用户名: 密码: 验证码:
含规模化风电场/群的互联电网广域频率保护与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率是电力系统运行的重要技术指标之一,与系统有功发电-有功负荷平衡状态密切相关,频率稳定的本质是有功平衡问题。随着世界范围内能源战略的实施,大规模能源基地、大容量输电通道逐步投入运行,使得系统由于故障引起大规模功率缺额的概率也逐渐增大,电网频率稳定问题日益突出。此外,能源危机的出现和电力电子技术的日趋完善,使得通过柔性并网技术接入电网的风电规模不断扩大,由于风电具有较强的随机性和间歇性,规模化风电的并网给电力系统有功平衡带来了较大的影响,需要准确掌握规模化风电并网后电力系统频率特征,进而研究电力系统频率控制方案与措施,以适应传统电力系统向含规模化风电的互联电力系统的转变。
     本文在深入分析多分区互联电网有功-频率动态特征的基础上,采用理论分析与数值仿真相结合的方法,对含规模化风电的互联电网的广域保护与控制问题进行了深入研究。本文的创新性研究内容包括:
     (1)研究了基于广域局部量测信息的有功缺额估计模型与方法。在多机系统频率动态响应特征的基础上,深入研究和分析了多分区互联电力系统功率扰动特征,提出了以联络线断面潮流和区域频率变化率突变信息为判据的扰动区域识别方法。进而推导出互联电网区域解耦形式下的系统有功缺额估计模型,利用故障区域内部分发电机动态频率信息、代表节点电压变化信息和区域联络线潮流突变信息,得到故障后系统有功缺额的估计值。
     (2)研究了电力系统简化频率响应模型(SFR)特征,在有功功率缺额估计的基础上,提出了以SFR模型频率响应特征为基础的暂态频率安全评估方法。
     (3)考虑到功率缺额估计和控制过程中存在的误差,提出了由基础控制级和校正控制级共同构成的减载控制形式。基础控制级切除功率缺额估计值90%的负荷,以防止由功率缺额估计误差造成的过切负荷;校正控制级主要功能是在基础控制级切除负荷后系统频率无法恢复至安全运行范围内时,继续切除一定量负荷,防止系统频率悬停在安全运行范围之外。
     (4)针对现有低频减载控制过程中无法明确减载地点及对应减载量的问题,结合多机电力系统有功扰动分配模型,提出了负荷节点减载控制灵敏度计算方法,并构建了基于负荷减载控制灵敏度的减载地点选取及减载量分配模型,从而在相同减载量的前提下,获取更加优良的频率恢复速度和稳态频率。
     (5)针对规模化风电并网后,由风电随机性和不确定性引起的有功不平衡和频率波动问题,构建了计及风电场/群有功输出波动性的互联电网负荷频率响应与控制模型。以广域相量测量系统(Wide Area Measurement System, WAMS)为技术平台,建立了基于模型预测控制的含规模化风电场/群互联电网的负荷频率分散预测控制模型。
Frequency, which is an important index of AC power systems, reflects the balance between active power generation and load. Given the implementation of global energy strategy, large-scale energy resource bases and electric power transmission capability have increased gradually, thereby leading to a high probability of power deficit. In addition, the scale of wind power-integrated power systems that use flexible technology has continually expanded as energy crises occur and electronic power technology improves. The active power balance of power systems that use large amounts of wind power is greatly affected by fluctuations in wind power. To ease the transition from conventional power systems to complex power systems with a high penetration of wind power, research still needs to be conducted on the effect of intermittency and wind power ramp events on frequency dynamics and frequency stability.
     Based on research on the dynamic frequency characteristics of interconnected power systems, wide-area frequency protection and control are discussed in this study, followed by theoretical analysis and numerical simulation. The main research work and innovative results of this thesis are as follows.
     (1) First, the model used to estimate the active power deficit based on local measurements is established in this paper. The dynamic characteristics of the complex interconnected power system after active power disturbance are investigated based on the frequency response characteristics of multi-machine power systems. Abrupt changes in the active power flow in the tie line and the rate of frequency change of the generators are used to identify the fault region. The area-decoupled expression of the active power deficit is derived from frequency dynamics analysis. It makes use of the rate of frequency change of the reginal center of inertia. The load voltages and their changes as well as the tie line active power changes within the fault region are used tp estimate the magnitude of the active power deficit.
     (2) Once the active power deficit is estimated, a quantitative security assessment method for transient frequency is proposed by analyzing the dynamic frequency response of the system frequency response model.
     (3) Considering the error of the estimation method and the uncertaintes in the load shedding control process, a two-stage control scheme with basic control and corrective load shedding control is presented in this thesis. In the basic control stage,0.9times the estimated active power deficit is shedded to prevent unnecessarily large amounts of load shedding. The second control stage is used to prevent frequency hover in case the frequency can not recover to acceptable limits after the first control stage is activated.
     (4) Given that conventional frequency load shedding (UFLS) cannot position the shedding location and distribute the active power deficit, the proposed load shedding sensitivity is based on the characteristics of frequency dynamics. The schemes for positioning the shedding location and distributing the active power deficit are then presented according to the load shedding sensitivity. The simulation results indicate that the proposed UFLS scheme based on load shedding sensitivity results in excellent control under the same load shedding amount compared with conventional UFLS.
     (5) Given fluctuations in wind power, more requests are brought up for load frequency control (LFC). To design LFC controllers for high wind power-penetrated power systems, an LFC model that takes wind power fluctuations into consideration is first developed. Multivariable decentralized model predictive control is then proposed for use in designing LFC controllers that can adapt to wind power fluctuations based on the wide-area measurement system.
引文
[1]GB/T 15945—2008电能质量电力系统频率偏差[S].北京:中国电力出版社,2008.
    [2]蔡郐.电力系统频率[M].北京:中国电力出版社,1998.
    [3]Prabha Kundur. Power System Stability and Control [M]. New York: McGraw-Hill Professional,1994.
    [4]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995.
    [5]Ahsan M.Q. Dhaka Bangladesh, Chowdhury A.H., etal. Technique to Develop Auto Load Shedding and Islanding Scheme to Prevent Power System Blackout [J]. IEEE Transactions on Power Systems,2012,27(1):198-205.
    [6]Seyedi H., Sanaye-Pasand M.. Technique to Develop Auto Load Shedding and Islanding Scheme to Prevent Power System Blackout [J]. IET Generation, Transmission & Distribution,2009,3(1):99-114.
    [7]赵庆波,张正陵,白建华.能源资源格局与“一特三大”电力发展战略[J].中国电力,2007,40(12):1-5.
    [8]张文亮,周孝信,印永华,等.华北—华中—华东特高压同步电网构建和安全性分析[J].中国电机工程学报,2010,30(16):1-5.
    [9]赵良,郭强,覃琴等.特高压同步电网稳定特性分析[J].中国电机工程学报,2008,28(34):47-51.
    [10]张丽英,叶廷路,辛耀中等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
    [11]王梅义.大电网事故分析与技术应用编辑[M].北京:中国电力出版社,2008.
    [12]庄侃沁,武寒,黄志龙,等.龙政直流双极闭锁事故华东电网频率特性分析[J].电力系统自动化,2006,33(20):101-104.
    [13]高翔,高伏英,杨增辉.华东电网因直流故障的频率事故分[J].电力系统自动化,2006,33(12):102-107.
    [14]靳丹,何世恩,丁坤.关于大规模风电基地建设的思考[J].电力建设,2011,32(10):58-60.
    [15]UCTE. Final Report of the Investigation Committee on the 28 September 2003 Blackout in Italy [R].2004.
    [16]林伟芳,汤涌,孙华东,等.巴西“2.4”大停电事故及对电网安全稳定运行的启示[J].电力系统自动化,201 1,35(9):1-5.
    [17]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167-174.
    [18]中国可再生能源学会风能专业委员会.2012年中国风电装机容量统计[R].2013.
    [19]P.S. Georgilakis. Technical Challenges Associated with The Integration of Wind Power into Power Systems [J]. Renewable and Sustainable Energy Reviews,2008,12(3):852-863.
    [20]T.R. Ayodele, A.A. Jimoh, J.L Munda. Challenges of Grid Integration of Wind Power on Power System Grid Integrity:A Review [J]. International Journal of Renewable Energy Research,2012,2(4):618-626.
    [21]Ioannis D. Margaris, Stavros A. Papathanassiou, Nikos D. Hatziargyriou, etal. Frequency Control in Autonomous Power Systems with High Wind Power Penetration [J]. IEEE Transactions on Sustainable Energy,2012,3(2): 189-199.
    [22]韩民晓,崔立军,姚蜀军,等.大量风电引入电网时的频率控制特性[J].电力系统自动化,2008,32(1):29-33.
    [23]G. Lalor, A. Mullane, and M. O' Malley. Frequency control and wind turbine technologies [J]. IEEE Trans. on Power Systems,2005,20 (4):1905-1913.
    [24]Maryam Hassani Variani, Kevin Tomsovic. Distributed Automatic Generation Control Using Flatness-Based Approach for High Penetration of Wind Generation [J]. IEEE Trans. on Power Systems,2013,28(3):3002-3009.
    [25]De La Ree J, Centeno V, Thorp J S, et al. Synchronized phasor measurement applications in power systems. IEEE Trans Smart Grid,2010,1(1):20-27
    [26]刘振亚.智能电网技术[M].北京:中国电力出版社,2010.
    [27]Valverde G., Deyu Cai, Regulski P, etal. Wide-Area Monitoring, Protection, and Control of Future Electric Power Networks [J]. Proc IEEE,2011,99(1): 80-92.
    [28]IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. Definition and Classification of Power System Stability [J]. IEEE Transactions on Power Systems,2004,19(2):1387-1401.
    [29]高翔.现代电网频率控制应用技术[M].第1版.北京:中国电力出版社,2010.
    [30]刘梦欣,王杰,陈陈.电力系统频率控制理论与发展[J].电工技术学报,2007,22(11):135-145.
    [31]Machowski, j., Bialek, J.W., Bumby, J.R. Power system dynamics:stability and control [M]. Oxford:J.Wiley&Sons,2008.
    [32]袁季修.防止电力系统频率崩溃的紧急控制[J].电力自动化设备,2002,22(4):1-4.
    [33]Underfrequency Issues Work Group. WSCC technical studies subcommittee coordinated off-nominal frequency load shedding and restoration planfinal report [R].2005.
    [34]LOKAY H E, BURTNYK V. Application of Underfrequency Relays for Automatic Load Shedding [J]. IEEE Transactions on Power Apparatus and Systems,1968, PAS-87(3):776-783.
    [35]R.M. Maliszewski, R.D. Dunlap and G.L. Wilson. Frequency Actuated Load Shedding and Restoration. Part I, Philosophy, IEEE Transactions on Power Apparatus and Systems,1971, Vol.PAS-90,1452-1460.
    [36]袁季修.试论防止电力系统大面积停电的紧急控制-电力系统安全稳定运行的第三道防线[J].电网技术,1999,23(4):1-4.
    [37]Tamronglak S., Horow S.H., Anatomy of power system blackouts:preventive relaying strategies, IEEE Transactions on Power Delivery,1996,11(3): 708-715.
    [38]DL 428-91电力系统自动低频减负荷技术规定[S].1991
    [39]DL/T 428-2010电力系统自动低频减负荷技术规定[S].2011.
    [40]IEEE Std C37.117TM-2007. IEEE Guide for the Application of Protective . Relays Used for Abnormal Frequency Load Shedding and Restoration [S]. 2007.
    [41]Girgis A A, Peterson W L. Adaptive estimation of power system frequency deviation and its rate of change for calculating sudden power system overloads[J]. IEEE Transactions on Power Delivery,1990,15(2):585-592.
    [42]邹晴,林湘宁,翁汉刑.基于闭环控制的独立电力系统低频减载策略.电力系统自动化,2006,30(22):34-37.
    [43]Tsai SS, Zhang L, Phadke AG, et al. Study of global frequency dynamic behavior of large power systems [C]. Power systems conference and exposition, New York, NY,10-13 Oct 2004.
    [44]Yang Deyou, Cai Guowei. Spatial Characterization of the Dynamic Response[J]. International Journal of Emerging Electric Power Systems, 2013,14 (2):139-148.
    [45]张恒旭,刘玉田.电力系统动态频率响应时空分布特征量化描述[J].中国电机工程学报,2009,29(7):64-70.
    [46]Tomsic T, Verbic q Gnbina F. Revision of the underfrequency load-shedding scheme of the Slovenian power system [J]. Electric Power Systems Research. 2007,77(5):494-500.
    [47]Terzija V V. Adaptive load shedding based on the magnitude of the disturbance estimation. IEEE Transactions on Power Systems,2006, 21(3):1260-1266.
    [48]Seyedi H, Sanaye-Pasand M. New centralized adaptive load-shedding algorithms to mitigate power system blackouts [J]. IET Gener Transm Distr, 2009,3(1):99-114.
    [49]Bevrani, H., Ledwich, G., Ford, J.J. On the use of df/dt in power system emergency control [C]. Power Systems Conference and Exposition, Seattle, WA,15-18 March,2009.
    [50]Rudez U, Mihalic R. Analysis of under-frequency load shedding using a frequency gradient [J]. IEEE Transactions on Power Delivery,2011,26(2): 565-575.
    [51]Novosel D, King R L. Development of a pattern reconition approach to under frequency relaying[C]. IEEE Proceedings outheastcon, New Orleans, LA,1-4 Apr,1990.
    [52]R. ooshmand, M. Moazzami. Optimal design of adaptive under frequency load shedding using artificial neural networks in isolated power system [J]. International International Journal of Electrical Power & Energy Systems, 2012,42(1):220-228.
    [53]Ying Lu, Wen-Shiow Kao, Yung-Tien Chen. Study of applying load shedding scheme with dynamic D-factor values of various dynamic load models to Taiwan power system [J]. IEEE Transactions on Power Systems,2005,20(4): 1976-1984.
    [54]J.A.P.Lopes, etal. Optimum determination of under frequency load shedding strategies using a genetic algorithm approach[C]. Proc.32nd Annu. North American Power Symp., Waterloo, ON, Canada,2000.
    [55]DenisLeeHauAik. A general-order system frequency response model incorporating load shedding:analytic modeling and applications [J]. IEEE Transactions on Power Systems,2006,21(2):709-717.
    [56]P. M. Anderson, M. Mirheydar. A low-order system frequency response model [J]. IEEE Transactions on Power Systems,1990,5(3):720-729.
    [57]Frida Ceja-Gomez, Syed Saadat Qadri, Francisco D. Galiana. Under-Frequency Load Shedding Via Integer Programming [J]. IEEE Transactions on Power Systems,2012,27(3):1387-1394.
    [58]Sigrist, L., Egido, I., Rouco, L.. A Method for the Design of UFLS Schemes of Small Isolated Power Systems [J]. IEEE Transactions on Power Systems, 2012,27(2):951-958.
    [59]徐泰山,李碧君,鲍颜红,等.考虑暂态安全性的低频低压减载量的全局优化[J].电力系统自动化,2003,27(22):12-15.
    [60]刘洪涛,曾勇刚,李建设,等.基于频率安全定量分析的南方电网联合低频减载方案[J].中国电力,2007,40(10):28-32.
    [61]侯玉强,方勇杰,杨卫东,等.综合电压频率动态交互影响的自动减负荷控制新方法[J].电力系统自动化,2010,34(5):24-30.
    [62]RUDEZ U. MIHALICR. Analysis of Underfrequency Load Shedding Using a Frequency Gradient [J]. IEEE Transactions on Power Delivery,2009,26(2): 565-575.
    [63]Saffarian A., Sanaye-Pasand M.. Enhancement of Power System Stability Using Adaptive Combinational Load Shedding Methods [J]. IEEE Transactions on Power Systems,2011,26(3):1010-1020.
    [64]Adly A. Girgis, Shruti Mathure. Application of active power sensitivity to frequency and voltage variations on load shedding [J]. Electric Power Systems Research,2010,80(3):306-310.
    [65]刘吉臻.大规模新能源电力安全高效利用基础问题[J].中国电机工程学报,2013,33(16):1-9.
    [66]Global Wind Energy Council. Global installed wind power capacity (MW): regional distribution 2009 [R/OL]. [2009-05-06]. http://www.gwec.net.
    [67]Akhmatov V.Analysis of dynamic behavior of electric power systems with large amount of wind power [D]. Rsted-DTU Technische.Universiteit of Denmark,2003.
    [68]Thomas Ackermann. Wind Power in Power Systems [M]. Chichester:John Wiley & Sons,2012.
    [69]G. Lalor, A. Mullane, and M. O'Malley. Frequency control and wind turbine technologies [J]. IEEE Trans, on Power Systems,2005,20(4):1905-1913.
    [70]Gonzalez-Longatt F.. Impact of synthetic inertia from wind power on the protection/control schemes of future power systems:Simulation study[C]//1th International Conference on Developments in Power Systems Protection. Birmingham, UK,23-26 April 2012.
    [71]Lei Wu, Infield D.G.. Towards an Assessment of Power System Frequency Support From Wind Plant—Modeling Aggregate Inertial Response [J]. IEEE Transactions on Power Systems,2013,28(3):2283-2291.
    [72]Ayman Bakry Taha Attya, Thomas Hartkopf. Control and quantification of kinetic energy released by wind farms during power system frequency drops[J]. IET Renewable Power Generation,2013,7(3):210-224.
    [73]Ying-Yi Hong, Shih-Fan Wei. Multiobjective Underfrequency Load Shedding in an Autonomous System Using Hierarchical Genetic Algorithms [J]. IEEE Transactions on Power Delivery,2010,258(3):1355-1362.
    [74]袁季修.防御大停电的广域保护和紧急控制[M].北京:中国电力出版社,2007.
    [75]Rudez U., Mihalic R.. Comparison of adaptive UFLS schemes in modern power systems [C]. IEEE Electrical Power and Energy Conference (EPEC), Winnipeg, MB,3-5 Oct.2011.
    [76]Junjie Tang, Junqi Liu, Ponci F.. Adaptive load shedding based on combined frequency and voltage stability assessment using synchrophasor measurements [J]. IEEE Transactions on Power Systems,2013,28(2):2035-2047.
    [77]D. Y. Yang, G. W. Cai, Y. T. Jiang, C. Liu. Centralized Adaptive Under Frequency Load Shedding Schemes for Smart Grid Using Synchronous Phase Measurement Unit [J]. Journal of Electrical Engineering & Technology,2013, 8(3):446-452.
    [78]H. Seyedi, M. Sanaye-Pasand. New centralised adaptive load-shedding algorithms to mitigate power system blackouts. IET Generation, Transmission & Distribution,2008,3:99-114
    [79]赵强,刘肇旭,张丽.对中国低频减载方案制定中若干问题的探讨.电力系统自动化,2010,34(11):48-53.
    [80]K. Seethalekshmia, S. N. Singha, S. C. Srivastavaa. Adaptive Scheme for Minimal Load Shedding Utilizing Synchrophasor Measurements to Ensure Frequency and Voltage Stability. Electric Power Components and Systems, 2010,38(10):1211-1227.
    [81]李爱民,蔡泽祥.基于轨迹分析的互联电网频率动态特性及低频减载的优化[J].电工技术学报,2009,24(9):171-178.
    [82]刘维烈.电力系统调频与自动发电控制[M].北京:中国电力出版社,2006.
    [83]Fosha, C.E., Elgerd Olle I.. The Megawatt-Frequency Control Problem:A New Approach Via Optimal Control Theory [J]. IEEE Transactions on Power Apparatus and Systems,1970, PAS-89(4):563-577.
    [84]孟祥萍,薛昌飞,张化光.多区域互联电力系统的PI滑模负荷频率控制[J].中国电机工程学报,2001,(03):6-11.
    [85]Hamed Shabani, Behrooz Vahidi, Majid Ebrahimpour. A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems [J]. ISA Transactions,2013,52(1):88-95.
    [86]Shayeghi H, Shayanfar H A. Application of ANN technique based on μ-synthesis to load frequency control of interconnected power system [J].International Journal of Electrical Power & Energy Systems,2006, (28): 503-511.
    [87]Aditya S K, Das D. Application of a genetic algorithm for load frequency controller design of an interconnected hydro-thermal power system[J].International Journal of Engineering Intelligent System for Electrical Engineering and Communication,2002, (02):75-84。
    [88]Daneshfar F., Bevrani H., Mansoori F.. Bayesian networks design of load-frequency control based on GA[C].2nd International Conference on Control, Instrumentation and Automation (ICCIA), Shiraz,27-29 Dec.2011.
    [89]Ertugrul Cam. Application of fuzzy logic for load frequency control of hydroelectrical power plants [J]. Energy Conversion and Management,2007, 48(4):1281-1288.
    [90]Ho Jae Lee, Jin Bae Park, Young Hoon Joo. Robust load-frequency control for uncertain nonlinear power systems:A fuzzy logic approach[J]. Information Sciences,2006,176(23):3520-3537.
    [91]黄家栋,张永浩,宋伟,等.变结构模糊控制算法在电力系统频率控制中的应用[J].电力系统及其自动化学报,1997,9(1):8-13.
    [92]Rerkpreedapong D., Hasanovic A., Feliach, A.. Robust load frequency control using genetic algorithms and linear matrix inequalities [J]. IEEE Transactions on Power Systems,2003,18(2):855-861.
    [93]Bevrani, Hassan.Decentralized robust load-frequency control synthesis in restructured power systems [D]. PhD Thesis, Osaka University,2004.
    [94]Mojtaba Shiroei, Mohammad Reza Toulabi, Ali Mohammad Ranjba. Robust multivariable predictive based load frequency control considering generation rate constraint [J]. International Journal of Electrical Power & Energy Systems,2012,46(3):405-413.
    [95]姚伟,文劲宇,孙海顺,等.考虑通信延迟的分散网络化预测负荷频率控制[J].中国电机工程学报,2013,33(1):84-92.
    [96]Yang Mi, Yang Fu, Chengshan Wang. Decentralized Sliding Mode Load Frequency Control for Multi-Area Power Systems [J]. IEEE Transactions on Power Systems,2013,28(4):4301-4309.
    [97]M.R. Toulabi, M. Shiroei, A.M. Ranjbar. Robust analysis and design of power system load frequency control using the Kharitonov's theorem [J]. International Journal of Electrical Power & Energy Systems,2014,55(2): 51-58.
    [98]C. Luo, B. Ooi. Frequency deviation of thermal power plants due to wind farms[J]. IEEE Transactions on Energy Convers.,2006,21(3):708-716.
    [99]Hassan Bevrani, Pourya Ranjbar Daneshmand. Fuzzy Logic-Based Load-Frequency Control Concerning High Penetration of Wind Turbines [J]. IEEE Systems Journal,2012,6(1):173-180.
    [100]Maryam Hassani Variani, Kevin Tomsovic. Distributed Automatic Generation Control Using Flatness-Based Approach for High Penetration of Wind Generation [J]. IEEE Trans, on Power Systems,2013,28(3):3002-3009.
    [101]吴云亮,孙元章,徐箭,等.基于多变量广义预测理论的互联电力系统负荷频率协调控制体系[J].电工技术学报,2012,27(9):101-107.
    [102]Panayiotis Moutis, Stavros A. Papathanassiou, Nikos D. Hatziargyriou. Improved load-frequency control contribution of variable speed variable pitch wind generators [J]. Renewable Energy,2012,48(12):514-523o
    [103]Mojtaba Shiroei, Mohammad Reza Toulabi, Ali Mohammad Ranjba. Robust multivariable predictive based load frequency control considering generation rate constraint [J]. International Journal of Electrical Power & Energy Systems,2013,46(3):405-413.
    [104]Jaesung Jung, Robert P. Broadwater. Current status and future advances for wind speed and power forecasting [J]. Renewable and Sustainable Energy Reviews,2014,31(3):762-777.
    [105]Muyeen S.M., Hasanien H.M., Tamura J.. Reduction of frequency fluctuation for wind farm connected power systems by an adaptive artificial neural network controlled energy capacitor system[J]. IET Renewable Power Generation,2012,6(4):226-235.
    [106]孙春顺,王耀南,李欣然.飞轮辅助的风力发电系统功率和频率综合控制[J].中国电机工程学报,2008,28(29):111-116.
    [107]M. Khalid, A.V. Savkin. An optimal operation of wind energy storage system for frequency control based on model predictive control[J]. Renewable Energy, 2012,48(12):127-132.
    [108]Vachirasricirikul S., Ngamroo I.. Robust LFC in a Smart Grid With Wind Power Penetration by Coordinated V2G Control and Frequency Controller [J]. IEEE Transactions on Smart Grid,2014,5(1):371-380.
    [109]Francisco Diaz-Gonzalez, Andreas Sumper, Oriol Gomis-Bellmunt. A review of energy storage technologies for wind power applications [J]. Renewable and Sustainable Energy Reviews,2012,16(4):2154-2171.
    [110]Johan Morren, Sjoerd W. H. de Haan, Wil L. Kling. Wind Turbines Emulating Inertia and Supporting Primary Frequency Control [J]. IEEE Transaction on Power Systems,2006,21(1):433-434.
    [111]Rogerio G. de Almeida, J. A. Pecas Lopes. Participation of Doubly Fed Induction Wind Generators in System Frequency Regulation[J]. IEEE Transaction on Power Systems,2007,22(3):944-950.
    [112]Juan Manuel Mauricio, Alejandro Marano, Antonio G 6 mez-Exp 6 sito. Frequency Regulation Contribution Through Variable-Speed Wind [J]. IEEE Transaction on Power Systems,2007,24(1):173-180.
    [113]Ian F Moore. Inertial Response from Wind Turbines[D]. PhD Thesis, Cardiff University,2012.
    [114]韩英铎,阂勇,洪绍斌.复杂扩展式电力系统功率频率动态过程分析[J].电力系统自动化,1991,15(5):25-30.
    [115]Anderson PM, Fouad AA. Power system control and stability [M].2nd ed. Chanan Singh:Wiley-IEEE Press,2003.
    [116]易俊,周孝信.电力系统广域保护与控制综述[J].电网技术,2006,30(8):7-12,30.
    [117]Anderson P M, Lereverend B K. Industry experience with special protection schemes[J]. IEEE Trans on Power Systems,1996,11(3):1166-1179.
    [118]Thompson J q Fox B. Adaptive load shedding for isolated power ystems.IEE Proceedings Generation, Transmission and Distribution,1994,14(10): 491-496.
    [119]Breiman L, Friend J H, Olshen R A. Classification and Regression Trees. California:Belmont Wadsworth Inc,1984.
    [120]马少平,朱小燕.人工智能.北京:清华大学出版社,2004
    [121]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2004
    [122]Lagonotte P, Sabonnadiere J C, Leost J Y, et al. Structural analysis of the electrical system:application to secondary voltage control in france. IEEE Transactions on Power System,1989,4(2):479-486.
    [123]时伯年.考虑联络线约束的跨区电网低频减载系统的研究[D].博士学位论文.北京:清华大学,2007.
    [124]蔡国伟,杨德友,姜又滔.基于广域瞬时量测信息的复杂受端电网动态频率量化评估与预警方法研究[J].中国科学技术科学,2013,35(1):59-65.
    [125]刘洪波.基于量测轨迹及轨迹灵敏度的电力系统动态分析[D].博士学位论文.北京:华北电力大学,2007.
    [126]胡杰,余贻鑫.电力系统动态等值参数聚合的实用方法[J].电网技术,2006,30(24):26-30.
    [127]Junjie Tang, Junqi Liu, Ponci F.. Adaptive load shedding based on combined frequency and voltage stability assessment using synchrophasor measurements [J]. IEEE Transactions on Power Systems,2013,28(2):2035-2047.
    [128]弗拉基斯拉夫·阿赫玛托夫.风力发电用感应发电机[M].《风力发电用感应发电机》翻译组,译.北京:中国电力出版社,2009.
    [129]穆钢,崔杨,严干贵.确定风电场群功率汇聚外送输电容量的静态综合优化方法[J].中国电机工程学报,2011,31(1):15-19.
    [130]平续斌,丁宝苍,韩崇昭.动态输出反馈鲁棒模型预测控制.自动化学报,2012,38(1):31-37.
    [131]舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1996.
    [132]童一飞,金晓明.基于广义预测控制的循环流化床锅炉燃烧过程多目标优化控制策略[J].中国电机工程学报,2010,30(11):38-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700