Zhang J, Zhou D F, et al. Engineering Organic Sensitizers for Iodine-FreeDye-Sensitized Solar Cells: Red-Shifted Current Response Concomitant withAttenuated Charge Recombination [J]. Journal of the Americal Chemical Society,2011,133:11442-11445.
    [78] Yanagida S, Yu Y, Manseki K, Iodine/iodide-free dye-sensitized solar cells [J].Accounts of Chemical Research,2009,42:1827-1838.
    [79] Burschka J, Dualeh A, Kessler F, et al. Tris (2-(1H-pyrazol-1-yl)pyridine) cobalt(III) as p-typedopant for organic semiconductors and its application in highly efficientsolid-statedye-sensitized solar cells [J]. Journal of the American Chemical Society,2011,133:18042-18045.
    [80] Wu M X, Lin X, Hagfeldt A, et al. Low-cost molybdenum carbide and tungstencarbidecounter electrodes for dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2011,50:3520-3524.
    [81] Wu M X, Lin X, Wang T H, et al. Low-cost dye-sensitized solar cell based onnine kinds ofcarbon counter electrodes [J]. Energy&Environmental Science,2011,4:2308-2315.
    [82] Wu M X, Lin X, Wang Y D, et al. Economical Pt-free catalysts for counterelectrodes of dye-sensitized solar cells [J]. Journal of the American Chemical Society,2012,134:3419-3428.
    [83] Zhao W, Lin T Q, Sun S R, et al. Oriented single-crystalline nickel sulfidenanorod arrays:―two-in-one‖counter electrodes for dye-sensitized solar cells [J].Journal of Materials Chemistry A,2013,1:194-198.
    [84] Jiang Q W, Li G R, Gao X P, Highly ordered TiN nanotube arrays as counterelectrodes for dye-sensitized solar cells [J]. Chemical Communications,2009,44:6720-6722.
    [85] Wang H, Liu G H, Li X, et al. Highly efficient poly (3-hexylthiophene) basedmonolithic dye-sensitized solar cells with carbon counter electrode [J]. EnergyEnviron. Sci.,2011,4:2025-2029.
    [86] Gong F, Wang H, Xu X, et al. In situ growth of Co0.85Se and Ni0.85Se onconductive substrates as high-performance counter electrodes for dye-sensitized solarcells [J]. J. Am. Chem. Soc.,2012,134:10953-10958.
    [87] Zhou H W, Shi Y, Qin D, et al. Printable fabrication of Pt-and-ITO free counterelectrodes for completely flexible quasi-solid dye-sensitized solar cells [J]. Journal ofMaterials Chemistry A,2013,1:3932-3937.
    [88] Gr tzel M, Solar energy conversion by dye-sensitized photovoltaic cells [J].Inorganic Chemistry,2005,44:6841-6851.
    [89] Hagfeldt A, Gr tzel M. Molecular Photovoltaics [J]. Acc. Chem. Res.2000,33:269-277.
    [90] Mora-seróI, Bisquert J, Breakthroughs in the development ofsemiconductor-sensitized solarcells [J]. Journal of Physical Chemistry Letters,2010,1:3046-3052.
    [91] González-pedro V, Xu X Q, Mora-seró I, et al. Modeling high-efficiencyquantum dotsensitized solar cells [J]. ACS Nano,2010,4:5783-5790.
    [92] Chiba Y, Islam A,Watanabe Y, et al. Dye-sensitized solar cells with conversionefficiency of11.1%[J]. Jpn. J Appl. Phys.,2006,45: L638-L640.
    [93] Hagfeldt A, Gr tzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chem Rev,1995,95:49-68.
    [94] Landsberg P T, De Vos A, Baruch P, A comparison of some efficiency factorsinphotovoltaics [J]. Journal of Physics: Condensed Matter,1991,3:6415-6424.
    [95] Shockley W, Queisser H J, Detailed balance limit of efficiency of pn junctionsolar cells [J]. Journal of Applied Physics,1961,32:510-519.
    [96] Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-statedye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gelelectrolyte [J]. Nature Materials,2003,2:402-407.
    [97] Furube A, Katoh R, Hara K, Tachiya M, Lithium Ion Effect on Electron Injectionfrom a Photoexcited Coumarin Derivative into a TiO2Nanocrystalline FilmInvestigated by Visible-to-IR Ultrafast Spectroscopy [J]. J. Phys. Chem. B,2005,109:16406-16414.
    [98] Snaith H J, Ducati C, SnO2-based dye-sensitized hybrid solar cells exhibitingnear unity absorbed photon-to-electron conversion efficiency [J]. Nano Lett.,2010,10:1259-1265.
    [99] Abdulla-Al-Mamun M, Kusumoto Y, Mihata A, Islam M S, Ahmmad B,Plasmon-induced photothermal cell-killing effect of gold colloidal nanoparticles onepithelial carcinoma cells [J]. Photochemical and Photobiological Sciences,2009;8:1125-1129.
    [100] Zeng W D, Cao Y M, Bai Y, et al. Efficient dye-sensitized solar cells with anorganic photo sensitizer featuring orderly conjugated ethylenedioxythiophene anddithienosilole blocks [J].Chemistry of Materials,2010,22:1915-1925.
    [101] Law M, Greene L E, Radenovic A, Kuykendall T, Liphardt J, Yang R D,ZnO-Al2O3and ZnO-TiO2Core-Shell Nanowire Dye-Sensitized Solar Cells [J]. J.Phys, Chem. B,2006,110:22652-22663.
    [102] Lee S W, Kim J Y, HongK S, Jung H S, Lee J K, Shin H, Effect of CaCO3coating on TiO2nanoparticles on the dye adsorption and photoelectric performance ofdye sensitized solar cells [J]. Sol EnergyMater Sol Cells,2006,90:2405-2412.
    [103] Jung H S, Lee J K, Nastasi M, Lee S W, Kim J Y, Park J S, Hong K S, Shin H,Preparation of nanoporous MgO-coated TiO2nanoparticles and their application tothe electrode of dye-sensitized solar cells [J]. Langmuir,2005,21:10332-10335.
    [104] Yum J H, Nakade S, Kim D Y, Yanagida S,Improved performance indye-sensitized solar cells employing TiO2photoelectrodes coated with metalhydroxides [J]. J. Phys. Chem, B,2006,110:3215-3219.
    [105] Wang Y, Cheng H, Hao Y, Ma J, Li W, Cai S, Preparation, charactenization andphotoelectrochemical behaviors of Fe (III)-doped TiO2nanopartocles [J]. J. Mater.Sci.,1999,34:3721-3729.
    [106] Yang S, Huang Y, Huang C, Zhao X, Enhanced energy conversion efficiency ofthe Sr2+-modified nanoporous TiO2electrode sensitized with a ruthenium complex [J].Chem. Mater.,2002,14:1500-1504.
    [107] Ma T L, Akiyama M, Abe E, Imai I, High-efficiency dye-sensitized solar cellbased on a nitrogen-doped nanostructured titania electrode [J]. Nano Lett.,2005,5:2543-2547.
    [108] Wang K H, Tsai H H, Hsieh Y H,A study of photocatalytic degradation oftrichloroethylene in vapor phase on TiO2photocatalyst [J]. Chemosphere,1998,36:2763-2773.
    [109] Ko K H, Lee Y C, Junget Y J, Enhanced efficiency of dye-sensitized TiO2solarcells (DSSC) by doping of metal ions [J]. J. ColloidInterf. Sci.,2005,283:482-487.
    [110] Kim S S, Yum J H, Sung Y E, Flexible dye-sensitized solar cells using ZnOcoated TiO2nanoparticles [J]. J. Photochem. Photobio. A,2005,171:269-273.
    [111] Qian J F, Liu P, Xiao Y, Jiang Y, Cao Y L, Ai X P, Yang H X, TiO2-CoatedMultilayered SnO2Hollow Microspheres for Dye-Sensitized Solar Cells [J]. Adv.Mater.,2009,21:3663-3667.
    [112] Ganapathy V, Karunagaran B, Rhee S W, Improved performance ofdye-sensitized solar cells with TiO2/alumina core-shell formation using atomic layerdeposition [J]. J. Power Sources,2010,195:5138-5143.
    [113] Park K H, Jin E M, Gu H B, Yoon S D, Han E M, Yun J J,204%enhancedefficiency of ZrO2nanofibers doped dye-sensitized solar cells [J]. Appl Phys.Lett.,2010,97:23302-23306.
    [114] Hyam R S, Bhosale R K, Lee W, Han S H, Hannoyer B, Ogale S B, Nanosci J,Room temperature synthesis of rutile TiO2hierarchical nanoneedle fowermorphology for dye sensitized solar cell [J]. Nanotechnohgy.,2010,10:5894-5898.
    [115] Nah Y C, Paramasivam I, Schmuki P, Doped TiO2and TiO2Nanotubes:Synthesis and Applications [J]. Chem. Phys. Chem.,2010,11:2698-2713.
    [116] Bang J H, Kamat P V, Solar cells by design: photoelectrochemistry of TiO2nanorod arrays decorated with CdSe [J]. Adv. Fun. Mater,2010,20:1970-1976.
    [117] Wang M K, Liu J Y, Cevey-Ha N L, Moon S J, Liska P, Humphry-Baker R,Moser J E, Gr tzel C, Wang P, Zakeeruddin S M, Gr tzel M, High efficiencysolid-state sensitized heterojunction photovoltaic device [J]. Nano Today,2010,5:169-174.
    [118] Gan X Y, Li X M, Gao X D, Zhuge F W, Yu W D, ZnO nanowire/TiO2nanoparticle photoanodes prepared by the ultrasonic irradiation assisted dip-coatingmethod [J]. Thin Solid Films,2010,518:4809-4812.
    [119] Fan K, Peng T Y, Chai B, Chen J N, Dai K, Fabrication andphotoelectrochemical properties of TiO2films on Ti substrate for flexibledye-sensitized solar cells [J]. Electrochim. Acta.,2010,55,5239-5244.
    [120] Chang C J, Kuo E H, Colloids and Surfaces A: Physicochemical andEngineering Aspects [J]. Colloid Surfaces A,2010,363:22-29.
    [121] Feng X J, Shankar K, Paulose M, Grimes C A, Tantalum-Doped TitaniumDioxide Nanowire Arrays for Dye-Sensitized Solar Cells with High Open-CircuitVoltage [J]. Angew. Chem. Int. Ed,2009,48:8095-8098.
    [122] Lan Z A, Wu J H, Lin J M, Huang M L, Preparation of sub-micron size anataseTiO2particles for use as light-scattering centers in dye-sensitized solar cell [J]. J.Mater. Sci-Mater. EL.,2010,21:833-837.
    [123] Shao W, Gu F, Li C Z, Lu M K, Interfacial confined formation of mesoporousspherical TiO2nanostructures with improved photoelectric conversion efficiency [J].Inorg. Chem.,2010,49:5453-5459.
    [124] Peh C K N, Ke L, Ho G W, Modification of ZnO nanorods through Aunanoparticles surface coating for dye-sensitized solar cells applications [J]. Mater.Lett.,2010,64:1372-1375.
    [125] Hu P, Han N, Zhang X, Yao M, Cao Y, Zuo A H, Yang G, Yuan F L, Fabricationof ZnO nanorod-assembled multishelled hollow spheres and enhanced performance ingas sensor [J]. J. Mater. Chem.,2011,21:14277-14284.
    [126] Sauvage F, Fonzo F D, Bassi A L, Casari C S, Russo V, Divitini G, Ducati C,Bottani C E, Comte P, Gr etzel M, Hierarchical TiO2Photoanode for Dye-SensitizedSolar Cells [J]. NanoLett.,2010,10:2562-2567.
    [127] Wang N X, Sun C H, Zhao Y, Zhou S Y, Chen P, Jiang L, Fabrication ofthree-dimensional ZnO/TiO2heteroarchitectures via a solution process [J]. J. Mater.Chem.,2008,18:3909-3911.
    [128] Nonomura K, Komatsu D, Yoshida T, Minoura H, Schlettwein D, Dependenceof the photoelectrochemical performance of sensitised ZnO on the crystallineorientation in electrodeposited ZnO thin films [J]. Phys. Chem. Chem. Phys.,2007,9:1843-1849.
    [129] Minoura H, Yoshida T, Electrodeposition of ZnO/Dye Hybrid Thin Films forDye-Sensitized Solar Cells [J]. Electrochem.,2008,76:109-117.
    [130] Nonomura K, Loewenstein T, Michaelis E, Wohrle D, Yoshida T, Minoura H,Schlettwein D, Photoelectrochemical characterisation and optimisation ofelectrodeposited ZnO thin films sensitised by porphyrins and phthalocyanines [J].Phys. Chem. Chem, Phys.,2006,8:3867-3875.
    [131] Yoshida T, Miyamoto K, Hibi N, Sugiura T, Minoura H, Schlettwein D,Oekermann T, Schneider G, Wohrle D, Self-Assembly of Zinc Oxide Thin FilmsModified with Tetrasulfonated Metallophthalocyanines by One-Step Electro-deposition [J]. Chem. Lett.,1998,11:2657-2667.
    [132] Yoshida T, Iwaya M, Ando H, Oekermann T, Nonomura K, Schlettwein D,Wohrle D, Minoura H, Improved photoelectrochemical performance ofelectrodeposited ZnO/Eosin Y hybrid thin films by dye re-adsorption [J]. Chem.Comrnun.,2004,400-401.
    [133] Hosono E, Fujihara S, Honna I, Zhou H S, The fabrication of anupright-standing zinc oxide nanosheet for use in dye-sensitized solar cells [J]. Adv.Mater.,2005,17:2091-2108.
    [134] Zhang R, Pan J, Briggs E R, Thrash M, Kerr L L, Studies on the adsorption ofRuN3dye on sheet-like nanostructured porous ZnO films [J]. Sol. Energy. Mater. Sol.Cells,2008,92:425-431.
    [135] Lou X W, Yuan C L, Archer L A, Shell-by-Shell Synthesis of Tin Oxide HollowColloids with Nanoarchitectured Walls: Cavity Size Tuning and Functionalization [J].Small,2007,3:261-265.
    [136] Yang M, Ma J, Zhang C L, Yang Z Z, Lu Y F, General Synthetic Route towardFunctional Hollow Spheres with Double-Shelled Structures [J]. Angew. Chem.,2005,44:6727-6730.
    [137] Lou X W, Yuan C L, Zhang Q, Archer L A, Platinum-Functionalized OctahedralSilica Nanocages: Synthesis and Characterization [J]. Angew. Chem,2006,45:3825-3829.
    [138] Lou X W, Yuan C, Archer L A, Double-Walled SnO2Nano-Cocoons withMovable Magnetic Cores [J]. Adv. Mater,2007,19:3328-3332.
    [139] Kamata K, Lu Y, Xia Y N, Synthesis and Characterization of MonodispersedCore-Shell Spherical Colloids with Movable Cores [J]. J. Am. Chem. Soc.,2003,125:2384-2385.
    [140] Hwang D, Lee H, Jang S Y, Jo S M, Kim D H, Seo Y, Kim D Y, ElectrosprayPreparation of Hierarchically-structured Mesoporous TiO2Spheres for Use in HighlyEfficient Dye-Sensitized Solar Cells [J]. ACS Appl. Mater. Interfaces,2011,3:2719-2725.
    [141] Lee J H, Park N G, Shin Y J, Nano-grain SnO2electrodes for high conversioneffciency SnO2-DSSC [J]. Solar Energy Materials&Solar Cells,2011,95:179-183.
    [142] Yan K Y, Qiu Y C, Chen W, Zhang M, Yang S H, A double layeredphotoanode made of highly crystalline TiO2nanooctahedra and agglutinatedmesoporous TiO2microspheres for high effciency dye sensitized solar cells [J].Energy Environ. Sci.,2011,4:2168-2176.
    [143] He Z L, Que W X, Sun P, Ren J B, Double-Layer Electrode Based on TiO2Nanotubes Arrays for Enhancing Photovoltaic Properties in Dye-Sensitized SolarCells [J]. ACS Appl. Mater. Interfaces2013,5,12779-12783.
    [144] Zheng Y Z, Tao X, Wang L X, Xu H, Hou Q, Zhou W L, Chen J F, NovelZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes forEnhanced Efficiency in Dye-Sensitized Solar Cells [J]. Chem. Mater.,2010,22:928-935.
    [145] Zhu S B, Tian X, Chen J J, Shan L M, Xu X L, Zhou Z W, A Facile ApproachtoConstruct Multiple Structured ZnO Crystals by Trisodium Citrate-AssistedHydrothermal Growth Toward Performance Enhancement of Dye-Sensitized SolarCells [J]. J. Phys. Chem. C, Just Accept.
    [146] Lee J Y, Lee S W, Park J K, Jun Y, Lee Y G, Kim K M, Yun J H, Cho K Y,Simple approach for enhancement of light harvesting efficiency of dye-sensitizedsolar cells by polymeric mirror [J]. Optics Express,2010,18:522-527.
    [147] Lee B H, Hwang D K, Guo P J, Ho S T, Buchholtz D B, Wang C Y, Chang R PH, Materials, Interfaces, and Photon Confnement in Dye-Sensitized Solar Cells [J]. J.Phys. Chem. B,2010,114:14582-14591.
    [148] David G T, Inti Z, Elena V, Maria A H F, Xavier D, José A A, Newlow-temperature preparation method of the TiO2porous photoelectrode fordye-sensitized solar cells using UV irradiation [J]. J. Photoch. Photobio. A,2005,175:165-171.
    [149] Park D W, Choi Y K, Hwang K J, Lee J W, Park J K, Jang H D, Park H S, YooS J, Nanocrystalline TiO2films treated with acid and base catalysts for dye-sensitizedsolar cells [J]. Adv. Power. Technol.,2011,22:771-776.
    [150] Lee C P, Chou C Y, Chen C Y, Yeh M H, Lin L Y, Vittal R, Wu C G, Ho K C,Zinc oxide-based dye-sensitized solar cells with a ruthenium dye containing an alkylbithiophene group [J]. J. Power. Sources,2014,246:1-9.
    [151] Keis K, Bauer C, Boschloo G, Hagfeldt A, Westermark K, Rensmo H, SiegbahnH, Nanostructure ZnO electrodes for dye-sensitized solar cell applications [J]. J.Photochem. Photobiol. A,2002,148:57-64.
    [152] Wong K K, Ng A, Chen X Y, Ng Y H, Leung Y H, Ho K H, Djurisic A B, NgAM C, Chan W K, Yu L, Phillips D L, Effect of ZnO Nanoparticle PropertiesonDye-Sensitized Solar Cell Performance [J]. ACS Appl. Mater. Interfaces,2012,4:1254-1261.
    [153] Keis K, Magnusson E, Kindstrom H, Lindquist S E, Hagfeldt A, A5%efficientphotoelectrochemical solar cell based on nanostructured ZnO electrodes [J]. Sol.Energ. Mater. Sol. Cell.,2002,73:51-58.
    [154] Kim M S, Chun D M, Choi H O, Lee J C, Kim K S, Kim Y H, Lee C S, Ahn SH, Room Temperature Deposition of TiO2Using Nano Particle Deposition System(NPDS): Application to Dye-Sensitized Solar Cell (DSSC)[J]. Int. J. Precis. Eng.Man.,2011,12:749-752.
    [155] Ito S, Murakami T N, Comte P, Liska P, Gr tzel C, Nazeeruddin M K, Gr tzelM,Fabrication of thin film dye sensitized solar cells with solar to electric powerconversion efficiency over10%[J]. Thin Solid Films,2008,516:4613-4619.
    [156] Law M, Greene L E, Johnson J C, Saykally R, Yang P D, Nanowiredye-sensitized solar cells [J]. Nature Materials,2005,4:455-459.
    [157] Ko S H, Lee D, Kang H W, Nam K H, Yeo J Y, Hong S J, Grigoropoulos C P,Sung H J, Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for aHigh Efficiency Dye-Sensitized Solar Cell [J]. Nano Lett.,2011,11:666-671.
    [158] Xu C K, W J M, Desai U V, Gao D, Multilayer Assembly of Nanowire Arraysfor Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2011,133:8122-8125.
    [159] Shankar K, Mor G K, Prakasam H E, Yoriya S, Paulose M, Varghese O K,Grimes C A, Highly-ordered TiO2nanotube arrays up to220μm in length: use inwater photoelectrolysis and dye-sensitized solar cells [J]. Nanotechnology,2007,18:1-11.
    [160] Wu W Q, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B, HierarchicalOriented Anatase TiO2Nanostructure arrays on Flexible Substrate for EfficientDye-sensitized Solar Cells [J]. Scientific Reports,2013,3:1-7
    [161] Wu W Q, Xu Y F, Su C Y, Kuang D B, Ultra-long Anatase TiO2NanowireArrays with Multi-layered Configuration on FTO Glass for High-efficiencyDye-sensitized Solar Cells [J]. Energy Environ. Sci.,2014,7:644-649
    [162] Roy P, Berger S, Schmuki P, TiO2Nanotubes: Synthesis and Applications [J].Angew. Chem. Int. Ed.,2011,50:2904-2939.
    [163] Feng X, Zhu K, Frank A J, Grimes C A, Mallouk T E, Rapid Charge Transportin Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal RutileTiO2Nanowires [J]. Angew. Chem. Int. Ed.,2012,51:2727-2730.
    [164] Jennings J R, Ghicov A, Peter L M, Schmuki P, Walker A B, Dye-SensitizedSolar Cells Based on Oriented TiO2Nanotube Arrays: Transport, Trapping, andTransfer of Electrons [J]. J. Am. Chem. Soc.,2008,130:13364-13372.
    [165] Wu W Q, Lei B X, Rao H S, Xu Y F, Wang Y F, Su C Y, Kuang D B,Hydrothermal Fabrication of Hierarchically Anatase TiO2Nanowire arrays on FTOGlass for Dye-sensitized Solar Cells [J]. Sci. Rep.,2013,3:1352-1358.
    [166] Lei B X, Liao J Y, Zhang R, Wang J, Su C Y, Kuang D B, Ordered CrystallineTiO2Nanotube Arrays on Transparent FTO Glass for Efficient Dye-Sensitized SolarCells [J]. J. Phys. Chem. C,2010,114:15228-15233.
    [167] Guo M, Xie K Y, Lin J, Yong Z H, Yip C T, Zhou L M, Wang Y, Huang H T,Design and Coupling of Multifunctional TiO2Nanotube Photonic Crystal toNanocrystalline Titania Layer as Semi-transparent Photoanode for Dye-sensitizedSolar Cell [J]. Energy Environ. Sci.,2012,5:9881-9888.
    [168] He Z L, Que W X, Sun P, Ren J B, Double-Layer Electrode Based on TiO2Nanotubes Arrays for Enhancing Photovoltaic Properties in Dye-Sensitized SolarCells [J]. ACS Appl. Mater. Interfaces,2013,5:12779-12783.
    [169] Shao F, Sun J, Gao L, Yang S W, Luo J Q, Template-Free Synthesis ofHierarchical TiO2Structures and Their Application in Dye-Sensitized Solar Cells [J].ACS Appl. Mater. Interfaces,2011,3:2148-2153.
    [170] Fan K, Zhang W, Peng T Y, Chen J N, Yang F, Application of TiO2FusiformNanorods for Dye-Sensitized Solar Cells with Significantly Improved Efficiency [J]. J.Phys. Chem. C,2011,115:17213-17219.
    [171] Bai Y, Xing Z, Yu H, Li Z, Amal R, Wang L Z, Porous TitaniaNanosheet/Nanoparticle Hybrids as Photoanodes for Dye-Sensitized Solar Cells [J].ACS Appl. Mater. Interfaces,2013,5:12058-12065.
    [172] Xu F, Dai M, Lu Y N, Sun L T, Hierarchical ZnO Nanowire NanosheetArchitectures for High Power Conversion Effciency in Dye-Sensitized Solar Cells [J].J. Phys. Chem. C,2010,114:2776-2782.
    [173] Zhang Q F, Chou T P, Russo B, Jenekhe S A, Cao G, Design and coupling ofmultifunctional TiO2nanotube photonic crystal to nanocrystalline titania layer assemi-transparent photoanode for dye-sensitized solar cell [J]. Adv. Fun. Mater.,2008,18:1654.
    [174] Zhang Q F, Chou T P, Russo B, Jenekhe S A, Cao G Z, Aggregation of ZnONanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells [J].Angew. Chem. Int. Edit.,2008,47:2402-22406.
    [175] Chen D H, Huang R Z, Cheng Y B, Caruso R A, Mesoporous Anatase TiO2Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidatefor High-Performance Dye-Sensitized Solar Cells [J]. Adv. Mater.,2009,21:2206-2210.
    [176] Huang F Z, Chen D H, Zhang X L, Caruso R A, Cheng Y B, Dual-FunctionScattering Layer of Submicrometer-Sized Mesoporous TiO2Beads forHigh-Efficiency Dye-Sensitized Solar Cells [J]. Adv. Fun. Mater.,2010,20,1301-1305.
    [177] Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G, Kim K, Lee W I,Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical PoreGeneration with Nanoporous TiO2Spheres [J]. Adv, Mater.,2009,21:3668-3673.
    [178] Mie G Beitr ge zur Optik trüber Medien, speziell kolloidaler Metall sungen [J].Ann, Phys.,1908,330:377-445.
    [179] LiaoJ Y, Lei B X, Kuang D B, Su C Y, Tri-functional hierarchical TiO2spheresconsisting of anatase nanorods and nanoparticles for high efficiency dye-sensitizedsolar cells [J]. Energy Environ. Sci.,2011,4:4079-4085
    [180] Wu X, Lu G Q, Wang L. Z, Shell-in-shell TiO2hollow sphere synthesized byone-pot hydrothermal method for dye-sensitized solar cell application [J]. EnergyEnviron. Sci.,2011,4:3565-3572.
    [181] Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, S.Bandow, Iijima S, Preparation, Photocatalytic Activities, and Dye-SensitizedSolar-Cell Performance of Submicron-Scale TiO2Hollow Spheres [J]. Langmuir,2008,24:547-550.
    [182] Chen D H, Cao L, Huang F Z, Imperia P, Yi-BingCheng, Caruso R A,Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter,High Surface Areas, and Variable Pore Diameters (14-23nm)[J]. J. Am. Chem. Soc.2010,132:4438-4444.
    [183] Chen D H, Huang F Z, Cheng Y B, Caruso R A, Mesoporous AnataseTiO2Beads with High Surface Areas and Controllable Pore Sizes: A SuperiorCandidate for High-Performance Dye-Sensitized Solar Cells [J]. Adv. Mater.2009,21:2206-2210.
    [184] Duan Y D, Fu N Q, Fang Y Y, Li X N, Liu Q P, Zhou X W, Lin Y, Synthesisand formation mechanism of mesoporous TiO2microspheres for scattering layer indye-sensitized solar cells [J]. Electrochimica Acta,2013,113:109-116.
    [185] Pan J H, Wang X Z, Huang Q Z, Shen C, Koh Z Y, Wang Q, Engel A,Bahnemann D W, Large-scale Synthesis of Urchin-like Mesoporous TiO2HollowSpheres by Targeted Etching and Their Photoelectrochemical Properties [J]. Adv.Funct. Mater.,2014,24:95-104.
    [186] Wu D P, Zhu F, Li J M, Dong H, Li Q, Jiang K, Xu D S, Monodisperse TiO2hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells[J]. J. Mater. Chem.,2012,22:11665-11671.
    [187] Ding S J, Huang F Q, Mou X L, Wu J J, Lv X J, Mesoporous hollow TiO2microspheres with enhanced photoluminescence prepared by a smart amino acidtemplate [J]. J. Mater. Chem.,2011,21:4888-4892.
    [188] Liu J Y, Luo T, Sitaramanjaneya M T, Meng F L, Sun B, Li M Q, Liu J H, Anovel coral-like porous SnO2hollow architecture: biomimetic swallowing growthmechanism and enhanced photovoltaic property for dye-sensitized solar cellapplication [J]. Chem. Commun.,2010,46:472-474.
    [189] Mo M S, Yu J C, Zhang L Z, Li S A, Self-Assembly of ZnO Nanorods andNanosheets into Hollow Microhemispheres and Microsheres [J]. Adv. Mater.,2005,17:756-760.
    [190] Fang W Q, Yang X H, Zhu H J, Li Zhen, Zhao H J, Yao X D, Yang H G,Yolk@shell anatase TiO2hierarchical microspheres with exposed {001} facets forhigh-performance dye sensitized solar cells [J]. J. Mater. Chem.,2012,22:22082-22089.
    [191] Wu X, Lu G Q, Wang L Z, Shell-in-shell TiO2hollow spheres synthesized byone-pot hydrothermal method for dye-sensitized solar cell application [J]. EnergyEnviron. Sci.,2011,4:3565-3572.
    [192] Qian J F, Liu P, Xiao Y, Jiang Y, Cao Y L, Ai X P, Yang H X, TiO2-CoatedMultilayered SnO2Hollow Microspheres for Dye-Sensitized Solar Cells [J]. Adv.Mater.,2009,21:3663-3667.
    [193] Liu Jian, Qiao S Z, Hartono S B, Lu G Q, Monodisperse Yolk-ShellNanoparticles with a Hierarchical Porous Structure for Delivery Vehicles andNanoreactors [J]. Angew. Chem. Int. Ed.,2010,49:4981-4985.
    [194] Chen D H, Huang R Z, Cheng Y B, Caruso R A, Mesoporous Anatase TiO2Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidatefor High-Performance Dye-Sensitized Solar Cells [J]. Adv. Mater.,2009,21:2206-2210.
    [195] Huang F Z, Chen D H, Zhang X L, Caruso R A, Cheng Y B, Dual-FunctionScattering Layer of Submicrometer-Sized Mesoporous TiO2Beads forHigh-Efficiency Dye-Sensitized Solar Cells [J]. Adv. Fun. Mater.,2010,20,1301-1305.
    [196] Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G, Kim K, Lee W I,Targeted genome editing in human cells with zinc finger nucleases constructed viamodular assembly [J]. Adv, Mater.,2009,21:3668-3673.
    [197] Storhoff J J, Lazarides A A, Mucic R C, Mirkin C A, Letsinger R L, Schatz G C,What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies?[J]. J.Am.Chem.Soc.2000,122:4640-4650.
    [198] Peng Z A, Peng X G, Mechanisms of the Shape Evolution of CdSeNanocrystals [J]. J. Am. Chem. Soc.2001,123:1389-1395.
    [199] Sun Y G, Mayers B, Herricks T, Xia Y N, Polyol Synthesis of Uniform SilverNanowires: A Plausible Growth Mechanism and the Supporting Evidence [J].NanoLett.,2003,3:955-960.
    [200] Lou X W, Wang Y, Yuan C L, Lee J Y, Archer L A, Template-Free Synthesisof SnO2Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv.Mater.2006,18:2325-2329.
    [201] Bai Y, Yu H, Li Z, Amal R, Lu G Q, Wang L Z, In Situ Growth of a ZnONanowire Network within a TiO2Nanoparticle Film for Enhanced Dye-SensitizedSolar Cell Performance [J]. Adv. Mater.,2012,24:5850-5856.
    [202] Lee C H, Kim K H, Bark C W, Choi H W, Preparation of Doping Metal TiO2Particle/Nanotube Composite Layer and Their Applications in Dye-Sensitized SolarCells [J]. Met. Mater. Int.,2013,19:1355-1359.
    [203] Yun H G, Park J H, Bae B S, Kang M G, Dye-sensitized solar cells with TiO2nano-particles on TiO2nano-tube-grown Ti substrates [J]. J. Mater. Chem.,2011,21:3558-3561.
    [204] Huu N K, Son D Y, Jang I H, Lee C R, Park N G, Hierarchical SnO2Nanoparticle-ZnO Nanorod Photoanode for Improving Transport and Life Time ofPhoto-injected Electrons in Dye-Sensitized Solar Cell [J]. ACS Appl. Mater.Interfaces,2013,5:1038-1043.
    [205] Gr tzel M, Recent advances in sensitized mesoscopic solar cells [J].Accounts ofChem. Research.2009,42:1788-1798.
    [206] Sauvage F, Chen D H, Comte P, Huang F Z, Cheng Y B, Caruso R A, Gr tzel M,Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2BeadsAchieve Power Conversion Efficiencies Over10%[J]. ACS Nano.,2010,4:4420-4425.
    [207] Koo H J, Kim Y J, Lee Y H, Lee W I, Kim K, Park N G, Nano-embossed hollowspherical TiO2as bifunctional material for high-efficiency dye-sensitized solar cells[J]. Adv.Mater.,2008,20:195-199.
    [208] He C X, Lei B X, Wang Y F, Su C Y, Fang Y P, Kuang D B, Sonochemicalpreparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells[J].Chem.–Eur. J.,2010,16:8757-8761.
    [209] Zhang Q F, Chou T R, Russo B, Jenekhe S A, Cao G Z, Aggregation of ZnOnanocrystallites for high conversion efficiency in dye-sensitized solar cells [J]. Angew.Chem. Int. Ed.,2008,47:2402-2406.
    [210] Wang Y F, Li J W, Hou Y F, Yu X Y, Su C Y, Kuang D B, Hierarchical TinOxide Octahedra for Highly Efficient Dye-sensitized Solar Cells [J]. Chem.–Eur.J.,2010,16:8620-8625.
    [211] Qian J F, Liu P, XiaoY, Jiang Y, Cao Y L, Ai X P, Yang H X, TiO2-coatedmultilayered SnO2hollow microspheres for dye-sensitized solar cells [J]. Adv. Mater.,2009,21:3663-3667.
    [212] Sun Y G, Gates B, Mayers B, Xia Y N,Crystalline silver nanowires by softsolution processing [J]. Nano Lett.,2002,2:165-168.
    [213] Yang L, Lin Y, Jia J G, Xiao X R, Li X P, Zhou X W, Light harvestingenhancement for dye-sensitized solar cells by novel anode containing cauliflower-likeTiO2spheres [J]. J. Power Sources,2008,182:370-376.
    [214] Liu B, Zeng H C, Fabrication of ZnO―dandelions‖via a modified Kirkendallprocess [J]. J. Am. Chem. Soc.,2004,126:16744-16746.
    [215] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Titania NanotubesPrepared by Chemical Processing [J]. Adv. Mater.,1999,11:1307-1311.
    [216] Crossland E J W, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies DM, M. Hillmyer A, Steiner U, A Bicontinuous Double Gyroid Hybrid Solar Cell [J].NanoLett.,2009,9:2807-2812.
    [217] Guldin S, Hüttner S, Kolle M, Well M E, Friend R H, Steiner U, Tétreault N,Dye-Sensitized Solar Cell Based on a Three-Dimensional Photonic Crystal [J].NanoLett.,2010,10:2303-2309.
    [218] Shiu J W, Lan C M, Chang Y C, Wu H P, Huang W K, Diau E W G,Size-Controlled Anatase Titania Single Crystals with Octahedron-like Morphologyfor Dye-Sensitized Solar Cells [J]. ACS Nano.,2012,6:10862-10873.
    [219] Sun Z, Kim J H, Zhao Y, Attard D, Dou S X, Morphology-controllable1D-3Dnanostructured TiO2bilayer photoanodes for dye-sensitized solar cells [J]. Chem.Commun.,2013,49:966-968.
    [220] Marco L D, Manca M, Giannuzzi R, Belviso M R, Cozzoli P D, Gigli G,Shape-tailored TiO2nanocrystals with synergic peculiarities as building blocks forhighly efficient multi-stack dye solar cells [J]. Energy Environ. Sci.,2013,6:1791-1795.
    [221] Wu W Q, Xu Y F, Rao H S, Su C Y, Kuang D B, A double layered TiO2photoanode consisting of hierarchical flowers and nanoparticles for high-efficiencydye-sensitized solar cells [J]. Nanoscale,2013,5:4362-4369.
    [222] Dong Z H, Lai X Y, Halpert J E, Yang N L, Yi L X, Zhai J, Wang D, Tang Z Y,Jiang L, Accurate Control of Multishelled ZnO Hollow Microspheres forDye-Sensitized Solar Cells with High Efficiency [J]. Adv. Mater.,2012,24:1046-1049.
    [223] Jiang C Y, Sun X W, Lo G Q, Kwong D L, Wang J X, Improved dye-sensitizedsolar cells with a ZnO-nanoflower photoanode [J]. Appl. Phys. Lett.,2007,90:263501-263503.
    [224] Martinson A B F, Elam J W, Hupp J T, Pellin M J, ZnO Nanotube BasedDye-Sensitized Solar Cells [J]. Nano Lett.,2007,7:2183-2187.
    [225] Wang X D, Ding Y, Summers C J, Wang Z L, Large-Scale Synthesis ofSix-Nanometer-Wide ZnO Nanobelts [J]. J. Phys. Chem. B,2004,108:8773-8777.
    [226] Kar S, Dev A, Chaudhuri S, Simple Solvothermal Route To Synthesize ZnONanosheets, Nanonails, and Well-Aligned Nanorod Arrays [J]. J. Phys. Chem. B,2006,110:17848-17853.
    [227] Fu M, Zhou J, Xiao Q F, Li B, Zong R L, Chen W, Zhang J, ZnO Nanosheetswith Ordered Pore Periodicity via Colloidal Crystal Template AssistedElectrochemical Deposition [J]. Adv. Mater.,2006,18:1001-1004.
    [228] Wang Z L, Zinc oxide nanostructures: growth, properties and applications [J]. J.Phys. Condens. Matter,2004,16:829-858.
    [229] Ferry V E, Sweatlock L A, Pacifci D, Atwater H A, Plasmonic NanostructureDesign for Efficient Light Coupling into Solar Cells [J]. Nano Lett.,2008,8:4391-4397.
    [230] Schlichthorl G, Huang S Y, Sprague J, Frank A J, Band Edge Movement andRecombination Kinetics in Dye-Sensitized Nanocrystalline TiO2Solar Cells: A Studyby Intensity Modulated Photovoltage Spectroscopy [J]. J. Phys. Chem. B,1997,101:8141-8155.
    [231] Zhang X, Thavasi V, Mhaisalkar S G, Ramakrishna S, Novel hollowmesoporous1D TiO2nanofibers as photovoltaic and photocatalytic materials [J].Nanoscale,2012,4:1707-1716.
    [232] Wang Q, Zhang Z, Zakeeruddin S M, Gr tzel M, Enhancement of theperformance of dye-sensitized solar cell by formation of shallow transport levelsunder visible light illumination [J]. J. Phys. Chem. C,2008,112:7084-7092.
    [233] Frank A J, Kopidakis N, Lagemaat J V D, Electrons in nanostructured TiO2solar cells: transport, recombination and photovoltaic properties [J]. Coord. Chem.Rev.,2004,248:1165-1179.
    [234] Liao J Y, Lin H P, Chen H Y, Kuang D B, Su C Y, High-PerformanceDye-Sensitized Solar Cells Based on Hierarchical Yolk-Shell Anatase TiO2Bead [J].J. Mater. Chem.22(2012)1627-1633.
    [235] Liao J Y, He J W, Xu H Y, Kuang D B, Su C Y, Solvothermal Fabrication ofAnatase TiO2Nanoparticles, Nanofibers, Hierarchical Spheres and Ellipsoid Spheres:Applications in Efficient Dye-sensitized Solar Cells [J]. J. Mater. Chem.22(2012)7910-7918.
    [236] Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A, Use ofHighly-Ordered TiO2Nanotube Arrays in Dye-Sensitized Solar Cells [J]. Nano Lett.,2006,6:215-218.
    [237] Zhu K, Neale N R, Miedaner A, Frank J A, Enhanced charge-collectionefficiencies and light scattering in dye-sensitized solar cells using oriented TiO2nanotubes arrays.[J]. Nano Lett.,2007,7,69-74.
    [238] Liu B, Aydil E S, Growth of Oriented Single-Crystalline Rutile TiO2Nanorodson Transparent Conducting Substrates for Dye-Sensitized Solar Cells [J]. J. Am.Chem. Soc.,2009,131:3985-3990.
    [239] Wu J J, Liu S C, Catalyst-Free Growth and Characterization of ZnO Nanorods[J]. J. Phys. Chem. B,2002,106:9546-9551.
    [240] Hosono E, Fujihara S, Kakiuchi K, Imai H, Growth of Submicrometer-ScaleRectangular Parallelepiped Rutile TiO2Films in Aqueous TiCl3Solutions underHydrothermal Conditions [J]. J. Am. Chem. Soc.,2004,126:7790-7791.
    [241] Wang P, Zakeeruddin S M, Comte P, Charvet R, Humphry-Baker R, Gr tzel M,Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting AmphiphilicSensitizer and Hexadecylmalonic Acid on TiO2Nanocrystals [J]. J. Phys. Chem. B,2003,107:14336-14341.
    [242] Gao F, Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Humphry-Baker R,Wang P, Zakeeruddin S M, Gr tzel M, Enhance the Optical Absorptivity ofNanocrystalline TiO2Film with High Molar Extinction Coefficient RutheniumSensitizers for High Performance Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2008,130:10720-10728.
    [243] Hore S, Vetter C, Kern R, Smit H, Hinsch A, Influence of scattering layers onefficiency of dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells,2006,90:1176-1188.
    [244] Yang L, Lin Y, Jia J, Li X, Xiao X, Zhou X, Cauliflower-like TiO2roughspheres: Synthesis and applications in dye sensitized solar cells [J]. MicroporMesopor Mat,2008,112:45-52.
    [245] Samadpour M, Gimenez S, Zad A I, Taghavinia N, Mora-Sero I, Easilymanufactured TiO2hollow fibers for quantum dot sensitized solar cells [J]. Phys.Chem. Chem. Phys.,2012,14:522-529.
    [246] Liu Y, Wang S, Shan Z, Li X, Tian J, Mei Y, Ma H, Zhu K, Anatase TiO2hollow spheres with small dimension fabricated via a simple preparation method fordye-sensitized solar cells with an ionic liquid electrolyte [J]. Electrochimica Acta,2012,60:422-427.
    [247] Jiang J, Gu F, Shao W, Li C, Fabrication of Spherical Multi-Hollow TiO2Nanostructures for Photoanode Film with Enhanced Light-Scattering Performance [J].Ind. Eng. Chem. Res.,2012,51:2838-2845.
    [248] Wang H, Miyauchi M, Ishikawa Y, Li Y, Li L, Li X, Bando Y, Golberg D,Single-Crystalline Rutile TiO2Hollow Spheres: Room-Temperature Synthesis,Tailored Visible-Light-Extinction, and Effective Scattering Layer for QuantumDot-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2011,133:19102-19109.
    [249] Pang H, Yang H, Guo C X, Lu J, Li C M, Nanoparticle self-assembled hollowTiO2spheres with well matching visible light scattering for high performancedye-sensitized solar cells [J]. Chem. Commun.,2012,48:8832-8834.
    [250] Gajjela S R, Yap C, Balaya P, Multi-functional photoanode films usingmesoporous TiO2aggregate structure for efficient dye sensitized solar cells [J]. J.Mater. Chem.,2012,22:10873-10882.
    [251] Xi J, Zhang Q, Park K, Sun Y, Cao G, Enhanced power conversion efficiency indye-sensitized solar cells with TiO2aggregates/nanocrystallites mixed photoelectrodes[J]. Electrochimica Acta,2011,56:1960-1966.
    [252] Park Y C, Chang Y J, Kum B G, Kong E H, Son J Y, Kwon Y S, Park T, H.Jang M, Size-tunable mesoporous spherical TiO2as a scattering overlayer inhigh-performance dye-sensitized solar cells [J]. J. Mater. Chem.,2011,21,9582-9586.
    [253] Barbe C J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gr tzelM, Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications [J]. J.Am. Ceram. Soc.,1997,80:3157-3171.
    [254] Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B F, CooperativeFormation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J]. Science,1993,261:1299-1303.
    [255] Tanev P T, Chibwe M, Pinnavaia T J, Titanium-containing mesoporousmolecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994,368:321-323.
    [256] Tanev P T, Pinnavaia T J, A Neutral Templating Route to MesoporousMolecular Sieves,[J]. Science,1995,267:865-867.
    [257] Yu C Z, Fan J, Tian B Z, Zhao D Y, Morphology Development of MesoporousMaterials: a Colloidal Phase Separation Mechanism,[J]. Chem. Mater.,2004,16:889-898.
    [258] Sugimoto T, Zhou X P, Muramatsu A, Synthesis of uniform anatase TiO2nanoparticles by gel-sol method:4. Shape control [J]. J. Colloid Interface Sci.,2003,259:53-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700