用户名: 密码: 验证码:
环境因素影响下火电直接空冷系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,空冷技术在我国北方火力发电中得到了大力的发展。环境因素与火电直接空冷机组的耦合比较复杂,环境风速与风向、环境温度以及轴流冷却风机的性能等因素都对火电直接空冷机组性能产生影响,并且受轴流风机群运行中的群抽效应和环境风影响下的热风回流的耦合影响,轴流风机群外围的空冷凝汽器单元受环境风影响大。
     在四台联建火电直接空冷机组上进行了春、夏与秋三个季节不同工况下的机组热力性能实验,并在夏季主导风向下,基于两台联建火电直接空冷机组的轴流风机群分区调节的基础上,进行了不同工况下的机组热力性能实验。然后建立火电直接空冷机组性能的灰关联度模型,定量分析火电直接空冷机组自身运行实验变量与环境条件以及轴流风机群各风机的性能对火电直接空冷系统性能的影响,并基于上述两个热力性能实验数据,分别应用神经网络(ANN)与最小二乘支持向量机(LS-SVM)等算法,建立汽轮机背压预测模型。接着,在选定的基准工况下应用火电直接空冷机组汽轮机背压LS-SVM预测模型,分析出处于夏季主导风向下的轴流风机群不同分区风机转速降低和升高对环境风下游与上游火电直接空冷机组抵御环境风影响的作用规律。建立由太阳辐射引起的直接空冷系统附加热负荷计算模型,对太阳辐射影响空冷凝汽器热负荷的程度进行分析。
     基于火电直接空冷机组热力性能实验数据,应用建立的火电直接空冷机组性能灰关联度模型进行分析,结果显示出,文中选定的机组自身运行与环境实验变量对火电直接空冷机组的性能影响不同,并且处于不同位置的轴流冷却风机的性能对火电直接空冷机组性能的影响也不同,处于外围的轴流冷却风机的性能对火电直接空冷机组性能的影响最强烈。
     以北方地区某135MW火电直接空冷机组凝汽器的全年太阳辐射量为主线,假定汽轮机排汽量不变,环境温度为月平均日温度,揭示出由太阳辐射引起的月平均附加热负荷在1-5月期间升高,5月时达到最大值,为371.75kW,而后逐步降低,与日照时数的变化趋势基本一致。假定方位角为零时,凝汽器由太阳辐射引起的月平均附加热负荷增加而导致汽轮机背压升高,1-7月间汽轮机背压变化增加,7月时达到最大值,为0.2097kPa,8-12月相应的影响会减弱,与环境温度的变化趋势大致相同,并且由太阳辐射引起的直接空冷系统附加热负荷平均占空冷凝汽器总热负荷的0.134%。
     基于LM-BP算法,建立火电直接空冷机组的汽轮机背压ANN预测模型,其预测值与汽轮机背压的真实值基本一致,模型的平均相对误差,MRE,为9.27%;平均均方差,RMSE,为1.827kPa;绝对变异分数,R2,为0.9859。为检测模型的鲁棒性与可靠性,分别将空冷凝汽器的环境输入变量,如自然环境风速、自然环境风向、空冷岛挡风墙上环境风速和空冷岛挡风墙上环境风向等参数,加入±5%的随机波动后,输入到模型中,其MRE分别为14.57%,12.21%,11.22%和11.16%,RMSE分别为2.773,2.130,1.844和1.895kPa,R2分别为0.9641,0.9779,0.9836和0.9824,说明模型的稳定性很好,数据波动产生的相对误差能得到有效的抑制。
     针对夏季主导风向下的两台联建火电直接空冷机组,分别建立相应的汽轮机背压LS-SVM预测模型,讨论轴流风机群不同分区风机转速降低与升高时,轴流风机群环境风下游与上游火电直接空冷机组汽轮机背压的变化规律:(1)轴流风机群不同分区的轴流冷却风机转速发生变化时,汽轮机背压变化明显不同;(2)改变其中一台机组轴流冷却风机的转速,也会对另一台机组的汽轮机背压产生影响;(3)单纯提高轴流冷却风机转速并非总能够起到降低机组汽轮机背压的效果,适当降低受热风回流影响较大分区的轴流冷却风机转速,反而可以起到降低轴流风机群环境风下游机组汽轮机背压的作用,并且轴流风机群环境风上游机组汽轮机背压也不会升高。
Recently air-cooling technology has been actively developed in north China. Environmental factors and the thermal direct air-cooled power generating units are coupled complexly, in which the performances of the thermal direct air-cooled power generating units are inluenced by the environmental wind velocity, the enviromnental wind direction, the environmental temperature and the performances of the axial flow cooling fans. In addition, the air-cooled condenser (ACC) cells in the pherimery are influenced strongly by the cluster effect of the operation of the axial flow fan cluster and the exhaust hot air recirculation of the environmental natural wind simultaneously.
     The thermal performance experiments of the four thermal direct air-cooled units constructed together were carried out during spring, summmer, and autumn. The further thermal performance experiments of the fan cluster portion operation on the two thermal direct air-cooled units constructed together were carried out under the summer dominant wind. The comprehensive effects of the unit experimental variables itself, and the environmental conditions, and the performances of the experimental axial flow cooling fans on the unit performances were obtained quantitatively by the grey relational analysis models, and the models for the turbine back pressure prediction based on the above thermal performance experimental data were established respectively using the artifical neural network (ANN) algorithm and the least squares support vector machine (LS-SVM) algorithm. Secondly, the rules of the effect on the downstream and upstream units against the environmental wind could be obtained based on the turbine back pressure LS-SVM prediction models when the speeds of the different portion fans on the axial flow fan cluster were reduced or increased based on the reference conditions under the summer dominant wind. The heat load from the solar radiation calculation model on the ACC was built, and the related influencing analysis was obtained.
     Based on the analyzing results of the grey relational models on the experimental data of the thermal performances of the thermal direct air-cooled units, it is found that the unit experimental variables itself and the environmental conditions had different influences on the performances of the thermal direct air-cooled units, and the performances of axial flow cooling fans in different places of the axial flow fan cluster had different influences on the performances of the thermal direct air-cooled units as well, with the strongest effect of the fans in the periphery of the axial flow fan cluster.
     For the condenser in a135MW thermal direct air-cooled unit, the monthly averaged midday solar radiation over a period of21years was obtained, and its effects on the heat load and turbine back pressure were investigated based on the constant turbine outflow and monthly average day temperature of enviroment. The monthly average heat load from the solar radiation increases in a5-month period with371.75kW in May and then decreases, which is consistent with the sunshine time. For the azimuthal angle of0°, the turbine back pressure increases over a7-month period, with the maximum increment reaching for0.2097kPa in July, and then decreases over a5-month period, which is consistent with the environmental temperature, and the heat load from the solar radiation is the0.134%of the overall heat load of the thermal direct air-cooled condenser averagely.
     An ANN model based on a LM-BP algorithm was developed, which could be used for predicting the turbine back pressure of a thermal direct air-cooled unit. The prediction of the ANN model usually agreed well with the actual values of the turbine back pressure. Furthermore, when it was used for predicting the turbine back pressure, the model yielded agreeable result with mean relative errors(MRE) of9.273%and root mean square error (RMSE)1.83kPa and absolute fraction of variance (R2) of0.9859. Moreover, when the enviromental experimental variables with±5%random fluctuation, such as environmental natural wind velocity and direction, ACC wind velocity and direction on windwall, were input into the ANN prediction model, the related MRE was14.57%,12.21%,11.22%and11.16%, the related RMSE was2.77,2.13,1.84and1.89kPa, the related R2was0.9641,0.9779,0.9836and0.9824, which demonstrated the robustness and reliability of the model, and the relative errors of the data fluctuation were effectively restrained.
     The LS-SVM models for the turbine back pressure prediction of the two thermal direct air-cooled units constructed together were established respectively under the summer dominant wind, and the rules of the influences on the turbine back pressure variations of the downstream and upstream thermal direct air-cooled units were obtained when reducing and increasing the fan speed of different portion of the axial flow fan cluster portion:(1) The turbine back pressure variations are significantly different if the fans speed of different portions are changed.(2) If the air cooling fan speeds of one unit are changed, the turbine back pressure of the other unit would be affected either.(3) It does not always play a role to reduce the turbine back pressure of the unit when the speeds of the air cooling fans are increased appropriately, and it plays a role to reduce the turbine back pressure of the unit in the downstream of the environmental natural wind and not to increase the turbine back pressure of the unit in the upstream of the environmental natural wind if the fan speeds of the portions affected by exhaust hot air recirculation obviously are reduced appropriately.
引文
[1]R. Tawney, Z. Khan, J. Zachary. Economic and performance evaluation of heat sink options in combined cycle applications[C]. Proceeding of Turbo Expo: ASME/IGTI Turbo Expo,2003, Atlanta, Georgia, USA.
    [2]伍小林.我国火力发电厂空气冷却技术的发展现状[J].国际电力,2005,9(1):15-18.
    [3]李秀云,严俊杰,林万超.火电厂冷端系统评价指标及诊断方法的研究[J].中国电机工程学报,2001,21(9):94-98.
    [4]严卫春.直接空冷600MW汽轮机排汽装置的结构、安装与运行[J].热力透平,2006,35(1):46-50.
    [5]林立敖,李树梅,赵耀.直接空冷机组设计背压的选择[J].内蒙古电力技术,2003,21(2):1-2.
    [6]王佩璋.600MW火电直接空冷风机的噪声及降噪措施[J].电力环境保护,2002,18(4):26-29.
    [7]王佩璋.单机600MW大型空冷电厂的节水能力与废水零排放[J].电站辅机,2004,88(1):23-26.
    [8]王佩璋.国产600MW空冷汽轮机与直接空冷系统现代技术[J].山西电力,2003,(1):54-57.
    [9]王佩璋.国产600MW直接空冷汽轮机组设计中的一些问题[J].电力建设,2005,26(3):10-14.
    [10]严俊杰,张春雨,李秀云,林万超.直接空冷系统变工况特性的理论研究[J].热能动力工程,2000,15(6):601-603.
    [11]冯润富,王晓琴,朱光辉.600MW直接空冷机组运行中出现的问题分析[C].全国火电空冷机组技术交流研讨会,2012,乌鲁木齐,新疆.
    [12]夏尊宇.空冷机组的安全运行与优化[C].全国火电空冷机组技术交流研讨会,2012,乌鲁木齐,新疆.
    [13]周敬博.直接空冷机组喷淋系统优化运行及单元中空气流动传热特性研究[D].北京:北京交通大学,2010.
    [14]http://blog.sina.com
    [15]http://fun.hudong.co
    [16]http://wenku.baidu.c
    [17]毕景涛.大气压的五种变化[J].物理通报,1996,(8):6-7.
    [18]孙跃勇.大气层与大气压的变化[J].考试周刊,2011,(15):166-167.
    [19]刘文广.巧设地理课堂情境,培养学习地理兴趣[J].考试周刊,2011,(15):167-168.
    [20]左虎.基于高原气候的近地测量中大气折射影响的研究[D].成都:西南交通大学,2007.
    [21]刘海红.新疆水汽输送特征及其变化分析[D].乌鲁木齐:新疆师范大学,2012.
    [22]http://8.80008.cn/80
    [23]http://www.xici.net/
    [24]http://www.docin.com/p-342680973.html
    [25]王靖宇.地形因子及GIS技术在面雨量降尺度研究中的应用[D].南京:南京信息工程大学,2012.
    [26]刘丽华,杜小泽,席新铭,杨立军,杨勇平,徐则林.直接空冷火电机组风机群分区调节运行实验[J].中国电机工程学报,2013,33(17):71-77.
    [27]夏建波.地下矿山井巷工程计算机辅助设计系统研制[D].昆明:昆明理工大学,2003.
    [28]朱嵩,李敬莎,杨腊腊,曾敏.直接空冷凝汽器翅片散热器流动传热特性[J].电力建设,2011,32(7):63-67.
    [29]杨立军,郭跃年,杜小泽,杨勇平,刘登瀛.环境影响下的直接空冷系统运行特性研究[J].现代电力,2005,22(6):39-42.
    [30]C. Yang, S. L. Tang. Transient analysis for effect of tdfwp on the operation of main equipments in direct air-cooled thermal power generating unit[C]. ASME 2011 Power Conference,2011, DENVER, COLORADO, USA.
    [31]N. Chen. Fuzzy control approach of back pressure protection for direct air-cooling unit[J]. International Journal of Digital Content Technology and its Applications, 2013,7(6):104-11.
    [32]石诚,王智.某电厂空冷系统的优选分析[C].第三届全国火电空冷机组技术交流论文集,2008,西安,陕西.
    [33]杨立军,杜小泽,杨勇平,刘登瀛.火电站直接空冷凝汽器积灰监测[J].热能动力工程,2007,22(2):172-175.
    [34]顾志福,陈学锐,李燕,蔡峰.大型电厂直冷系统风效应风洞模拟[J].力学学报,2005,37(5):558-563.
    [35]J. A. van Rooyen, D. G. Kroger. Performance trends of an air-cooled steam condenser under windy conditions[J]. Journal of Engineering for Gas Turbines and Power,2008,130(2):023006-023012.
    [36]Z. F. Gu, H. L. Chen, W. H. Zhang, Y. Li, J. Y. Peng. Wind tunnel simulation on re-circulation of air-cooled condensers of a power plant[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(6):509-520.
    [37]杨立军,郭跃年,杜小泽,杨勇平,刘登瀛.环境影响下的直接空冷系统运行特性研究[J].现代电力,2005,22(6):39-42.
    [38]D. G. Kroger. Fan performance in air-cooled steam condensers[J]. Heat Recovery Systems & CHP,1994,14(4):391-399.
    [39]L. J. Yang, X. Z. Du, Y. P. Yang. Measures against the adverse impact of natural wind on air-cooled condensers in power plant[J]. Science China-technological Sciences,2010,53(5):1320-1327.
    [40]Z. F. Gu, X. R. Chen, W. Lubitz, Y. Li, W. L. Luo. Wind tunnel simulation of exhaust recirculation in an air-cooled system at a large power plant[J]. International Journal of Thermal Sciences,2007,46(3):308-317.
    [41]P. Q. Liu, H. S. Duan, W. L. Zhao. Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant[J]. Applied Thermal Engineering, 2009,29(10):1927-1934.
    [42]X. F. Gao, C W. Zhang, J. J. Wei, B. Yu. Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant[J]. Heat and Mass Transfer,2009,45(11):1423-1433.
    [43]C. A. Salta, D. G. Kroger. Effect of inlet flow distortions on fan performance in forced draught air-cooled heat exchangers[J]. Heat Recovery Systems and CHP.1995,15(6):555-561.
    [44]C. J. Meyer, D. G. Kroger. Plenum chamber flow losses in forced draught air-cooled heatexchangers[J]. Applied Thermal Engineering,1998,18(9):875-893.
    [45]C. J. Meyer, D. G. Kroger. Air-cooled heat exchanger inlet flow losses [J]. Applied Thermal Engineering,2001,21(9):771-786.
    [46]杨立军,杜小泽,杨勇平,王利宁.直接空冷系统轴流风机群运行特性分析[J].中国电机工程学报,2009,29(20):1-5.
    [47]L. J. Yang, X. Z. Du, H. Zhang, Y. P. Yang. Numerical investigation on the cluster effect of an array of axial flow fans for air-cooled condensers in a power plant[J]. Chinese Science Bulletin,2011,56(21):2272-2280.
    [48]N. Rhodes, K. Else. Predicting the performance of water and air cooled condensers[J]. International Journal of Pressure Vessels and Piping,1996,66(1): 99-112.
    [49]侯小龙.VGB导则中直接空冷凝汽器验收试验测量方法[J].热力透平,2004,33(4):250-255.
    [50]杨立军,杜小泽,杨勇平,刘登瀛.火电站直接空冷凝汽器性能考核评价方法[J].中国电机工程学报,2007,27(2):59-63.
    [51]杨立军,杜小泽,杨勇平,徐则林.空冷凝汽器验收考核实验中的几个原则[J].现代电力,2007,(4):52-55.
    [52]王志坚,胡振岭.火电厂空冷凝汽器验收试验标准VGB-R131Me解析与误差分析[J].电力建设,2009,30(3):59-62.
    [53]冯丽丽.火电机组直接空冷凝汽器空气侧强化传热研究[D].北京:华北电力大学,2012.
    [54]J. R. Bredell, D. G. Kroger, G. D. Thiart. Numerical investigation of fan performance in a forced draft air-cooled steam condenser[J]. Applied Thermal Engineering,2006,26(8):846-852.
    [55]Giampietro Fabbri. Effect of disuniformities in vapor saturation pressure and coolant velocity on vapor back flow phenomena in single-pass air-cooled condensers[J]. International Journal of Heat and Mass Transfer, 2000,43(1): 147-159.
    [56]C. J. Meyer. Numerical investigation of the effect of inlet flow distortions on forced draught air-cooled heat exchanger performance[J]. Applied Thermal Engineering, 2005,25(11):1634-1649.
    [57]C. J. Meyer, D. G. Kroger. Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behaviour[J]. Applied Thermal Engineering,2004,24(2):359-371.
    [58]A. F. duPreez, D. G. Kroger. The effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995,58:293-303.
    [59]W. Groenewald, D. G. Kroger. Effect of mass transfer on turbulent friction during condensation inside ducts[J]. International Journal of Heat and Mass Transfer, 1995,38(18):3385-3392.
    [60]A. E. Conradie, J. D. Buys, D. G. Kroger. Performance optimization of dry-cooling system for power plants throught SQP methods[J]. Applied Thermal Engineering, 1998,18(1-2):25-45.
    [61]K. Duvenhage, J. A. Vermeulen. C. J. Meyer, D. G. Kroger. Flow distortions at the fan inlet of forced-draught air-cooled heat exchangers[J]. Applied Thermal Engineering,1996,16:741-752.
    [62]M. T. F. Owen, D. G. Kroger. The effect of screens on air-cooled steam condenser performance under windy conditions[J]. Applied Thermal Engineering,2010, 30(16):2610-2615.
    [63]阎秦,徐二树,杨勇平,马良玉,王兵树.直接空冷凝汽器仿真模型的研究[J].动力工程,2008,(3):381-385+458.
    [64]阎秦.大型直接空冷凝汽器建模仿真研究[D].保定:华北电力大学(河北),2006.
    [65]K. Duvenhage, D. G. Kroger. The influence of wind on the performance of forced draught air-cooled heat exchangers[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,62:259-277.
    [66]M. P. Van Staden, L. Pretorius, J. P. Meyer. Simulation of heat exchange in large air cooled condensers[J]. Heat Transfer 1998, Proceedings of 11th IHTC, 1998, KOREA.
    [67]M. P. van Staden. Numerical Modelling of the Effects of Ambient Conditions on Large Power Station Air Cooled Steam Condensers[J]. American Society of Mechanical Engineers,1995,221:145-150.
    [68]P. J. Hotchkiss, C. J. Meyer, T. W. von Backstrom. Numerical investigation into the effect of cross-flow on the performance of axial flow fans in forced draught air-cooled[J]. Applied Thermal Engineering,2006,26(2):200-208.
    [69]M. Owen, D. G. Kroger. Contributors to increased fan inlet temperature at an air-cooled steam condenser[J]. Applied Thermal Engineering,2013,50(1): 1149-1156.
    [70]L. J. Yang, X. Z. Du, Y. P. Yang, D. Y. Liu. Influences of wind on flow and heat transfer of cooling air in direct air-cooled condensers[C]. The Eighteenth International Symposium on Transport Phenomena,2007, Daejeon, KOREA.
    [71]杨立军,杜小泽,杨勇平.空冷凝汽器全工况运行特性分析[J].中国电机工程学报,2008,28(8):24-28.
    [72]L. J. Yang, X. Z. Du, Y. P. Yang. Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant[J]. International Journal of Thermal Sciences,2011,50(10):2050-2061.
    [73]杜小泽,杨立军,金衍胜,姜剑波,杨勇平.火电站直接空冷凝汽器传热系数实验关联式[J].中国电机工程学报,2008,28(14):32-37.
    [74]顾志福,张文宏,李辉,彭继业.电厂直接空冷系统风效应风洞模拟实验研究 [J].热能动力工程.2003,18(104):159-162.
    [75]Z. F. Gu, X. R. Chen, W. Lubitz, Y. Li, W. L. Luo. Wind tunnel simulation of exhaust recirculation in an air-cooling system at a large power plant[J]. International Journal of Thermal Sciences,2007,46(3):308-317.
    [76]杨立军,蒲罡,杜小泽,杨勇平.一种空冷单元空气导流装置流动传热特性[J].工程热物理学报,2010,31(6):1001-1004.
    [77]贾宝荣.空冷凝汽器空气流动传热特性的数值模拟[D].北京:华北电力大学.2009.
    [78]W. X. Zhang, L. J. Yang, X. Z. Du. Thermo-flow characteristics and air flow field leading of the air-cooled condenser cell in a power plant[J]. Science China-Technological Sciences,2011,54(9):2475-2482.
    [79]L. J. Yang, X. Z. Du, Y. P. Yang. Space characteristics of the thermal performance for air-cooled condensers at ambient winds[J]. International Journal of Heat and Mass Transfer,2011,54(15):3109-3119.
    [80]X. F. Gao, C. W. Zhang, J. J. Wei. Performance prediction of an improved air-cooled steam condenser with deflector under strong wind[J]. Applied Thermal Engineering,2010,30(17):2663-2669.
    [81]张遐龄,杨旭,李向群,安亦然.火电厂空冷平台换热的数值模拟[J].水动力学研究与进展,2005,20(S1):874-880.
    [82]冯玉朝,丁常富,宋宏儒.火电厂空冷平台结构参数对空冷单元换热的影响[J].发电设备,2009,(1):13-30.
    [83]周兰欣,白中华,张淑侠,王统彬.空冷平台外部流场的数值模拟[J].动力工程,2008,28(3):386-389.
    [84]Q. W. Wang, D. J. Zhang, M. Zeng, M. Lin, L. H. Tang. CFD simulation on a thermal power plant with air-cooled heat exchanger system in north China[J]. Engineering Computations,2008,25(3):342-365.
    [85]石磊,李星,周云山,石祥彬.直接空冷凝汽器考核工况的全厂数值模拟[J].热力发电,2008,37(3):18-21.
    [86]W. F. He, Y. P. Dai, M. Q. Li, Q. Z. Ma. Influence mechanism on flow and heat transfer characteristics for air-cooled steam condenser cells[J]. Heat and Mass Transfer,2012,48(9):1663-1674.
    [87]L. J. Yang, X. Z. Du, Y. P. Yang. Wind effect on the thermo-flow performances and its decay characteristics for air-cooled condensers in a power plant[J]. International Journal of Thermal Sciences,2012,53:175-187.
    [88]Z. H. Ge, X. Z. Du, L. J. Yang, Y. P. Yang, Y. L. Li, Y. S. Jin. Performance monitoring of direct air-cooled power generating unit with infrared thermography[J]. Applied Thermal Engineering,2011,31(4):418-24.
    [89]姜剑波.直接空冷机组的变工况计算及排汽流动特性[D].北京:华北电力大学(北京),2009.
    [90]刘卫星,林勇.直接空冷系统在煤电工程中的设计与应用[J].电力科学与工程,2004,(3):72-74.
    [91]王玉平.汽轮机异常振动的分析和治理[J].科学之友,2011,(8):19-20.
    [92]王起.在富煤缺水的陕北地区建设节水型火电厂[J].中国科技信息,2005,(15):211.
    [93]J. L. Deng. Spread of Grey Relational Space[J]. Journal of Grey Systems,1995, 7(3):96-100.
    [94]J. L. Deng. Grey group decision in grey relational space[J]. The Journal of Grey System,1998,10(3):177-182.
    [95]J. L. Deng. Figure on difference information space in Grey relational analysis[J]. Journal of Grey System,2004,16(2):96-100.
    [96]N. M. Xie, S. F. Liu. Research on the multiple and parallel properties of several grey relational models[C]. Grey Systems and Intelligent Services International Conference,2007, Nanjing, CHINA.
    [97]刘思峰,谢乃明.灰色系统理论及其应用[M].北京:科学出版社,2008.
    [98]X. P. Xiao. Theoretical study and reviews on the computation method of grey interconnect degree[J]. Systems Engineering-Theory & Practice,1997,17(8): 76-81.
    [99]S. F. Liu, F. Jeffrey, Y. J. Yang. Several grey system models which used most commonly[C]. AIP Conference Proceedings,2013, Rhodes, Greece.
    [100]J. Y. Wang, D. H. Li, S. H. Wu. Study on divergence based on the grey relational degree in the group decision-making[C]. International Conference on Applied Mechnics and Mechanical Engineering,2010, Changsha, CHINA.
    [101]W. X. Guo, H. X. Wang. Application of grey system model to water resources allocation schemes assessment[C]. Management and Service Science, International Conference,2010, Wuhan, CHINA.
    [102]P. Long, L. K. Xu, Q. F. Li, Y. Tang, Y. L. Xin. Analysis of regression and grey relational degree of uniform design on composition of RuIrSnLa/Ti metallic-oxide anode coatings[J]. Acta Chnmica Sinica,2009,67(12):1325-1330.
    [103]Y. M. Pan, X. Y. Zhang, P. Q. Xue. The amount prediction of gas emitted via wavelet neural network with grey correlation analysis, International Symposium Water Resource and Environmental Protection,2011, Xian, CHINA.
    [104]B. Acherjee, A. S. Kuar, S. Mitra, D. Mitra. Application of grey-based taguchi method for simultaneous optimization of multiple quality characteristics in laser transmission welding process of thermoplastics[J]. International Journal of Advanced Manufacturing Technology,2011,56(9):995-1006.
    [105]U. Koklu. Optimizztion of kerf and surface roughness of AL 7 475-T7 351 alloy machined with wedm process using the grey-based taguchi method[J]. Metalurgija, 2012,51(1):47-50.
    [106]黄鑫,蔡强国,陈浩,方海燕.土壤侵蚀危险度评价方法研究[J].水土保持研究,2008,15(2):143-147.
    [107]赵晶,赵喜仓.我国五省市R&D活动影响力与区域创新能力关联评价研究[J].江苏大学学报(社会科学版),2007,9(1):89-92.
    [108]李虹来,勒中坚.灰色关联分析在农业现代化评价体系中的应用[J].江西财经大学学报,2007,(1):43-44,79.
    [109]张锦文.西部地区产业结构变迁对经济增长影响的实证研究[J].温州职业技术学院学报,2006,6(4):21-23.
    [110]施泉生,钮庆红,陆庆云.灰色关联度-权变评价法在热电企业安全性评价中的应用[J].上海电力学院学报,2007,23(3):272-276.
    [111]孙兆辉.水泥稳定碎石路用综合性能分析[J].西部交通科技,2006,(6):8-11.
    [112]W. S. McCulloch, W. Pitts. A logical calculus and the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943, (5):115-133.
    [113]P. D. Wasserman. Neural computing:theory and practice[M]. New York:Van Nostrand Reinhold,1989.
    [114]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2006.
    [115]M. Hosoz, H. M. Ertunc, H. Bulgurcu. Performance prediction of a cooling tower using artificial neural network[J]. Energy Conversion and Management,2007, 48(4):1349-1359.
    [116]C. E. Romero, J. F. Shan. Development of an artificial neural network-based software for prediction of power plant canal water discharge temperature[J]. Expert Systems with Applications,2005,29(4):831-838.
    [117]Z. Bertalan, P. Kadar. Application of rough set theory for determining the significant inputs of an ANN power trading calculations[C]. Electrotechnical Conference,2000, Lemesos, Cyprus.
    [118]M. M. Negm, A. H. Mantawy, M. H. Shwehdi. A global ANN algorithm for induction motor based on optimal preview control theory[C]. IEEE Power Tech Conference Proceedings,2003, Bologna, ITALY.
    [119]张攀.确定矿井巷道摩擦阻力系数的新方法研究[D].阜新:辽宁工程技术大学,2003.
    [120]李贞珍.神经网络在城市交通流预测模型中应用的研究[D].上海:上海交通大学,2007.
    [121]庄小燕.基于动力有限元分析和神经网络技术的含分层复合材料层合板的损伤诊断[D].大连:大连理工大学,2005.
    [122]王小艺.一种工件表面缺陷检测新方法的研究与系统实现[D].太原:山西大学,2003.
    [123]田永常.BP网络法在钻头配方设计中的应用研究[D].武汉:中国地质大学,2003.
    [124]V. N. Vapnik. The nature of statistical learning Theory[M]. New York:Springer, 1995.
    [125]Kristiaan Pelkmans, Johan A. K. Suykens, T. Van Gestel, J. De Brabanter, L. Lukas, B. Hamers, B. De Moor, J. Vandewalle. LS-SVMlab:a matlab/c toolbox for least squares support vector machines[C]. ESAT-SISTA,2002, Leuven, BELGIUM.
    [126]A. W. N. Izzri, A. Mohamed, I. Yahya. A new method of transient stability assessment in power systems using LS-SVM[C]. Student Conference on Research and Development,2007, Cyberjaya, MALAYSIA.
    [127]M. W. Mustafa, M. H. Sulaiman, H. Shareef, S. N. A. Khalid. Determination of generators' contributions to loads in pool based power system using least squares support vector machine[C]. Power Engineering and Optimization Conference, 2010, Shah Alam, MALAYSIA.
    [128]M. W. Mustafa, M. H. Sulaiman, S. A. Khalid, H. Shareef. Real power transfer allocation via continuous genetic algorithm-least squares support vector machine technique[C]. Power and Energy IEEE International Conference,2010, Kuala Lumpur, MALAYSIA.
    [129]M. Espinoza, J. A. K. Suykens, B. De Moor. Load forecasting using fixed-size least squares support vector machines[C]. International Work-Conference on Artificial Neural Networks,2005, Vilanova i la Geltru, SPAIN.
    [130]M. Afshin, A. Sadeghian. PCA-based least squares support vector machines in week-ahead load forecasting[C]. Industrial & Commercial Power Systems Technical Conference,2007, Edmonton, CANADA.
    [131]N. I. A. Wahab, A. Mohamed, M. Al Dabbagh. Transient stability assessment of a large actual power system using least squares support vector machine with enhanced feature selection[C]. Power Engineering Conference,2008, Sydney, AUSTRALIA.
    [132]Y. H. Hung, Y. S. Liao. Applying PCA and fixed size LS-SVM method for large scale classification problems[J]. Information Technology Journal,2008,7(6): 890-6.
    [133]M. Espinoza, K. Pelckmans, L. Hoegaerts, J. A. K. Suykens, B. De Moor. A comparative study of LS-SVMs applied to the silverbox identification problem[C]. Proc.6th IFAC Symp Nonlinear Control Systems,2004, Stuttgart, GERMANY.
    [134]杨锡运,孙宝君,张新房,李利霞.基于相似数据的支持向量机短期风速预测仿真研究[J].中国电机工程学报,2012,32(4):35-41.
    [135]刘吉臻,吕游,杨婷婷.基于变量选择的锅炉NOx排放的最小二乘支持向量机建模[J].中国电机工程学报,2012,32(20):102-107.
    [136]Q. Zhang, K. K. Lai. D. X. Niu, Q. Wang, X. B. Zhang. A fuzzy group forecasting model based on least squares support vector machine (LS-SVM) for short-term wind power[J]. Energines,2012,5(9):3329-3346.
    [137]O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee. Choosing multiple parameters for support vector machines[J]. Machine Learning,2002,46(1):131-159.
    [138]许红.变频调速技术在风机、泵类应用中的节能分析[J].铁道标准设计,2009,(3):31-33.
    [139]张忠宝,张宇慧.PLC及变频技术在锅炉自动化控制中的应用[J].科技与企业,2011,(12):66.
    [140]黄原瑞.浅谈PLC及变频技术在燃气储罐保温自动控制中的应用[J].黑龙江科技信息,2012,(1):40.
    [141]韩立成,袁子文,韩翠贤.PLC及变频技术在锅炉自动化控制中的应用[J].矿业工程,2012,10(5):48-49.
    [142]童述林,文福拴,陈亮.电力负荷数据预处理的二维小波阈值去噪方法[J].电 力系统自动化,36(2):101-105.
    [143]陈友文,柴天佑.加热炉生产数据预处理策略研究[J].控制理论与应用,29(1):114-118.
    [144]M. Q. Wang, Z. Wang. The research of 3D-CT image reconstruction algorithm based on projection pre-procession[C].7th International Symposium on Test Measurement,2007, Beijing, CHINA.
    [145]S. M. Praveena, O. W. Kwan, A. Z. Aris. Effect of data pre-treatment procedures on principal component analysis:a case study for mangrove surface sediment datasets[J]. Environmental Monitoring and Assessment,2012,184(11): 6855-6868.
    [146]K. Pearson. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine,1901,2(6):559-572.
    [147]H. Hotelling. Relation between two sets of variates[J]. Biometrika,1936,28(3-4): 321-377.
    [148]周露,陈振龙,沈蒙娅.中国寿险业效率测算的指标体系研究:基于典型相关分析方法[J].统计科学与实践,9:30-032.
    [149]陈才扣,彭倩倩,孙强强,黄建平.一种改进的典型相关分析方法及其应用[J].系统仿真学报,22(2):388-390.
    [150]简晓春,王利伟,闵峰.基于LM算法的BP神经网络对汽车排放污染物的预测[J].重庆理工大学学报(自然科学),26(7):11-16.
    [151]吴磊,邓涛,陈元奇.基于LM算法的BP神经网络在NAO模型运动学求逆解中的应用[J].软件导刊,10(7):74-75.
    [152]靳涛.火电机组反向建模方法的研究[D].北京:华北电力大学,2011.
    [153]陈鸿伟,祁海波,梁占伟,杨新.基LM算法的双流化床循环流率预测模型研究[J].动力工程学报,32(1):15-20.
    [154]M. Zhou, J. R. Wan, Z. Q. Wei, J. Cui. Control method for power quality compensation based on Levenberg-Marquardt optimized BP neural networks[C]. CES/IEEE 5th International Power Electronics and Motion Control Conference,2006, Shanghai, CHINA.
    [155]Nand Kishor, S. P. Singh, A. S. Raghuvanshi, P. R. Sharma. Comparative performance study of QN and LM algorithms in predictive control for NNARX-identified model of hydro-power plant[J]. Engineering with Computers, 2007,23(2):71-78.
    [156]Warren McCulloch, Walter Pitts. A logical calculus of ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943,5(4):115-133.
    [157]Donald Hebb[M]. The Organization of Behavior. New York:Wiley,1949.
    [158]B. Farley, W. A. Clark. Simulation of Self-Organizing Systems by Digital Computer[J]. IRE Transactions on Information Theory,1954,4(4):76-84.
    [159]N. Rochester, J. H. Holland, L. H. Habit, W. L. Duda. Tests on a cell assembly theory of the action of the brain; using a large digital computer[J]. IRE Transactions on Information Theory,1956,2(3):80-93.
    [160]F. Rosenblatt. The perceptron: a probalistic model for information storage and organization in the brain[J]. Psychological Review,1958,65(6):386-408.
    [161]P. J. Werbos. Beyond Regression:new tools for prediction and analysis in the behavioral sciences,1974, Unpublished doctoral dissertation, University of Harvard, USA.
    [162]http://en.wikipedia.org/wiki/Artificial_neural_network
    [163]刘孟祥.三效催化转化器高效长寿低排放优化设计理论及方法研究[D].长沙:湖南大学,2008.
    [164]王成安.红外超光谱图像的虚拟探测器研究[D].哈尔滨:哈尔滨工业大学,2008.
    [165]http://en.wikipedia.org/wiki/Least_Squares_Support_Vector_Machine
    [166]倪景峰,刘丽华,顾煜炯.基于最小二乘支持向量机算法的测量数据时序异常检测方法[J].华北电力大学学报(自然科学版),2008,35(3):62-66.
    [167]陆振波,蔡志明,姜可宇,厉春生.基于最小二乘支持向量机的混沌背景弱信号检测[J].数据采集与处理,2008,23(5):589-592.
    [168]朱伟宾,赵建华,贝叶斯,最小二乘支持向量机在大坝监测自动化数据验证中的应用[J].水电自动化与大坝监测,2009,23(5):589-592.
    [169]彭陈松.基于核函数Fisher判别的数据分类算法研究[D].杭州:浙江理工大学,2003.
    [170]刘丽华,杜小泽,杨立军,杨勇平,李沛,吴寿山.太阳辐射对电站直接空冷系统运行的影响[J].化工学报,2010,61(10):2535-2539.
    [171]查良松.西北地区太阳辐射量变化的研究[J].旱区地理,1995,18(1):8-13.
    [172]杨金焕,葛亮,蒋秀丽,高兰香,陈中华.太阳能辐射资料库的创建[J].可再生能源,2004,117(5):14-16.
    [173]柯晓新.甘肃省太阳总辐射气候学计算[J].甘肃气象,1994,12(1):18-21.
    [174]卞长丽.平凉地区辐射资源的变化特征分析[J].甘肃农业,2002,10:57-58.
    [175]张鹤飞.太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社, 2004.
    [176]丁尔谋.发电厂空冷技术[M].北京:水利电力出版社.1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700