用户名: 密码: 验证码:
哈尔滨城区杂草群落分布格局及其对生境异质化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂草是城市植被的重要组成部分,可维持与保育城市生物多样性。由于具有敏感性较高、可塑性与抗逆性较强的特点,能够在短时间内迅速响应城市生境异质化,杂草因此已成为研究城市化过程与城市植被互馈机制的绝好对象。本论文在国家自然科学基金面上项目(编号40971041)“城市化背景下杂草对城市生境异质化的响应及其适应对策”的资助下,以杂草为研究对象,选择哈尔滨近30年来城市化最为剧烈的外环线内区域(即哈尔滨城区),通过对城市化梯度上不同生境类型中杂草群落进行调查,阐明城市化背景下杂草多样性分布格局及其成因:并通过分析广布型杂草的表型可塑性,探讨杂草对城市异质性生境的响应机理。本研究填补了我国中温带大城市杂草群落的研究空白,研究成果为深入开展城市化与城市生态系统的互馈机制研究提供理论基础,可指导、优化城市生物多样性管理与保育,具重要的科学价值与实践意义。论文主要结论如下:
     (1)快速城市化进程对杂草多样性造成了剧烈影响
     调查的1763个样方中,共记录杂草38科128属175种,高比例的单属种及丰富的地理成分,一方面反映了哈尔滨城区生境的高度异质化,另一方面也体现出杂草进化更为完全。城市生境的不稳定与异质化使得杂草生存空间缩小,森林和灌草丛空隙、废弃地以及缝隙是杂草的主要生存空间。可塑性高和生活史周期短的广布性杂草一般对高频度与高强度的人为干扰具有较强的适应性。根据生境情况和适应特征,175种杂草可划分为广适型、阴湿型、中生型和耐践踏-刈割型杂草4个种组。
     同20世纪50年代记录的611种相比,杂草总数减少了436种,表征了城市化降低了杂草物种丰富度。相比半世纪前记录,本次调查新调查到杂草63种,未被调查到的杂草有499种,留存物种112种。留存物种近半数为夏季一年生广布型杂草,虽然半个多世纪来城市生境发生了剧烈变化,但是由于其耐受性较强,可塑性较高,因此能够留存;而土地利用类型的剧烈变化,一方面造成生境的极不稳定,可能是大量多年生杂草消失的主要原因,另一方面杂草生境发生变化,大量湿生杂草、农田杂草以及草原性杂草的原有生境遭到破坏,又是物种消失的重要因素;同时城市的再自然化在一定程度上使得部分森林性杂草及园林性杂草有机会出现。
     采用植物与生境相结合的方法,针对杂草敏感性高的特点,在以往研究的基础上,增加了生态指示值的划分,建立了杂草群落四级分类系统,将1763个杂草群落划分为2种生活型类型,5种休眠型类型,22种群落组,119种优势种群落。城市生境异质化,以及相同生境中的杂草共生与季相尺度上的生态位分化导致了杂草群落类型的多样化。低群落物种丰富度、高比例的单优势种表征了杂草群落多样性低,而高比例的夏季一年生生活型是杂草群落对高强度人为干扰下、不稳定的城市生境的响应。
     (2)生境类型及直接的人为干扰影响杂草群落分布格局
     根据群落在不同城市化梯度上的分布情况,结合其优势种及主要伴生种对生境的适应特征,哈尔滨城区杂草群落可被划分为3个类群:1)广泛分布于三个区域的广适型杂草群落,具有较短的生活史,较强的繁殖力,较高的形态可塑性,不论干扰强度如何,均能通过调节自身可塑性,正常的生长、繁殖;2)主要分布在Z2和Z3区域内的嫌城市杂草群落,生长在城市再自然化过程中的人工森林、人工湿地等相对阴湿的生境中,以夏季一年生为主,抗干扰能力相对较差,包括低矮的森林性杂草群落以及逸生杂草群落;3)主要分布在Z3区域内的极嫌城市杂草群落,以多年生生活型为主,抗干扰能力差,植株相对高大,多以直立生长为主。
     Z1区城市化程度最高,硬质化地面比例较高,杂草的生长空间有限,加之热岛效应,可能在一定程度上导致了该区域杂草群落类型较少,大多为适应性较强、可塑性较高的广布型杂草群落,极适城市杂草群落还未出现。Z2区域在土地利用类型与Z1区域相似,城市化程度基本一致,杂草群落多样性指数亦无显著性差异,森林空隙比例增大,出现嫌城市杂草群落。Z3区域的城市化程度最低,土地利用类型与杂草生境类型多样,一定程度上使得该区域杂草群落类型多样,同时适宜的生长环境与低强度的人为管护,亦可能是该区杂草群落多样性显著高于Z1与Z2区域的原因之一。城市化梯度这一个综合环境因子对杂草群落分布的影响并不显著,生境类型及直接的人为干扰方式与强度是主要因素。
     在城市土地利用的不断变化过程中,城市人为干扰较多,造成其偶然性与随机性多,笔者认为生境不稳定状态时,杂草分布可能与自然选择无关,其共存和分布由随机因素决定,符合生态漂变,所有物种进入新生境的能力理论上相同,即更容易被中性理论所解释。在生境相对稳定后,即杂草占据相应生境后,其分布由生境和植物共同决定,在营养条件充足且干扰较小的生境条件下,杂草群落类型丰富且群落物种丰富度较高;营养条件有所威胁的生境中竞争性强的CR型杂草可占据生态位形成群落;条件恶劣的生境中耐受性强的SR型杂草可适应该生态位形成群落,即生境相对稳定后杂草分布更容易被生态位理论所解释。如果生境稳定持续,杂草群落也必然从一年生演替到多年生,最终出现木本群落。然而城市中往往在木本群落出现之前生境就遭到了干扰与破坏,重新开始了上述循环。
     (3)表型可塑性是杂草对异质化生境的适应对策之一
     6种广布型杂草叶性状在不同生境类型中的变化格局基本一致,废弃地与农田往往具有较大的叶面积,较小的比叶面积;灌草丛与森林空隙则具有较大的比叶面积,叶干物质含量小;草坪具有较小的叶面积,湿地则具有较小的比叶面积与大的叶干物质含量。杂草叶面积在农田与废弃地中最大,而在草坪中最小,可能主要是受光照与土壤中水分因子的影响;杂草比叶面积在森林与灌草丛空隙大,在废弃地与湿地中小,主要是受土壤水分与养分决定,但较多的影响因素彼此相互作用;叶干物质含量灌草丛空隙中最低,在湿地中最高,主要与土壤水分呈负相关;叶片氮磷含量在不同生境类型中差异不大,与土壤总氮、总磷含量无明显相关性。
     杂草各器官生物量在不同生境类型中变化大、可塑性强。主要受生境中光照影响,各器官生物量与总生物量均在废弃地、湿地2种生境类型中最大,并显著高于其余4种生境类型。然而由于多种多样的生境因子影响趋势不同,造成不同生境类型中杂草生物量分配差异并不显著。与个体水平上研究结果一致,杂草群落生物量在不同生境类型中变化明显,均以废弃地中最大,湿地生境中次之,并显著高于其余4种生境类型,此现象亦主要是受光照条件的影响。杂草群落地下/地上生物量比值(R/S)差异不大,更倾向于满足等速生长假说。
Urban ruderal is an important part of urban vegetation, which is essential for urban biodiversity conservation. Because of their high sensitivity, plasticity and resistance, ruderal species could respond to the urban habitat heterogeneity and rapidly adapt to changing habitats, ruderal species are ideal to facilitate studies on the impact of urbanization on urban ecosystems and subsequent ecosystems response. Supported by the National Natural Science Foundation of China "Response of ruderal to urban habitat heterogeneity and the adaptation strategies under urbanization", the present study took urban ruderal as the research object, and selected the study area in the Outer-Ring Road which is under the most dramatic urbanization during the nearly30years (i.e. the urban area of Harbin). To clarify the distribution pattern of ruderal communities and its causes in the context of urbanization, ruderal communities were investigated through the different habitat types along the urbanization gradient. To explore the adaptive strategy of ruderal species in response to high heterogeneous habitats, phenotypic plasticity of eurytopic ruderal species was analyzed. The present study filled the gap of ruderal research in middle latitude temperate zone cities in China, and also provided the theoretical basis for the study of influencing mechanism between urbanization and urban ecosystems, and the useful information for the local government to help them improve urban ecosystem conservation and management. The research results are as follows:
     (1) Rapid urbanization has resulted in obvious changes in ruderal species diversity.
     There were38families,128genera and175ruderal species in1763plots, with large proportion of monotypic-genus and rich geographical areal-types reflecting a substantially heterogeneous habitat condition, and the more completely of ruderal species evolution. Ruderal species in the urban area resided mainly in gaps constructed by each of forests, shrub-grasslands, abandoned fields and roadsides, indicating a progressively declined living space with increased heterogeneity and un-stability in species habitats. The widespread ruderal species with strong plasticity and short life cycle exhibited a relatively great tolerance with respect to intensive and frequent human disturbance. Based on its habitat properties and adaptive ability,175ruderal species could be classified into four ecological groups:eurytopic species, shady-and wet-tolerant species, mesophytic species, and trample-and mowing-tolerant species.
     There were436of ruderal species that recorded in1955had reduced. The pronounced changes indicated that the rapid urbanization had reduced the ruderal species richness.63species were new record,112species were remained,499species were failed to investigate over the past half century. More than a half of the remaining species were summer annual widespread ruderal species, although the urban habitat chaged obviously, they could remain because of the high resistance and plasticity.
     The unstable urban habitats under the obvious land use and land cover change maybe one of the reason of the disappeared of large number of perennial species. Moreover, large of hygrophytic species, farmland species and grassland species, which were suitable their relevant habitat, had a drought trend in urban habitats that consistent with the change of land use characterized. The urban re-naturalization was considered to relate with the emergence of plantations and ornamental species.
     Considered the high sensitivity of ruderal ruderal, ecological indicator value was added to the classification system of ruderal community on the basis of previous studies. A four-level classification system was established. Within this system, the identified1763ruderal communities could be categorized into two types of life form at the first level, five types of dormancy form at the second level,22community groups at the third level,119dominance communities at the lowest level. Urban habitat heterogenization, the commensalism of ruderal in the same habitat and species' seasonal aspect niche differentiation resulted in the high diversity of ruderal community type growing in the urban area. The low species richness and high rates of uni-dominant species represented the rudral speciesdiversity was low; The high proportions of dominant mono-species and dominant annual species were the adaptive strategies in which ruderal community responses to unstable urban habitats under human disturbances with high intensity and frequency.
     (2) Habitat type and the direct human disturbance have affected the distribution pattern of ruderal communities.
     The number of ruderal community types showed a obvious trend along the urbanization gradient, followed by Z1(55)     The impervious surface with poor infiltration had the higher proportion in Z1with the highest urbanized degree, maybe made a declined living space of ruderal species. It also maybe the important reason of the low of the number of community types together with the heat island effect. Most of the ruderal communities in Z1were widely distributed ruderal communities with strong adaptation and high plasticity. The communities of the most highly adapt to urban habitat had not yet appeared. The land use types in Z2were similar to Z1, and consistent with the degree of urbanization in Z1. The ruderal community diversity index also had no significant difference in Z1and Z2. Dislike urban ruderal communities were appeared because of the forest gap.The urbanization degree of Z3was relatively lower, the various land use types maybe resulted in the high diversity of ruderal community type in a certain extent. Moreover, the suitable environment for ruderal growth and the lower strength of the human management and protection maybe the important reason of significantly higher ruderal community diversity in Z1and Z2. Non-significant in the distribution pattern of ruderal communities along the urbanization gradient (i.e. a comprehensive environmental factor), the mainly cause was the habitattype and the direct human disturbance type and intensity.
     There was more human disturbance in the process of urban land use changed, causing the more of chance and randomness. Therefore, the authors thought that when the habitat was unstable, the distribution of ruderal species was likely had no relation with natural selection, instead its distribution and coexistence was determined by the random factors, which means all the ruderal species had the same capacity of entering into new habitats theoretically, that is more easily explained by the neutral theory. When the habitat was relatively stable, the ruderal species distribution was determined by the habitat and itself, that is more easily explained by the niche theory. The ruderal community had high diversity of ruderal community type and richness under the high nutrition and less interference habitat conditions; The CR-strategy ruderal type was grown to be ruderal communities when the nutrition conditions had threatened; The SR-strategy ruderal type was grown to be ruderal communities in poor habitat conditions. If the ruderal habitat sustained stable, rudral communities will be succession from annual to perennial, culminating in woody communities. However, new disturbance always appeared before that in the urban habitat.
     (3) Phenotypic plasticity is one of the adaptive strategies of ruderal to heterogeneous habitat.
     Change patterns of the leaf traits of the six widely distributed ruderal species in different habitat types were the same. There was higher leaf area and lower specific leaf area in abandoned land and farmland; there was higher specific leaf area and lower leaf dry matter content in shrub and forest gap; and there was lower leaf area in lawn and there were lower specific leaf area and higher leaf dry matter content in wetland. Ruderal had the highest leaf area in farmland and abandoned land and lowest leaf area in lawn, mainly affected by light and soil moisture factors possibely; Ruderal had the higher specific leaf area in shrub and forest gap and lower leaf area in abandoned land and wetland, mainly affected by soil moisture and nutrient factors, however, interaction was occurred in most factors; Ruderal had the lowest leaf dry matter content in shrub gap and highest leaf dry matter content in wetland, mainly negatively correlated with soil moisture; no difference of Nmass and Pmass in different habitats type, and it was no significant correlation with soil total nitrogen and phosphorus content.
     The ruderal biomass in different organs in different habitat types had obvious change and strong plasticity. The biomass in each organ and total biomass were largest both in abandoned land and wetland and significant higher than the other four habitat types, mainly affected by light. However, interaction was occurred in most factors, which had different affected trend, led to no significant variation of ruderal biomass distribution in different habitats. Consistent with the individual level, ruderal community biomass in different habitat types had obvious change, with the largest in in abandoned land, and then in wetland, and significant higher than other four habitat types, mainly affected by light conditions. R/S of ruderal community had no obvious change? which it was more inclined to met the allometric relationship.
引文
[1]. Ackerly DD, Comwell WK. A trait-based approach to community assembly:partitioning of species trait values into within-and among-community components [J]. Ecology Letters,2007, 10:135-145.
    [2]. Ackerly DD, Knight CA, Weiss SB, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants:contrasting patterns in species level and community level analyses [J]. Oecologia,2002,130:449-457.
    [3]. Aerts R, Chapin FS. The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns [J]. Advances in Ecological Research,2000,30:1-67.
    [4]. Aikens ML, Ellum D, McKenna JJ, et al. The effects of disturbance intensity on temporal and spatial patterns of herb colonization in a southern New England mixed-oak forest [J]. Forest Ecology and Management,2007,252(1-3):144-158.
    [5]. Alberti M. The effects of urban patterns on ecosystem function [J]. International Regional Science Review,2005,28(2):168-192.
    [6]. Ammer C. Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation [J]. Annals of Forest Science,2003,60:163-171.
    [7]. Anning AK, Yeboah-Gyan K. Diversity and distribution of invasive weeds in Ashanti Region, Ghana [J]. African Journal of Ecology,2007,45:355-360.
    [8]. Bai YF, Han XG, Wu JG, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland [J]. Nature,2004,431:181-184.
    [9]. Balachandran S, Hull RJ, Martins RA, et al. Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus [J]. Plant Physiology,1997,114:475-481.
    [10]. Bazzaz FA, Grace J. Plant resource allocation [M]. New York:Academic Press,1997: 77-125.
    [11]. Bell G. The distribution of abundance in neutral communities [J]. The American Naturalist, 2000,155:606-617.
    [12]. Benvenuti S. Weed dynamics in the Mediterranean urban ecosystem:ecology, biodiversity and management [J]. Weed Research,2004,44 (5):341-354.
    [13]. Berry BJL. Urbanization. In:Turner BL et al. ed. The earth as transformed by human action [M]. Cambrige:Canbridege University Press,1990:103-121.
    [14]. Bertin RI. Losses of native plant species from Worcester, Massachusetts [J]. Rhodora,2002, 104:32-349.
    [15]. Bloom AJ, Chapin FS III, Mooney HA. Resource limitation in plants-an economic analogy [J]. Annual Review of Ecology and Systematics,1985,16:363-392.
    [16]. Bray JR. Root production and the estimation of net productivity [J]. Canadian Journal of Botany,1963,41(1):65-72.
    [17]. Burghardt W. Soil sealing and soil properties related to sealing [J]. Geological Society, London, Special Publications,2006,266(1):117-124.
    [18]. Burton ML, Samuelson LJ, Mackenzie MD. Riparian woody plant traits across an urban-rural land use gradient and implications for watershed function with urbanization [J]. Landscape and Urban Planning,2009,90:42-55.
    [19]. Cahill JF Jr. Lack of relationship between below-ground competition and allocation to roots in 10 grassland species [J]. Journal of Ecology,2003,91:532-540.
    [20]. Caspersen JP, Pacala SW, Jenkins JC, et al. Contributions of land-use history to carbon accumulation in U.S. forests [J]. Science,2000,290:1148-1151.
    [21]. Ceulemans R, Mousseau M. Effects of elevated atmospheric CO2 on woody plants [J]. New Phytologist,1994,127:425-446.
    [22]. Chase JM, Leibold MA. Ecological Niches:Linking Classical and Contemporary Approaches [M]. Chicago:University of Chicago Press,2003:23-37.
    [23]. Chase JM. Towards a really unified theory for metacommnnities [J]. Functional Ecology, 2005,19:182-186.
    [24]. Chave J. Neutral theory and community ecology [J]. Ecology Letters,2004,7:241-253.
    [25]. Chen JL, Reynolds JF. A coordination model of whole-plant carbon allocation in relation to water stress [J].Annals of Botany,1997,80:45-55.
    [26]. Chen XS, Wang WB, Liang H, et al. Dynamics of ruderal species diversity under the rapid urbanization over the past half century in Harbin, Northeast China [J]. Urban Ecosystems, 2013, doi:10.1007/s11252-013-0338-8.
    [27]. Cheng DL, Niklas KJ. Above-and below-ground biomass relationships across 1534 forested communities [J]. Annals Botany,2007,99:95-102.
    [28]. Chesson P. Mechanisms of maintenance of species diversity [J]. Annual Review of Ecology and Systematics.2000,31:343-366.
    [29]. Cilliers SS, Bredenkamp GJ. Vegetation of roadside verges on an urbanization gradient in Potchefstroom, South Africa [J]. Landscape and Urban Planning,2000,46:217-239.
    [30]. Clark JS. Beyond neutral science [J]. Trends in Ecology and Evolution.2009,24:8-15.
    [31]. Cordell S, Goldstein G, Meinzer FC et al. Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii [J]. Oecologia,2001,127(2):198-206.
    [32]. Cornelissen JHC, Lavorel S, Gamier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide [J]. Australian Journal of Botany,2003, 51:335-380.
    [33]. Coyle DR, Coleman MD. Forest production responses to irrigation and fertilization are not explained by shifts in allocation [J]. Forest Ecology and Management,2005,208:137-152.
    [34]. Cronin G, Lodge DM. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes [J]. Oecologia,2003,137:32-41.
    [35]. Currit N, Easterling WE. Globalization and population drivers of rural-urban land-use change in Chihuahua, Mexico [J]. Land Use Policy,2009,26 (3):535-544.
    [36]. Curtis PS, Ackerly DD. Introduction to a Virtual Special Issue on plant ecological strategy axes in leaf and wood traits [J]. New Phytologist,2008,179:901-903.
    [37]. Czech B, Krausman PR, Devers PK. Economic associations among causes of species endangerment in the United States [J]. Biology Science,2000,50:593-601.
    [38]. Czech B, Krausman PR, Devers PK. Economic associations among causes of species endangerment in the United States [J]. BioSciences,2000,50:593-601.
    [39]. Dana ED, Vivas S, Mota JF. Urban vegetation of Almeria City:a contribution to urban ecology in Spain [J]. Landscape and Urban Planning,2002,59:203-216.
    [40]. Day ME, Schedlbauer JL, Livingston WH, et al. Influence of seedbed, light environment, and elevated night temperature on growth and carbon allocation in pitch pine (Pinns rigida) and jack pine (Pinus banksiana) seedlings [J]. Forest Ecology and Management,2005,205: 59-71.
    [41]. DeCandido R, Muir AA, Gargiullo MB. A first approximation of the historial and extant vascular flora of New York City:implications for native plant species conservation [J]. Journal of the Torrey Botanical Society,2004,131:243-251.
    [42]. Detwiler RP, Hall CAS. Tropical forests and the global carbon budget [J]. Science,1988,239: 42-47.
    [43]. Dewar RC. A root-shoot partitioning model based on carbon-nitrogen-water interactions and Munch phloem flow [J]. Functional Ecology,1993,7:356-368.
    [44]. Dijkstra P, Lambers H. Plant analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major differing in relative growth rate [J]. New Phytologist,1989,113: 283-290.
    [45]. Ellenberg H. Zeigerwerte Gefaszpflanzen Mitteleuropas [M]. Gottingen:Verlag Erich Goltze, 1979:20-83.
    [46]. Elvidge CD, Tuttle BT,Sutton PC, et al. Global distribution and density of constructed impervious surfaces [J]. Sensors,2007,7(9):1962-1979.
    [47]. Enquist BJ, Niklas KJ. Global allocation rules for patterns of biomass partitioning in seed plants [J]. Science,2002,295:1517-1520.
    [48]. Evans JR. Photosynthesis and nitrogen relationships in leaves of C3 plants [J].Oecologia, 1989,78:9-19.
    [49]. Feng YL, Wang JF, Sang WG. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels [J]. Acta Oecologica, 2007,31:40-47.
    [50]. Foley JA, DeFries R, Asner GP, et al. Global consequences of land use [J]. Science,2005, 309:570-574.
    [51]. Franceschi EA. The ruderal vegetation of Rosario City, Argentina [J]. Landscape and Urban Planning,1996,34:11-18.
    [52]. Gao YZ, Chen Q, Lin S, et al. Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China [J]. Oecologia,2011,165:855-864.
    [53]. Gamier E, Shipley B, Roumet C, et al. A standardized protocol for the determination of specific leaf area and leaf dry matter content [J]. Functional Ecology,2001,15:688-695.
    [54]. Gaston KJ, Chown SL. Neutrality and the niche [J]. Functional Ecology.2005,19:1-6.
    [55]. Gaston KJ. Global patterns in biodiversity [J]. Nature,2000,405:220-227.
    [56]. Glynn C, Herms DA, Egawa M, et al. Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar [J]. Oikos, 2003,101:385-397.
    [57]. Godefroid S, Koedam N. Urban plant species patterns are highly driven by density and function of built-up areas [J]. Landscape Ecology,2007,22(8):1227-1239.
    [58]. Goudie A, The human impact on the natural. Environment (4th Edition) [M], Oxford: Blackwell.1993:1-94.
    [59]. Gravel D, Canham CD, Beaudet M, et al. Reconciling niche and neutrality:the continuum hypothesis [J]. Ecology Letters,2006,9:399-409.
    [60]. Grechi I, Vivin P, Hilbert G, et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine [J]. Environmental and Experimental Botany,2007,59:139-149.
    [61]. Grime JP. The C-S-R model of primary plant strategies. Gottlieb LD, Jain SK eds. Plant Evolution Biology [M]. London:Chapman and Hall,1988:57-127.
    [62]. Grubb PJ. The maintenance of species richness in plant communities:the importance of the regeneration niche [J]. Biological Reviews,1977,52:107-145.
    [63]. Harmens H, Stirling CM, Marshall C, et al. Is partitioning of dry weight and leaf area within Dactylis glomerata affected by N and CO2 enrichment? [J]. Annals of Botany,2000, 86:833-839.
    [64]. He JS, Chen L, Si Y, et al. Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba (Magnoliaceae) [J]. Genetica,2009,135:233-243.
    [65]. Heather LR, Bruce AH, Chapin FS, et al. Soil heterogeneity and plant competition in annual grassland [J]. Ecology,1997,78(7):2076-2090.
    [66]. Hepinstall-Cymerman J, Coe S, Hutyra LR. Urban growth patterns and growth management boundaries in the Central Puget Sound, Washington,1986-2007 [J]. Urban Ecosystems,2013, 16:109-129.
    [67]. Hermans C, Hammond JP, White PJ, et al. How do plants respond to nutrient shortage by biomass allocation? [J]. Trends Plant Science,2006,11:610-617.
    [68]. Hikosaka K. Interspecific difference in the photosynthesis-nitrogen relationship:patterns, physiological causes, and ecological importance [J]. Journal of Plant Research,2004,117: 481-494.
    [69]. Holt RD. Emergent neutrality [J]. Trends in Ecology and Evolution.2006,21:531-533.
    [70]. Hooper DU, Vitousek PM. The effects of plant composition and diversity on ecosystem processes [J]. Science,1997,277:1302-1305.
    [71]. Houghton RA. The worldwide extent of land-use change [J]. Bioscience,1994,44:305-313.
    [72]. Hruska K. Italian urban ecosystem:A comparatice approach to the study of the vegetation component [J]. Allionia,1993,32:105-112.
    [73]. Huang BR, Fu JM. Photosynthesis, respiration, and carbon allocation of two cool-season perennial grasses in response to surface soil drying [J]. Plant and Soil,2000,227:17-26,
    [74]. Hubbell SP. Neutral theory in community ecology and the hypothesis of functional equivalence [J]. Functional Ecology,2005,19:166-172.
    [75]. Hubbell SP. The neutral theory and evolution of ecological equivalence [J]. Ecology,2006, 87:1387-1398.
    [76]. Hubbell SP. The Unified Neutral Theory of Biodiversity and Biogeography [M]. Princeton and Oxford:Princeton University Press.2001:123-209.
    [77]. Hui DF, Jackson RB. Geographical and interannual variability in biomass partitioning in grassland ecosystems:a synthesis of field data [J]. New Phytologist,2006,169(1):85-93.
    [78]. Hunt H, Burnett JA. The effects of light intensity and external potassium level on root/shoot ratio and rates of potassium uptake in perennial ryegrass(Loliurn Perene L.) [J]. Annal of Botany,1973,37:519-537.
    [79]. Hunt R, Lloyd PS. Growth and Partitioning [J]. New Phytologist,1987,106:235-49.
    [80]. Islam KR, Weil RR. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh [J]. Agriculture Ecosystems and Environment,2000,79:9-16.
    [81]. Kent M, Stevens RA, Zhang L. Urban plant ecology patterns and processes:a case study of the flora of the City of Plymouth, Devon, UK [J]. Journal of Biogeography.1999, 26(6):1281-1298.
    [82]. Kikuzawa K, Ackerly D. Significance of leaf longevity in plants [J]. Plant Species Biology, 1999,14:39-45.
    [83]. Kitazawa T, Ohsawa M. Patterns of species diversity in rural herbaceous communities under different management regimes, Chiba, central Japan [J]. Biological Conversation,2002,104: 239-249.
    [84]. Kotowski W, Andel J, Diggelen R, et al. Responses of fen plant species to groundwater level and light intensity [J]. Plant Ecology,2001,155:147-156.
    [85]. Krebs CJ. Ecology:The Experimental Analysis of Distribution and Abundance [M]. San Francisco:Benjamin/Cummings Press,2009:129-145.
    [86]. Lebrija-Trejos E, Perez-Garcia EA, Meave JA, et al. Functional traits and environmental filtering drive community assembly in a species-rich tropical system [J]. Ecology,2010,91: 386-398.
    [87], Lee S, John P, Tali L, et al. Nitrogen, phosphorus and light effects on growth and allocation 364 of biomass and nutrients in wild rice [J]. Oecologia,2012,170:65-76.
    [88]. Legendre P, Mi XC, Ren HB, et al. Partitioning beta diversity in a subtropical broadleaved forest of China [J]. Ecology,2009,90:663-674.
    [89]. Leigh EG. Ecological role of Volterra's equations, In:Some Mathematical Problems in Biology (ed. Gerstenhaber M) [M]. Providence:American Mathematical Society,1968:2-24.
    [90]. Levins R. Extinction some mathematical questions in biology [J]. Lectures on Mathematics in the Life Sciences.1970,2:75-107.
    [91]. Litton CM, Raich JW, Ryan MG Carbon allocation in forest ecosystems [J]. Global Change Biology,2007,13:2089-2109.
    [92]. Lockhart BR, Gardiner ES, Hodges JD, et al. Carbon allocation and morphology of cherrybark oak seedlings and sprouts under three light regimes [J]. Annals of Forest Science, 2008,65:801-801.
    [93]. Long Q, Wang JY, Da LJ. Assessing the spatial-temporal variations of heavy metals in farmland soil of Shanghai, China [J]. Fresenius Environmental Bulletin,2013,22:928-938.
    [94]. Lososova Z, Chytry M, Kuhn I. Patterns of plant traits in annual vegetation of man-made habitats in central Europe [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2006,8:69-81.
    [95]. Magurran, AE. Ecological diversity and its measurement [M]. New Jersey:Princeton University Press,1988:167-223.
    [96]. Marcelis LFM, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review [J]. Scientia Horticulturae,1998,74:83-111.
    [97]. Marcelis LFM, Heuvelink E. Concepts of modelling carbon allocation among plant organs. In:Vos J, Marcelis LFM, Visser PHB, et al. eds. Functional-Structural Plant Modelling in Crop Production [M]. The Netherlands:Springer,2007:103-111.
    [98]. Maria FG, Barbara AD. Vegetation change along gradients from water sources in three grazed Mongolian ecosystems [J]. Plant Ecology,2001,157:101-118.
    [99]. Mata-Gonzalez R, Sosebee RE, Wan C. Shoot and root biomass of desert grasses as affected by biosolids application [J]. Joural of Arid Environments,2002,50:477-488.
    [100]. May RM. Ecology and Evolution of Communities. Cambridge:Harvard University Press, 1975:81-120.
    [101]. McCarthy MC, Enquist BJ. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation [J]. Functional Ecology, 2007,21:713-720.
    [102]. McConnaughay KDM, Coleman JS. Biomass allocation in plants:ontogeny or optimality? A test along three resource gradients [J]. Ecology,1999,80:2581-2593.
    [103]. McGill BJ. A test of the unified neutral theory of biodiversity [J]. Nature,2003,422:881-885.
    [104]. McGill BJ, Enquist BJ, Weiher E, et al. Rebuilding community ecology from functional traits [J]. Trends in Ecology & Evolution,2006a,21:178-185.
    [105]. McGill BJ, Maurer BA, Weiser MD. Empirical evaluation of neutral themap [J]. Ecology, 2006b,87:1411-1423.
    [106]. McIntyre NE. Ecology of urban arthropod:A review and a call to action [J]. Annals of Entomological Society of America,2000,93:825-835.
    [107]. Mckinney ML. Urbanization, biodiversity, and conservation [J]. Bioscience,2002,52: 883-890.
    [108]. McKinney ML. Urbanization as a major cause of biotic homogenization [J]. Biological Conservation,2006,127:247-260.
    [109]. Mokany K, Raison RJ, Prokushkin AS. Critical analysis of root:shoot ratios in terrestrial biomes [J]. Global Change Biology,2006,12:84-96.
    [110]. Mooney HA, Hobbs RJ. Invasive species in a changing world [M]. Washington:Island press, 2000:76-94.
    [111]. Muller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants [J]. Perspectives in Plant Ecology, Evolution and Systematics,2000,3:115-127.
    [112]. Nee S. The neutral theory of biodiversity:do the numbers add up [J]. Functional Ecology, 2005,19:173-176.
    [113]. Ngugi MR, Hunt MA, Doley D, et al. Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits [J]. New Forests.2003,26:187-200.
    [114]. Nicholas SGW, Mark WS, Peter AV, et al. A conceptual framework for predicting the effects of urban environments on floras [J]. Journal of ecology,2009,97:4-9.
    [115]. Niinemets U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs [J]. Ecology,2001,82:453-469.
    [116]. Niklas KJ. Modelling below-and above-ground biomass for non-woody and woody plants [J]. Annals of Botany,2005,95:315-321.
    [117]. Niklas KJ, Enquist BJ. Invariant scaling relationships for interspecific plant biomass production rates and body size [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:2922-2927.
    [118]. Niklas KJ. Modelling below-and above-ground biomass for non-woody and woody plant [J]. Annals of Botany,2005,95:315-321.
    [119]. Niklas KJ. Plant biomechanics [M]. Chicago:University of Chicago Press,1992:45-97.
    [120]. Ohsawa M, Da LJ, Otuka T. Urban vegetation-Its structure and dynamics. In Obara H (ed.) Integrated Studies in Urban Ecosystems as the Basis of Urban Planning [M]. Kagawa: Kagawa Nutrition College,1988.
    [121]. Ohsawa M. Differentiation of vegetation zones and species strategies in the subalpine region Mt. Fuji [J]. Plant Ecology,1984,57:15-52.
    [122]. Ordonez J, Bodegom P, Witte J, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility [J]. Global Ecology and Biogeography,2009, 18(2):137-149.
    [123]. Ordonez JC, Van Bodegom PM, Witte JPM, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility [J]. Global Ecology and Biogeography,2009,18:137-149.
    [124]. Pacala SW, Tilman D. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments [J]. The American Naturalist,1993, 143:222-257.
    [125]. Pariente S, Helena MZ. Effect of visitors' pressure on soil and vegetation in several different micro-environments in urban parks in Tel Aviv [J]. Landscape Urban Planning,2007,83(4): 284-293.
    [126]. Poorter H, Evans JR. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area [J]. Oecologia,1998,116:26-37.
    [127]. Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water:a quantitative review [J]. Australian Journal of Plant Physiology,2000,27:595-607.
    [128]. Pysek P, Chocholouskova Z, Pysek A, et al. Trends in species diversity and composition of urban vegetation over three decades [J]. Journal of Vegetation Science,2004,15:781-788.
    [129]. Reich P B, Walters MB, Tjoelker MG, et al. Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate [J]. Functional Ecology,1998,12(3):395-405.
    [130]. Ren WW, Zhong Y, Meligrana J, et al. Urbanization, land use, and water quality in Shanghai 1947-1996 [J]. Environment International,2003,29:649-659.
    [131]. Reynolds JF, Chen JL. Modelling whole-plant allocation in relation to carbon and nitrogen supply:coordination versus optimization:opinion [J]. Plant and Soil.1996,185:65-74.
    [132]. Robinson L, Newell JP, Marzluff JM. Twenty-five years of sprawl in the Seattle region: growth management responses and implications for conservation [J]. Landscape and Urban Planning,2005,71:51-72.
    [133]. Romagosa CM, Morse WC, Lockaby BG Emerging issues along urban-rural interfaces:an introduction to the special issue [J]. Urban Ecosystems,2013,16:1-2.
    [134]. Rosindell J, Cornell SJ. Species-area relationships from a spatially explicit neutral model in an infinite landscape [J]. Ecology Letters,2007,10:586-595.
    [135]. Sarah P, Zhevelev HM. Effect of visitors'pressure on soil and vegetation in several different micro-environments in urban parks in TelAviv [J]. Landscape and Urban Planning,2007, 83(4):284-293.
    [136]. Scalenghe R, Marsan FA. The anthropogenic sealing of soils in urban areas [J]. Landscape and Urban Planning,2009,90(1):1-10.
    [137]. Shangguan ZP, ShaoMA, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat [J]. Journal of Plant Physiology,2000,156:46-51.
    [138]. Shangguan ZP, Zheng SX, Zhang LM, et al. Effect of nitrogen fertilization on leaf chlorophyll fluorescence in field2grown winter wheat under rain fed conditions [J]. Agricultural Sciences in China,2005,4(1):15-20.
    [139]. Sharpe DM, Steams F, Leitner LA, et al. Fate of natural vegetation during urban development of rural landscapes in southeastern Wisconsin [J]. Urban Ecology,1986,9:267-287.
    [140]. Shogo I, Norikazu Y, Shigenobu T. Contribution of root growth responses to leaf traits and relative growth rate of Populus alba under different water-table conditions [J]. Trees,2010, 24:1163-1172.
    [141]. Silvertown J. Plant coexistence and the niche [J]. Trends in Ecology & Evolution, 2004,19:605-611.
    [142]. Standley LA. Flora of Needham, Massachusetts-100years of floristic change [J]. Rhodora, 2003,105:354-378.
    [143]. Suter D, Frehner M, Fischer BU, et al. Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enrichment but not in a controlled environment [J]. New Phytologist,2002,154:65-75.
    [144]. Tait CJ, Daniels CB, Hill RS. Changes in species assemblages within the Adelaide Metropolitan Area, Australia,1836-2002 [J]. Ecological Applications,2005,15:346-359.
    [145]. Tang CQ, Ohsawa M. Altitudinal distribution of evergreen broad-leaved trees and their leaf-size pattern on a humid subtropical mountain, Mt. Emei, Sichuan, China [J]. Plant Ecology,1999,145:221-233.
    [146]. Tilman D, Lehman CL, Thomson KT. Plant diversity and ecosystem productivity:Theoretical considerations [J]. Procedings of the National Academy of Science of the USA,1997, 94:1857-1861.
    [147]. Tilman D. Resource Competition and Community Structure. Princeton:Princeton University Press,1982:23-32.
    [148]. Trammell EJ, Bassett S. Impact of urban structure on avian diversity along the Truckee River, USA [J]. Urban Ecosystems,2012,15:993-1013.
    [149]. Vanninen P, Makela A. Carbon budget for Scots pine trees:effects of size, competition and site fertility on growth allocation and production [J]. Tree Physiology,2005,25:17-30.
    [150]. Vendramini F, Diaz S, Gurvich DE, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species [J]. New Phytologist,2002,154(1):147-157.
    [151]. Vitousek R, Howarth W. Nitrogen limitation on land and in the sea:how can it occur [J]. Biochemistry,1991,13(2):87-115.
    [152].Vokov I, Banavar JR, Hubbell SP. Neutral theory and relative species abundance in ecology [J]. Nature,2003,424:1035-1037.
    [153]. Voronin PY, Ivanova LA, Ronzhina DA, et al. Structural and functional changes in the leaves of plants from steppe communities as affected by aridization of the Eurasian climate [J]. Russian Journal of Plant Physiology,2003,50:604-611.
    [154]. Wang GM, Jiang Gao M, Zhou YL, et al. Biodiversity conservation in a fast-growing metropolitan area in China:a case study of plant diversity in Beijing [J]. Biodiversity and Conservation,2007,16:4025-4038.
    [155]. Wang JY, Da LJ, Song K. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China [J]. Environmental Pollution, 2008,152:387-393.
    [156]. Wang XP, Fang JY, Zhu B. Forest biomass and root-shoot allocation in northeast China [J]. Forest Ecology and Management,2008,255:4007-4020.
    [157]. Wardlaw IF. The control of carbon partitioning in Plants [J]. New Phytologist,1990,116: 34-381.
    [158]. Warembouig FR, Estelrich HD. Plant phenology and soil fertility effects on below-ground carbon allocation for an annual (Bromus madritensis) and a perennial(Bromus erectus) grass species [J]. Soil Biology and Biochemistry,2001,33:1291-1303.
    [159]. Warren CR, Adams MA. Evergreen trees do not maximize instantaneous photosynthesis [J]. Trends in Plant Science,2004,9:270-274.
    [160]. Weiner J. Allocation, plasticity and allometry in plants [J]. Perspectives in plant ecology Evolution and Systematics,2004,6:207-215.
    [161]. Welander NT, Ottosson B. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. [J]. Forest Ecology and Management,1998,107: 117-126.
    [162]. Werner H, Bemd R, Thorsten A, et al. Vegetation responses to environmental conditions in floodplain grasslands:Prerequisites for Prese ving plant species diversity [J]. Basic and Applied Ecology,2006,7:280-288.
    [163]. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology [J]. Science,1997,276:12-126.
    [164]. West GB, Brown JH, Enquist BJ. A general model for the structure and allometry of plant vascular systems [J]. Nature,1999,400:664-667
    [165]. Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme [J]. Plant Soil,1998, 199:213-227.
    [166]. Whitney GG. A quantitative analysis of the flora and plant communities of a representative Midwestern US town [J]. Urban Ecology,1985,9:43-160.
    [167]. Wilson; PJ, Thompson K, Hodgson JG. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies [J]. New Phytologist,1999,143(1):155-162.
    [168]. Witting R, Ruvkert E. Die erstellung eines biotope-management plants auf grundlage der aktuellen vegetation [J]. Landschaft-stadt,1985,17(2):73-81.
    [169]. Wright IJ, Reich PB, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats[J]. Functional Ecology,2001,15(4):423-434.
    [170]. Wright IJ, Westoby M, Reich PB. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span [J]. Journal of Ecology, 2002,90(3):534-543.
    [171]. Wright J, Reich PB, Westoby M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004,428:821-827.
    [172]. Xia TY, Wang JY, Da LJ. Variations in Air Quality during Rapid Urbanization in Shanghai, China [J]. Landscape and Ecological Engineering,2011,123(1):1-13.
    [173]. Xian G, Crane M, Su J. An analysis of urban development and its environmental impact on the Tampa Bay watershed [J]. Journal of Environmental Management,2007,85(4):965-976.
    [174]. Xu ZZ, Zhou GS. Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis [J]. Physiologia Plantarum,2005,123:272-280.
    [175]. Xue L, Cao H. Changes of leaf traits of plants under stress resistance [J]. Ecology and Environment,2010,19 (8):2004-2009.
    [176]. Yang YH, Fang JY, Ma WH, et al. Large-scale pattern of biomass partitioning across China's grasslands [J]. Global Ecology and Biogeography,2010,19:268-277.
    [177]. Zdenka L, Ingolfkyii MC. Patterns of plant traits in annual vegetation of man-made habitats in central Europe [J]. Perspectives in Plant Ecology, Evolution and Systematics,2006,8: 69-81.
    [178]. Zhang KX, Wang R, Shen CC, et al. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China [J]. Environ Monit Assess 2010,169: 101-112.
    [179]. Zhao SQ, Da LJ,Tang ZY, et al. Ecological consequences of rapid urban expansion:Shanghai, China [J]. Frontiers in Ecology and the Environment,2006,4(7):341-346.
    [180]. Zillio T, Condit R. The impact of neutrality, niche differentiation and species input on diversity and abundance distributions [J], Oikos,2007,116(6):931-940.
    [181]. Zobel M, Moora M, Haukioja E. Plant coexistence in the interactive environment:arbuscular mycorrhiza should not be out of mind [J]. Oikos,1997,78:202-208.
    [182]. 巴拉诺夫,戈尔德夫,库兹明,等.哈尔滨植物名录[M].哈尔滨:黑龙江出版社,1955:3-50.
    [183]. 白永飞,张丽霞,张炎,等.内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究[J].植物生态学报,2002,26(3):308-316.
    [184]. 白永飞.降水量季节分配对克氏针茅草原群落初级生产力的影响[J].植物生态学报,1999,23(2):155-160.
    [185]. 宝乐,刘艳红.东灵山地区不同森林群落叶功能性状比较[J].生态学报,2009,29(7)3692-3703.
    [186]. 蔡北溟,陈晓双,达良俊,等.上海市环城绿带建成初期林下自然草本植物多样性格局及其成因[J].华东师范大学学报(自然科学版),2012,11(6):13-20.
    [187]. 蔡北溟.上海市5种常见一年生草本植物生物量分配及叶性状表型可塑性对异质化生境的响应[D].上海:华东师范大学,2012:38-40.
    [188]. 陈克霞.上海中心城区人工生态系统自然草本群落类型、分布及其季节变化规律研究[D].上海:华东师范大学,2005:36-39.
    [189]. 陈爽,张秀英,彭立华.基于高分辨率卫星影像的城市用地不透水率分析[J].资源科学,2006,28(2):41-46.
    [190]. 陈贤兴,余晓微,吴林琴.温州市区常见草坪杂草调查初报[J].浙江师大学报(自然科学版),2011,24(4):381-384.
    [191]. 陈叶,高海宁,郑天翔,等.甘肃河西地区农田外来杂草调查和危害评价[J].作物杂志,2013,1:120-123.
    [192]. 陈懿,尹鹏达,陈伟,等.植物光合产物分配的机理模型的研究进展[J].植物生理学报,2013,49(5):425--436.
    [193]. 陈佐忠,汪诗平.中国典型草地生态系统[M].北京:科学出版社,2000:160-162.
    [194]. 成文联,柳海鹰,王世冬.生物量与其影响因素之间关系的研究[J].内蒙古大学学报(自然科学版),2000,31(3):285-288.
    [195]. 程栋梁.植物生物量分配模式与生长速率的相关规律研究[D].兰州:兰州大学,2007:1-12.
    [196]. 达良俊,方和俊,李艳艳.上海中心城区绿地植物群落多样性诊断和协调性评价[J].中国园林,2008,24(147):87-90.
    [197]. 达良俊,田志慧,王晨曦,等.从生态学角度对生物入侵的思考[J].自然杂志,2007,29(3):152-158.
    [198]. 达良俊,王晨曦,田志慧,等.上海佘山地区发现外来入侵物种三裂叶豚草(Ambrosia trifida L.)群落的新分布[J].华东师范大学学报(自然科学版),2008,2:37-40.
    [199]. 达良俊,杨同辉,宋永昌.上海城市生态分区与城市森林布局研究[J].林业科学,2004,40(4):84-88.
    [200]. 达良俊,杨永川,陈燕萍.上海大金山岛的自然植物群落多样性[J].中国城市林业,2004,2(3):22-25.
    [201]. 大塜俊之.城市杂草群落的构造及其适应(日文).大泽雅彦,大原隆(编),生物-地球环境科学[M].东京:朝仓书店.1995,
    [202]. 董建军,张庆,牛建明.呼和浩特市土地利用变化及其景观格局和生态环境效应分析[J].内蒙古大学学报(自然科学版).2008(7),39(4):417-424.
    [203]. 杜晓光,周淑荣.亚高寒草甸植物群落的中性理论验证[J].植物生态学报,2008,32(2):347-354.
    [204]. 范建红,金利霞,金丹华.经济发达地区土地利用变化对生态环境的影响——以佛山市南海区为例[J].热带地理,2008,28(1):58-62.
    [205]. 方和俊,达良俊,王晨曦.上海又一天然次生林保护区——佘山[J].中国城市林业,2006(4),4(1):53-56.
    [206]. 冯建孟,徐成东.植物区系过渡性及其生物地理意义[J].生态学杂志,2009,28(1):108-112.
    [207]. 冯秋红,史作民,董莉莉.植物功能性状对环境的响应及其应用[J].林业科学,2008,44(4):125-131.
    [208]. 根本正之.杂草生态学[M].东京:朝仓书店.2006:14-15.
    [209]. 龚文峰,袁力,范文义.基于地形梯度的哈尔滨市土地利用格局变化分析[J].农业工程学报,2013,29(2):250-259.
    [210]. 龚云丽,蔡永立.我国城市杂草的研究趋势[J].杂草科学,2005,3:6-9.
    [211]. 郭成林,马永林,马跃峰,等.广西农业生态系统外来入侵杂草发生与危害现状分析[J].南方农业学报.2013,44(5):778-783.
    [212]. 郭水良,方芳,黄华,等.外来入侵植物北美车前繁殖及光合生理生态学研究[J].植物生态学报,2004,28(6):787-793.
    [213]. 黄晓平,林颖,闽泰善.浅谈哈尔滨市地质地貌条件对城市交通的影响[J].林业科技情报,2010,42(2):106-108.
    [214]. 黄晓霞,江源,刘全儒,等.五台山高山、亚高山草甸植物种分布的环境梯度分析和种组划分[J].草业科学,2009,26(11):12-18.
    [215]. 惠特克主编.周纪纶译.植物群落分类[M].北京,科学出版社,1978:47-59.
    [216]. 江源,刘硕.城市土地利用下的植物物种资源特征分析[J].地球科学进展,2002,17(2):247-253.
    [217]. 蒋高明.城市植被:特点、类型与功能[J].植物学通报,1993,10(3):21-27.
    [218]. 李保平,孟玲.外来入侵杂草传统生物防治的生态风险及其防范对策[J].生物安全学报,2011,20(3):179-185.
    [219]. 李博,杨林.生态学[M].北京:高等教育出版社,2000:37-41.
    [220]. 李博.生态学[M].北京:高等教育出版社,2000:79-80.
    [221]. 李步杭,张健,姚晓林,等.长白山阔叶红松林草本植物多样性季节动态及空间分布格局[J].应用生态学报,2008,19(3):467-473.
    [222]. 李锋,王如松.城市绿色空间生态规划的方法与实践——以扬州为例[J].城市环境与 城市生态,2006,19(6):15-17.
    [223]. 李雪铭,张春花,周连义,等.城市人工地貌过程对城市化的响应——以大连市为例[J].地理研究,2005,24(5):785-793.
    [224]. 李艳艳.上海郊区不同土地利用类型自然草本群落多样性及其分布研究[D].上海:华东师范大学,2009:2-9.
    [225]. 梁巧玲,马德英.农田杂草综合防治研究进展[J].杂草科学,2007,2:14-26.
    [226]. 刘金环,曾德慧.科尔沁沙地东南部地区主要植物叶片性状及其相互关系[J].生态学杂志,2006,25(8):921-925.
    [227]. 刘玲玲,吴兆录,李青,等.滇西北藏区不同管理方式的草地生物量的比较研究[J].生态学杂志,2005,24(1):1409-1412.
    [228]. 刘帅,李琦,朱亚杰.基于HJ-1B的城市热岛季节变化研究-以北京市为例[J].地理科学,2014,34(1):84-88.
    [229]. 刘小丽,陈晓双,王伟波,等.城乡梯度上哈尔滨城市杂草分布格局及生境型生态种组划分[J].城市环境与城市生态,2013,26(3):22-25.
    [230]. 刘小丽.哈尔滨城区杂草物种多样性格局及半世纪以来动态变化[D].上海,华东师范大学,2013:39-41.
    [231]. 刘亚光,李柏树,赵滨.哈尔滨地区田间禾本科杂草生物学特性及群落结构的调查[J].东北农业大学学报,2004,35(1):1-5.
    [232]. 隆茜,周菊珍,孟颉,等.城市道路绿化带不同植物叶片附尘对大气污染的磁学响应[J].环境科学,2012,3(12):4188-4193.
    [233]. 隆茜.上海城乡梯度上重金属污染格局及其磁学响应[D].上海,华东师范大学.2013,78-82.
    [234]. 卢瑛,龚子同,张甘霖.城市土壤的特性及其管理[J].土壤与环境,2002,11(2):206-209.
    [235]. 马丽,余志刚,贾利,等.哈尔滨市城镇化发展水平分析[J].国土与自然资源研究,2013,4:7-9.
    [236]. 马奇祥,常中先.农田化学除草新技术[M].北京:金盾出版社,2002:33-46.
    [237]. 马宗仁,阳承胜,常向前,等.高尔夫球场草坪-杂草群落中主要杂草种类年消长动态及时间生态位[J].生态学报,2004,24:2230-2237.
    [238]. 毛伟,李玉霖,张铜会,等.不同尺度生态学中植物叶性状研究概述[J].中国沙漠,2012,32(1):33-41.
    [239]. 孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报,2007,31:150-165.
    [240]. 孟雪松,欧阳志云,崔国发,等.北京城市生态系统植物种类构成及其分布特征[J].生态学报,2004,24(10):2200-2206.
    [241]. 牛克昌,刘怿宁,沈泽昊,等.群落构建的中性理论和生态位理论[J].生物多样性,2009,17(6):579-593.
    [242]. 彭闪江,黄忠良,徐国良,等.生境异质性对鼎湖山植物群落多样性的影响[J].广西植物,2003,23(5):291-298.
    [243]. 彭羽,刘雪华.城市化对植物多样性影响的研究进展[J].生物多样性,2007,15(5):558-562.
    [244]. 平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].植物生态学报,2010,34(1):100-111.
    [245]. 祁建,马克明,张育新.北京东灵山不同坡位辽东栎(Quercus liaotungensis)叶属性的比较[J].生态学报,2008,28(1):122-128.
    [246]. 钱江勤,达良俊,薛松,等.上海宝钢生态园林植物群落类型及丰富度[J].中国城市林业,2007,5(1):25-27.
    [247]. 邱学林,朱陈.苏州城区公共草坪杂草发生与化学防除试验[J].杂草科学,2013,31(3):16-20.
    [248]. 商侃侃,达良俊.孑遗落叶阔叶树种微地形空间分异格局及共存机制研究概述[J].生态学杂志,2013,32(6):1912-1919.
    [249]. 商侃侃.中国东部亚热带微地形上孑遗落叶阔叶树种分异格局及其成因与维持机[D].上海:华东师范大学,2011:72-74.
    [250]. 施林林,沈明星,蒋敏,等.长期不同施肥方式对稻麦轮作田杂草群落的影响[J].中国 农业科学,2013,46(2):310-316.
    [251]. 宋创业,刘高焕,刘庆生,等.黄河三角洲植物群落分布格局及其影响因素[J].生态学杂志,2008,27(12):2042-2048.
    [252]. 宋坤.安徽常绿阔叶林——落叶阔叶林交错带的森林植被特征及其成因[D].上海:华东师范大学,2012,
    [253]. 宋英石,李锋,王效科,等.城市地表硬化对银杏生境及生理生态特征的影响[J].2014.doi:10.5846/stxb201303280545
    [254]. 宋永昌,由文辉,王祥荣.城市生态学[M].上海:华东师范大学出版社,2000:99-146.
    [255]. 宋永昌.植被生态学[M].上海:华东师范大学出版社,2001:22-200.
    [256]. 宋永昌.对中国植被分类系统的认知和建议[J].植物生态学报,2011,35(8):882-892.
    [257]. 苏家亮.襄阳市外来入侵杂草种类、现状及防控措施研究[J].湖北农业科学,2013,52(21):5207-5209.
    [258]. 田志慧,蔡北溟,达良俊.城市化进程中上海植被的多样性、空间格局和动态响应(Ⅷ):上海乡土陆生草本植物分布特征及其在城市绿化中的应用前景[J].华东师范大学学报(自然科学版),2011,(4):24-34.
    [259]. 田志慧,陈克霞,达良俊,等.城市化进程中的上海植被的多样性、空间格局、动态响应(Ⅲ):高度城市化影响下上海中心城区杂草区系特征[J].华东师范大学学报(自然科学版),2008,(4):49-57.
    [260]. 田志慧,陈晓双,达良俊.上海两种新记录植物[J].西北植物学报,2010,30(3):624-625.
    [261]. 田志慧.上海城乡陆生生态系统杂草群落多样性格局及其成因论研究[D].上海:华东师范大学,2011,35-68.
    [262]. 万开元,潘俊峰,陶勇,等.长期施肥对农田杂草的影响及其适应性进化研究进展[J].生态学杂志,2012,3 1(11):2943-2949.
    [263]. 汪军英,达良俊,宋坤.上海快速城市化过程中地表水质的空间与年际变迁[J].南京大学学报(自然科学),2007,43:125-134.
    [264]. 汪军英,张凯旋,达良俊.河口城市化进程中城市环境的时空变迁——快速城市化过程 中城市环境的时空格局.陈吉余主编.21世纪的长江河口初探[M].北京:海洋出版社,2009:185-201.
    [265]. 王晨曦,王娟,李艳艳,等.城市化进程中的上海植被的多样性、空间格局、动态响应(Ⅰ):上海佘山地区残存自然植被种子植物区系及其50年的动态变化特征[J].华东师范大学学报(自然科学版),2008,(4):31-39.
    [266]. 王婕,张净,达良俊.上海乡土水生植物资源及其在水生态恢复与水景观建设中的应用潜力[J].水生生物学报,2011,35(5):841-850.
    [267]. 王娟,达良俊,李艳艳,等.城市化进程中的上海植被的多样性、空间格局、动态响应(V):管护放弃后城市水杉林林下植被自然演替格局[J].华东师范大学学报(自然科学版),2009,(6):12-22.
    [268]. 王丽芳,王德轩,上官周平.大穗型小麦叶片性状、养分含量及氮素分配特征[J].生态学报,2013,33(17):5220-5227.
    [269]. 王亮,牛克昌,杨元合等.中国草地生物量地上-地下分配格局:基于个体水平的研究[J].中国科学,2010,40(7):642-649.
    [270]. 王梦君,李俊清,张玉波,等.大熊猫栖息地地震干扰后恢复群落的中性理论验证[J].生态学杂志,2012,3 1(3):614-619.
    [271]. 王献溥,李文埕.城市生境的维护和营造[J].现代城市研究,2004,11:46-52.
    [272]. 王义林,许玮,熊水华,等.杂草在园林中应用可行性初探[J].现代园艺,2013,3:57-58.
    [273]]. 吴征镒,周浙昆,孙航,等.种子植物分布区类型及其起源和分化[M].昆明:云南科技出版社,2006:1-139.
    [274]. 吴征镒.中国植被[M].北京:科学出版社,1980:37-38.
    [275]. 武高林,陈敏,杜国祯.三种高寒植物幼苗生物量分配及性状特征对光照和养分的响应[J].生态学报,2010,30(1):60-66.
    [276]. 夏富才,赵秀海,潘春芳,等.长白山阔叶红松林及杨桦林下草本季节动态及环境解释[J].东北林业大学学报,2012,40(11):83-89.
    [277]. 徐洋,刘文治,刘贵华.生态位限制和物种库限制对湖滨湿地植物群落分布格局的影响 [J].植物生态学报,2009,33(3):546-554.
    [278]. 徐远杰,陈亚宁,李卫红,等.伊犁河谷山地植物群落物种多样性分布格局及环境解释[J].植物生态学报,2010,34(10):1142-1154.
    [279]. 杨旭,李文哲,王继富,等.哈尔滨城市化进程中对城市湿地的影响研究[J].哈尔滨师范大学自然科学学报,2011,27(5):91-94.
    [280]. 杨永川,达良俊.上海大金山岛种子植物区系的研究[J].武汉植物学研究,2002,20(6):433-437.
    [281]. 杨永川,达良俊,季防.上海江湾机场植物群落多样性研究[J].上海环境科学,2003a,22(9):615-618.
    [282]. 杨永川,达良俊,陈克霞.上海之肾—江湾湿地生物多样性调查[J].中国城市林业,2003b,1(2):17-20.
    [283]. 杨永川,达良俊.上海乡土树种及其在城市绿化建设中的应用[J].浙江林学院学报,2005,22(3):286-290.
    [284]. 杨永川,王娟,达良俊.城市化进程中的上海植被的多样性、空间格局、动态响应(Ⅱ):城市废弃地上海江湾机场的植物组成[J].华东师范大学学报(自然科学版),2008,(4):40-48.
    [285]. 尹锴,崔胜辉,石龙宇,等.人为干扰对城市森林灌草层植物多样性的影响——以厦门市为例[J].生态学报,2009,29(2):563-572.
    [286]. 雍世鹏,刘书润,那日苏,等.中国北方草原区城市——呼和浩特市域植物区系和植被调研分析初报[J].内蒙古大学学报(自然科学版),1999,30(2):206-213.
    [287]. 于凤芝.冷季型草坪主要杂草发生规律及化学防除研究[J].草业科学,2000,17(2):39-42.
    [288]. 岳文泽,徐丽华.城市土地利用类型及格局的热环境效应研究——以上海市中心城区为例[J].地理科学,2007,27(2):243-248.
    [289]. 翟永华,王庆礼,于振良,等.长白山劲松林场植物群落的分类和排序[J].应用生态学报,1995,6(3):237-242.
    [290]. 张大勇.理论生态学研究[M].北京:高等教育出版社,2000:56-78.
    [291]. 张甘霖.城市土壤研究的深化与发展[J].土壤,2001,(2):11 1-112.
    [292]. 张金屯.数量生态学[J].北京:科学出版社,2004:273-280.
    [293]. 张凯旋,车生泉,马少初,等.城市化进程中的上海植被的多样性、空间格局、动态响应(Ⅵ):上海外环林带植物群落多样性与结构优化[J].华东师范大学学报(自然科学版),2011,(4):1-14.
    [294]. 张奇平.天目山主要树种叶性状在海拔梯度和微地形上的分异格局[D].上海:华东师范大学,2011:5-8.
    [295]. 张雪梅,陈莉,姬菊枝,等.1881-2010年哈尔滨气候变化及其影响[J].气象与环境学报,2001,27(5):13-20.
    [296]. 张泽溥,广田伸七.中国杂草原色图鉴[M].无锡:国世德印刷股份公司,2000:10-356.
    [297]. 章明奎,符娟林,王美青.杭州市城市和郊区表土磷库及环境风险评价[J].生态环境,2003,12(1):29-32.
    [298]. 赵常明,陈伟烈,黄汉东,等.三峡库区移民区和淹没区植物群落物种多样性的空间分布格局[J].生物多样性,2007,15(5):510-522.
    [299]. 赵丹,李锋,王如松.城市地表硬化对植物生理生态的影响研究进展[J].生态学报,2010,30(14):3923-3932.
    [300]. 赵海霞,江源,刘全儒.城市土地利用对植被特征影响的研究[J].地球科学进展,2002,17(2):247-253.
    [301]. 赵利,胡冠芳,王利民,等.兰州地区胡麻田杂草消长动态及群落生态位研究[J].草业科学,2010,19(6):18-24.
    [302]. 赵振勇,王让会,尹传华,等.天山南麓山前平原植物群落物种多样性及空间分异研究[J].西北植物学报,2007,27(4):784-790.
    [303]. 郑慧莹,李建东.松嫩平原草原植被分类系统的探讨[J].植物生态学报,1990,14(4):297-304.
    [304]. 郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J].生态学报,2007,27(1):171-181.
    [305].. 郑晓翾,赵家明,张玉刚,等.呼伦贝尔草原生物量变化及其与环境因子的关系[J].生 态学杂志,2007,26(4):533-538.
    [306]. 中国国家标准管理委员会.中国土地资源的国家分类系统[EB/OL].2007-04-26, http://www.sac.gov.cn.
    [307]. 中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1991:10-893.
    [308]. 仲艳丽,李艳琼,林莉.玉溪杂草调查及在园林绿化中的应用[J].北方园艺,2012,10:113-117.
    [309]. 周济源,何俊洁,郭治远,等.淮北相山主要优势物种比叶面积与叶干物质含量初步研究[J].淮北师范大学学报(自然科学版),2013,34(3):51-54.
    [310]. 周淑荣,张大勇.群落生态学的中性理论[J].植物生态学报,2006,30(5):868-877.
    [311]. 周以良.黑龙江省植物志[M].哈尔滨:黑龙江科学技术出版社.2001:1-408.
    [312]. 朱碧华,朱大庆.南昌市园林绿地外来入侵植物调查及防除与利用对策[J].南方农业学报,2013,44(4):598-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700