用户名: 密码: 验证码:
电网调峰能力对最大风电准入功率的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网调峰能力不足是限制我国风电并网的主要原因之一,研究调峰能力极限对解决电网调峰问题具有十分重要的意义。
     目前,对我国电网调峰能力极限的研究都是在现有开机方式下,计算电网能够接受的最大风电功率。随着计及风电的发电调度方法的逐步实施,电网的调峰能力正在得到改善,用目前方法计算的调峰能力极限渐渐失去了实际意义。为了适应风电技术的发展趋势,论文突破了现有开机方式的限制,直接研究在所有开机组合方式下,常规电源设备具有的调峰能力极限,其结果不仅可以掌握改进发电调度方法后电网能够接受的最大风电功率,还可以了解现有电源设备的调峰能力缺陷,为进一步的设备改造提供科学依据。
     论文研究的主要内容包括常规机组的调峰能力极限,以及与其紧密相关的风电功率预测方法,具体的研究内容和取得的成果如下:
     研究了扩展常数和训练数据分布密度之间的关系,针对风速分布的不均匀性,提出了一种新的基于T-S(Takagi-Sugen, T-S)型模糊GRNN(General Regression Neural Network, GRNN)网络的风电功率预测方法。该方法首次以数据与密度中心的距离作为指标,把网络输入的数据空间划分成几个疏密程度不同的子空间,在每个子空间上建立一个GRNN模型,然后通过定义模糊规则,实现了模糊GRNN网络的风电功率预测。为了能够找到适用的数据中心,论文采用了数据场聚类方法,并提出了最优影响因子的概念和计算方法,为解决聚类分析中存在的聚类结果稳定性问题提供了有意义的探索。针对模糊参数训练,论文采用了性能良好的粒子群搜索算法。仿真结果表明了方法的有效性。
     针对用正态分布计算风电功率预测误差区间时出现的问题,提出了一种基于Beta分布的风电功率预测误差区间的估计方法,该方法根据发电调度对系统备用容量安全性和经济性的要求,建立了一个能够计算任意概率水平的,Beta分布最小概率区间的优化模型,通过引入Beta分布函数的反函数形式,把等式约束的优化问题简化成一个无约束的优化问题,并根据Beta分布特点给出了一个快速的算法。仿真结果表明了模型、算法的正确性,和Beta分布的合理性。
     针对目前研究我国电网调峰能力极限的方法都受到现有开机方式限制的情况,首次建立了一个在所有开机方式组成的状态空间中,计算常规机组的负调峰能力极限的优化模型。论文研究了在没有风电功率预测技术支持下,风电接入对电网造成的负调峰现象的本质,归纳出系统负荷、风电功率和机组状态之间的关系,以机组组合状态为控制变量,以最大化风电功率为目标,建立了一个能够计算常规机组负调峰能力极限的模型;针对模型中目标函数的双重性,设计了一个两层搜索算法。通过与现有研究结果的对比仿真,验证了模型的正确性和算法的有效性。
     在研究了所有开机方式的基础上,进一步考虑到风电功率预测对电网调峰能力的影响,首次建立了一个计算常规机组调峰能力极限的优化模型。论文分析了风电功率预测对发电调度的影响,总结出建立调峰能力极限模型的原则,定义了调峰机组状态链的概念,在状态链的基础上推导出计算常规机组调峰能力极限的模型。针对多源树结构的调峰机组状态链,论文设计了快速的搜索算法。仿真结果说明了模型和算法的有效性。
Peak load regulation is one of the main problems that are holding back China's power grid being connected with large-scale wind farms. The research of regulation capacity limit of conventional generating units is a prerequisite to solve the problem.
     At present, all of researches are not suitable for the future of wind power technology development because these don't consider the impact of wind power forecasting. In order to meet the development trend of wind power technology, this dissertation broke through the limitations of existing boot mode, and given a method that can calculate regulation capacity limit of conventional generators. The results can not only grasp on conventional generators acceptable to the largest wind power, can also learn peaking capacity deficiencies of existing power supplies. All that can provide a scientific basis for further equipment modification.
     The main contents in this dissertation include studying regulation capacity limit of conventional generators, and studying wind power prediction method. The specific achievements are as follows:
     Studied the relationship between spread and between data density, according to the uneven distribution of wind speed, a new T-S(Takagi-Sugen, T-S) fuzzy GRNN(General Regression Neural Network, GRNN) wind power prediction method is proposed. In this method, the distance between training data and density center is a criterion, the input data space is divided into several sub-space, a GRNN model is created in every sub-space, and a final prediction result is calculated by defined fuzzy rulers. In order to get accurate data center, the data field clustering method is used in this dissertation. In the method, an optimum objective function for reducing influence of sample deviation is constructed and an approximate solution is given of optimum affection factor. For training the fuzzy parameters, the dissertation uses a good performance PSO(Particle Swarm Optimization, PSO) search algorithm. The simulation results prove the correctness of the model and algorithm.
     A normal distribution is usually used to model wind power forecast error, but it is not valid in some special cases. For solving this problem, an interval estimation method of wind power forecasts based on Beta distribution is proposed. In this method, according to the security and economy requirements of grid reserve capacity, a new universal optimization model is proposed to calculate minimum probability interval of Beta probability density function. By introducing the inverse function of Beta PDF, equality constrained optimization problem is simplified into an unconstrained optimization problem, and a smart algorithms is presented. The simulation result shows correctness of the algorithms and the rationality of Beta PDF.
     According to the situation that no reliable wind power prediction results can be used, a new optimization model is created for calculating negative regulation capacity limit of conventional generators in the dissertation. The dissertation studies the mechanism of the negative peak load regulation of conventional generators based on active power balance equation., a new model is proposed to calculate the limit of capability of negative peak load regulation, and a practical two-tier algorithm is given. The simulation results prove the correctness of the model and algorithm.
     According to the situation that wind power prediction is used in generation dispatch schedule method, a new optimization model is created for calculating regulation capacity limit of conventional generators in the dissertation. The influence of wind power prediction for generation dispatch schedule is analyzed. A principle is summarized to create model of regulation capacity limit. A concept of regulation units state chain is defined. On the concept, an optimization model is deduced. According to multi-source tree of regulation units state chain, an algorithm is proposed. The simulation results prove the correctness of the model and algorithm.
引文
[1]Global Wind Energy Council. Global Wind Report 2012[R]. http://www. gwec.net/publications/global-wind-report-2/global-wind-report-2012/.
    [2]中国可再生能源委员会.中国风电及电价发展研究报告[R]. http://www.ndrc.gov.cn/zjgx/P020091126386872388651.pdf,2009.
    [3]全国人民代表大会常务委员会.中华人民共和国可再生能源法[S].北京:全国人民代表大会常务委员会,2005.
    [4]Global Wind Energy Council. Global Wind Report 2010[R]. http://www. gwec.net/publications/global-wind-report-2/global-wind-report-2010/
    [5]中国气象局风能太阳能资源评估中心.中国风能资源评估(2009)[M].北京:气象出版社,2010.
    [6]侯佑华,房大中,齐军,李洪波,等.大规模风电入网的有功功率波动特性分析及发电计划仿真[J].电网技术,2010,34(5):60-66.
    [7]于大洋,韩学山,梁军,等.基于NASA地球观测数据库的区域风电功率波动特性分析[J].电力系统自动化,2011,35(5):77-81.
    [8]雷兴.风电接入带来的不确定性研究[D],山东:山东大学博士论文,2012.
    [9]雷亚洲.与风电并网相关的课题研究[J].电力系统自动化.2003,27(8):84-89.
    [10]李锋,陆一川.大规模风力发电对电力系统的影响[J]. 中国电力,2006,39(11):80-84.
    [11]孙元章,吴俊,李国杰.风力发电对电力系统的影响[J].电网技术,2007,31(20):55-62.
    [12]张丽英,叶廷路,辛耀中,韩丰,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
    [13]Schuster R A, Park G. A modified unit commitment and generation control for utilities with large wind generation penetrations[J]. IEEE Trans. on Power Apparatus and Systems,1985,104(7):1630-1636.
    [14]Papadopoulos M, et al. Simulation and analysis of small and medium size power systems containing wind turbines[J]. IEEE Transactions on Power Apparatus and Systems,1991,6(4):1453-1458.
    [15]Christensen J F, et al. Methods and models for evaluating the impact of decentralized generation[C]. CIGRE Session,1998:156-161.
    [16]Liew S N, Strbac G. Maximizing penetration of wind generation in existing distribution networks[J]. IEEE Proceedings of Transmission and Distribution, 2002,149(3):256-262.
    [17]雷亚洲,王伟胜,印永华,等.基于机会约束规划的风电穿透功率极限计算[J].中国电机工程学报,2002,22(5):32-35.
    [18]吴俊玲,周双喜,孙建锋,等.并网风力发电场的最大注入功率分析[J].电网技术,2004,28(20):28-32.
    [19]刘建新,牛永志,杨宏.风电穿透功率极限的二阶泰勒展开式搜索方法[J].华北电力大学学报(自然科学版),2008,35(6):52-56.
    [20]Yang Hong, Liu Jianxin, Ding Qiaolin. The Probability Distribution Calculation of Wind Power Penetration [C].2010 8th World Congress on Intelligent Control and Automation(WCICA2010), Jinan, China,2010:5167-5170.
    [21]Yang Hong, Liu Jianxin, Li Zhong, Zhao Zhenbing. Research on optimal load in calculating wind power penetration [C].2010 8th World Congress on Intelligent Control and Automation(WCICA2010), Jinan, China,2010: 4084-4087.
    [22]尹明,王成山,葛旭波,张义斌.中德风电发展的比较与分析[J].电工技术学报.2010,25(9):157-182.
    [23]李俊峰,等.中国风电发展报告2012[M].中国环境出版社,2012.
    [24]张宁,周天睿,段长刚,唐晓军,等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158.
    [25]侯佑华.内蒙古电网大规模风电入网的运行分析及调度方案设计[D].天津大学博士论文,2010.
    [26]孙亮,大规模风电并网条件下提高电力系统调峰能力的研究[D].大连理工大学硕士论文,2010.
    [27]静铁岩.大规模风电并网条件下的电力系统有功功率平衡理论研究[D].大连理工大学博士论文,2011.
    [28]Kamal L, Jafri Y Z. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan[J]. Solar Energy,1997,61(1):23-32.
    [29]Andrew Boone. Simulation of short-term wind speed forecast errors using a multi-variate ARMA(1,1) time-series model[D]. Stockholm, Sweden:Royal Institute of Technology,2005.
    [30]Duran Mario J., Cros Daniel, Riquelme,Jesus. Short-term wind power forecast based on ARX models[J]. Journal of Energy Engineering,2007,133(3): 172-180.
    [31]孙春顺,王耀南,李欣然.小时风速的向量自回归模型[J].中国电机工程学报,2008,28(14):112-117.
    [32]E.A.Bossanyi. Short-tern wind prediction using Kalman filters[J]. Wind Engineering,1985,9(1):1-8.
    [33]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91.
    [34]P.Louka, G Galanis, N.Siebert. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(12):2348-2362.
    [35]Mohamed A.Mohandes, Shafiqur Rehman, Talal O.Halawani. A neural networks approach for wind speed prediction[J]. Renewable Energy,1998, 13(3):345-354.
    [36]Salcedo Sanz S., Ortiz-Garcia E.G., Perez-Bellido A.M., et al. Performance comparison of multilayer perceptions and support vector machines in a short-term wind speed prediction problem[J]. Neural Network World,2009, 19(1):37-51.
    [37]杜颖,卢继平,李青,等.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,32(15):62-66.
    [38]Carolin Mabel M., Fernandez E.. Analysis of wind power generation and prediction using ANN:A case study[J]. Renewable Energy,2008,33(5): 986-992.
    [39]蔡凯,谭伦农,李春林,等.时间序列与神经网络法相结合的短期风速预测[J].电网技术,2008,32(8):82-85.
    [40]Mc Alexiadis, PS Dokopoulos, HS Sahsamanoglou. Wind speed and power forecasting based on spatial correlation models[J]. IEEE Trans. on Energy Conversion,1999,14(3):836-842.
    [41]I.G. Damousis, M.C. Alexiadis, J.B. Atheoeharis. Fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [J]. IEEE Trans. on Energy Conversion,2004,19(2):352-361.
    [42]T.G.Barbounis, J.B.Theoeharis. Locally recurrent neural networks for wind speed prediction using spatial correlation[J]. Information Sciences,2007, 177(24):5775-5797.
    [43]张彦宁,康龙云,周世琼,等.小波分析应用于风力发电预测控制系统中 的风速预测[J].太阳能学报,2008,29(5):520-524.
    [44]刘辉,田红旗,李燕飞.基于小波分析法与滚动式时间序列法的风电场风速短期预测优化算法[J].中南大学学报(自然科学版),2010,41(1):371-375.
    [45]刘兴杰,米增强,杨奇逊,樊小伟.一种基于EMD的短期风速多步预测方法[J].电工技术学报,2010,25(4):165-170.
    [46]叶林,刘鹏.基于经验模态分解和支持向量机的短期风电功率组合预测模型[J].中国电机工程学报,2011,31(31):102-108.
    [47]冬雷,王丽婕,高爽,等.基于混沌时间序列的大型风电场发电功率预测建模与研究[J].电工技术学报,2008,23(12):125-129.
    [48]Kusiak Andrew, Zheng Haiyang, Song Zhe. Models for monitoring wind farm power[J]. Renewable Energy,2009,34(3):583-590.
    [49]Li Xingpei, Liu Yibing, Xin Weidong. Wind speed prediction based on genetic neural network[C]. ICIEA 2009,2448-2451.
    [50]Kusiak Andrew, Zheng Haiyang, Song Zhe. Short-term prediction of wind farm power:A data mining approach[J]. IEEE Transactions on Energy Conversion, 2009,24(1):125-136.
    [51]陈宁,沙倩,汤奕,朱凌志.基于交叉熵理论的风电功率组合预测方法[J].中国电机工程学报,2012,32(4):29-34.
    [52]L.Landberg. Short-term Prediction of the power production from wind farms[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999, 80(1-2):207-220.
    [53]L.Landberg. Short-term Prediction of Local Wind Conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(3-4):235-245.
    [54]Kariniotakis G, Stavrakis G, Nogaret E. Wind power forecasting using advanced neural network models[J]. IEEE Trans. Energy Conversion,1996, 11(4):762-767.
    [55]Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]. In (IEEE Publishing Edt.): Proceedings of the PICA 2001, IEEE Power Engineering Society,2001:63-69.
    [56]Thanasis G. Barbounis, John B.Theoellaris, Minas C.Alexiadis, et al. Long-term wind speed and power forecasting using local recurrent neural network models[J]. IEEE Trans. on Energy Conversion,2006,21(1):273-284.
    [57]L.J. Ranirez-Rosado, L.A. Fernandez-Jimenez, C. Monteiro. Artificial neural network models for wind power short-term forecasting using weather predictions. In:M.H.Hamza. Proceedings of the 25th IASTED International Conference on Modeling, Identification, and Control. Anaheim, ACTA Press, 2006:128-132.
    [58]Sideratos George, Hatziargyriou Nikos D.. An advanced statistical method for wind power forecasting[J]. IEEE Transactions on Power Systems,2007,22(1): 258-265.
    [59]范高锋,王伟胜,刘纯.基于人工神经网络的风电功率短期预测系统[J].电网技术,2008,32(22):72.76.
    [60]李付强,王彬,涂少良,徐华等.京津唐电网风力发电并网调峰特性分析[J].电网技术,2009,33(18):128-132.
    [61]衣立东,朱敏奕,魏磊,姜宁,于广亮.风电并网后西北电网调峰能力的计算方法[J].电网技术,2010,34(2):129-132.
    [62]魏磊,张琳,姜宁,于广亮.包含风电的电力系统调峰能力计算方法探讨[J].电网与清洁能源,2010,26(8):59-63.
    [63]姚金雄,张世强.基于调峰能力分析的电网风电接纳能力研究[J].电网与清洁能源,2010,26(7):25-28.
    [64]韩小琪,孙寿广,戚庆茹.从系统调峰角度评估电网接纳风电能力[J].中国电力,2010,43(6):16-19.
    [65]赵冰.以调峰能力为约束的辽宁电网风电接纳能力研究[D].东北大学硕士论文,2010.
    [66]张宏宇,印永华,申洪,梁双,王皓怀.基于序贯蒙特卡洛方法的风电并网系统调峰裕度评估[J].电力系统自动化,2012,36(1):32-37.
    [67]张宏宇,印永华,申洪,何剑,赵珊珊.大规模风电接入后的系统调峰充裕性评估[J].中国电机工程学报,2011,31(22):26-31.
    [68]袁越,周建华,余嘉彦.含风电场电力系统调峰对策综述[J].电网与清洁能源,2010,26(6):1-4.
    [69]刘德伟,黄越辉,王伟胜,郭剑波.考虑调峰和电网输送约束的省级系统风电消纳能力分析[J].电力系统自动化,2011,35(22):77-81.
    [70]张宁,周天睿,段长刚,唐晓军等.大规模风电场接入对电力系统调峰的影响[J].电网技术,2010,34(1):152-158.
    [71]A.Sfetsos. A comparison of various forecasting techniques applied to mean hourly wind speed time series [J]. Renewable Energy,2000,21(1):23-35.
    [72]郑明文.径向基神经网络训练算法及其性能研究[D].中国石油大学硕士论文,2009.
    [73]Wasserman,P.D.. Advanced Methods in Neural Computing[C]. New York, Van Nostrand Reinhold,1993:155-161.
    [74]刘苏苏,孙立民.支持向量机与RBF神经网络回归性能比较研究[J].计算机工程与设计,2011,32(12):4202-4205.
    [75]张俊本,李朝峰,居红云,聂百胜.一种SOM和GRNN结合的模式全自动分类新方法[J].计算机工程与应用,2007,43(13):49-51.
    [76]Dirk T, Andreas S. A modified general regression neural network with new efficient training algorithms as a robust 'black box'-tool for data analysis[J]. Neural Networks,2001,14(8):1023-1034.
    [77]Minowa Y. Verification for generalizability and accuracy of a thinning-trees selection model with the ensemble learning algorithm and the cross-validation method[J]. Journal of Forest Research,2008,13(5):275-285.
    [78]汤宝平,刘文艺,蒋永华.基于交叉验证法优化参数的Morlet小波消噪方法[J].重庆大学学报,2010,33(1):1-6.
    [79]黄平,孟永钢.最优化理论与方法[M].清华大学出版社,2009.
    [80]郭琦,鲍金春,宋继光.基于BP神经网络的风电功率预测[J].电源技术应用,2011,14(6):14-18.
    [81]陈忠.基于BP神经网络与遗传算法风电场超短期风速预测优化研究[J].可再生能源,2012,30(2):32.36.
    [82]丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110.
    [83]Cellura M, Cirrincione G, Marvuglia A, et,al. Wind speed spatial estimation for energy planning in Sicily:Introduction and statistical analysis[J]. Renewable Energy,2008,33(6):1237-1250.
    [84]孙海蓉.模糊神经网络的研究及其应用[D].华北电力大学博士论文,2006.
    [85]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans System Man and Cyb.,1985,15(1): 116-132.
    [86]程玉虎,王雪松,孙伟.自适应T-S型模糊径向基函数网络[J].系统仿真学报,2007,19(19):4440-4444.
    [87]韩敏,范迎南.基于T-S模型的扩展型模糊神经网络及应用[J].系统工程学报,2007,22(5):532-538.
    [88]吴科,李伟华.扩展T-S模糊模型的PSO神经网络优化算法[J].计算机工程与应用,2010,46(35):238-241.
    [89]Jain A. K., M. N. Murty. Data clustering:a review[J]. ACM Computing Surveys,1999,31(3):264-323.
    [90]Baraldi A., P. Blonda. A survey of fuzzy clustering algorithms for pattern recognition Ⅰ[J]. IEEE Trans Syst Man Cybern B Cybern,1999,29(6):778-785.
    [91]Baraldi A., P. Blonda. A survey of fuzzy clustering algorithms for pattern recognition Ⅱ[J]. IEEE Trans Syst Man Cybern B Cybern,1999,29(6): 786-801.
    [92]Handl Julia, Joshua Knowles, Douglas B. Kell. Computational cluster validation in post-genomic data analysis[J]. Bioinformatics,2005,21(15): 3201-3212.
    [93]孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61.
    [94]王树良.基于数据场与云模型的空间数据挖掘和知识发现[D].武汉大学博士论文,2005.
    [95]淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262.
    [96]Kenndy J, Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks. Perth,1995:1942-1948.
    [97]R.C.Eberhart, J.Kenndy. A new optimizer using particle swarm theory [C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan,1995:39-43.
    [98]Clerk M. The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation,1999:1951-1957.
    [99]G. Kariniotakis, et al. Development of methods for regional wind power forecasting[R]. March,2008, http://bib.rilk.com/3816/01/PhD_Siebert.pdf
    [100]Yuan JinSha, Yang Hong. An Advanced Cascaded Method for Regional Wind Power Forecasting[C].2012 Internationl Applied Mechanics, MechatronicsAutomation and System Simulation Meeting(AMMASS2012), Hangzhou, China,2012:814-818.
    [101]Edgardo D. Castronuovo, J. A. Pecas Lopes. On the Optimization of the Daily Operation of a Wind-Hydro Power Plant[J]. IEEE Trans. Power Syst.,2004, 19(3):1599-1606.
    [102]Ronan Doherty, Mark O'Malley. A New Approach to Quantify Reserve Demand in Systems With Significant Installed Wind Capacity [J]. IEEE Trans. Power Syst.,2005,20(2):587-595.
    [103]Francois Bouffard, Francisco D. Galiana. Stochastic Security for Operations Planning With Significant Wind Power Generation[J]. IEEE Trans. on Power Syst.,2008,23(2):306-316.
    [104]张昭遂,孙元章,李国杰,程林,林今.计及风电功率不确定性的经济调度问题求解方法[J].电力系统自动化,2011,35(22):125-130.
    [105]Tsung-Ying Lee. Optimal Spinning Reserve for a Wind-Thermal Power System Using EIPSO[J]. IEEE Trans. on Power Syst.,2007,22(4):1612-1621.
    [106]S. Bofinger, A. Luig, and H. G. Beyer. Qualification of wind power forecasts [C]. Global Wind Power Conf., Paris, France,2002, Apr:2-5.
    [107]A. Fabbri, T. G. S. Roman, J. R. Abbad, and V. H. M Quezada. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market [J]. IEEE Trans. Power Syst.,2005,20(3):1440-1446.
    [108]H. Bludszuweit, J. A. Dominguez-Navarro, A. Llombart. Statistical Analysis of Wind Power Forecast Error[J]. IEEE Trans. Power Syst.,2008,23(3):983-991.
    [109]张亚静.Beta分布参数的极大似然估计[J].山西大学学报(自然科学版),1998,21(2):113-118.
    [110]Eugene, N, Lee, Carl and Famoye, F. Beta-normal distribution and its applica-tion[J]. Communications in Statistics:Theory & Methods,2002,31(4), 497-512.
    [111]雷亚州,王伟胜,印永华.一种静态安全约束下确定电力系统风电准入功率极限的优化方法[J].中国电机工程学报,2001,21(6):25-28.
    [112]陈珩.电力系统稳态分析[M].2版.北京:中国电力出版社,1995:200-206.
    [113]谢国辉,张粒子,葛炬.节能发电调度旋转备用计划优化[J].电力系统自动化,2009,33(13):43-46.
    [114]温步瀛,周峰,程浩忠,俞健,等.发电厂热备用容量的优化分配和成本分析[J].电力自动化设备,2002,22(4):74-77.
    [115]夏澍,周明,李庚银.含大规模风电场的电力系统动态经济调度[J].电力系统际护与控制,2011,39(13):71-77.
    [116]孙元章,吴俊,李国杰,何剑.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700