用户名: 密码: 验证码:
不同发育阶段杉木人工林养分内循环与周转利用效率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来杉木人工林多代连栽生产力下降日趋明显,但目前对杉木连栽地力衰退的内在机制还不很清楚,因此,如何进一步揭示杉木人工林连栽地力衰退的内在机制成为当前林业生产中急需解决的重大课题。广大研究者将杉木人工林地力衰退的主要原因归结为炼山、皆伐、除草等各种不合理营林措施,而较少从杉木自身的生物学特性及养分利用状况进行探讨。凋落物和细根是人工林生态系统的重要组成部分,是养分利用的核心,凋落物的产量及细根生长、周转速率是影响林地土壤肥力的重要因素。虽然有关杉木人工林的凋落物特性、细根周转和养分循环进行了大量研究,并取得了一定成果,但关于从凋落物及细根养分内循环角度系统地探讨杉木人工林养分利用规律的报导还比较少,未能揭示出杉木人工林地力衰退的根本原因和内在机制。
     有鉴于此,本研究针对杉木人工林养分循环研究中存在的问题,从养分内循环和周转利用效率入手,在福建农林大学莘口教学林场杉木人工林定位观测站的林分内,选择不同发育阶段的杉木幼龄林、成龄林和过熟林作为研究对象,研究不同发育阶段杉木人工林凋落物数量、养分归还、养分转移以及细根生长和衰老过程的养分转移,分析了不同发育阶段杉木林养分周转和利用效率,对提高杉木人工林生态系统的养分利用率和生产力水平具有重要现实意义,为深入揭示杉木人工林地力衰退的内在机制提供理论依据。主要研究结果如下:
     1、不同发育阶段杉木人工林生物量、生产力水平及养分利用效率存在一定差异。生物量与生产力水平均表现为随发育阶段的增加而增加,幼龄林、成龄林和过熟林乔木层生物量分别为38.11、104.03和138.24t·hm-2,生产力分别为4.80、6.97和8.11t·hm-2·a-1。养分利用效率表现为随发育阶段的增加而增加,具体表现为林全树生产1吨干物质需要的大量养分量分别为18.58、13.66和12.74kg,微量养分量分别为0.608、0.490和0.490kg;大量养分利用效率表现为P>Mg>Ca>K>N,微量养分利用效率表现为Cu>Zn>Fe或Mn。通过比较各养分循环参数指标,表明幼龄林杉木具有高吸收、低归还、周转时间短、养分利用率低的特点,成熟林杉木养分循环系数提高,养分周转期延长,具有高吸收、高归还、养分消耗大特点,过熟林养分周转期延长,具有低吸收、高归还、养分利用效率高的特点。杉木生长后期更多关注自身生长,通过提高养分利用效率减少对地力的压力,若在杉木幼龄林时进行收获,势必带走大量养分,影响整个生态系统的平衡,因此,适当延长杉木轮伐期,对恢复地力意义重大,
     2、通过对凋落物收集方式的筛选研究,结果表明:不同布点高度对收集量的影响表现为50cm>25cm>100cm;不同布点方式表现为“随机”>“×”>“+”;不同收集器面积表现为0.5m2>2m2>1m2(p<0.05);收集器总面积占标准地的比例表现为1.5%>0.75%>0.5%。2012-2013年均凋落总量表现为随发育阶段的增加而增加,即过熟林(507.84g·m-2·a-1)>成龄林(458.79g·m-2·a-1)>幼龄林(348.52g·m-2·a-1),但具有年季变化特征。杉木凋落物各组分之间及其与总量之间存在异速比例关系,可以通过异速生长方程估测各组分的凋落量。叶、枝、花果、其它组分与总凋落量异速指数分别为1.36、1.41、1.52和1.31;叶与枝、叶与花果、枝与花果凋落量异速指数均小于1,分别为0.91、0.82和0.84,叶与其它、枝与其它和花与其它凋落量异速指均大于1,分别为1.19、1.19和1.32。凋落物各组分所占比例不同,落叶所占比例最大(32.9%-44.4%),枝次之(15.2%-17.2%),花果所占比例最小(2.4%-10.8%)。杉木人工林凋落物产量具有明显的季节节律,总体而言,凋落量出现在4-5月、8月和12月,针叶与枝凋落量月动态与总凋落量变化节律相似;季节变化表现为春季>夏季>秋季>冬季,叶主要集中在春季凋落,枝、花果凋落主要集中在夏季凋落。
     不同发育阶段杉木人工林凋落物特性存在明显差异。凋落物各组分大量养分含量表现为N>Ca>Mg>K>P,微量养分表现为Fe>Mn>Zn>Cu,各组分养分浓度具有明显的月动态规律,以某一月份的养分浓度代表年平均浓度来计算凋落物年养分归还量会产生过高或过低的估计。以凋落物形式归还林地的养分量均表现为随发育阶段的增加而增加,大量养分归还量表现为过熟林(146.61kg·hm-2·a-1)>成龄林(131.46kg·hm-2·a-1)>幼龄林(96.63kg·hm-2·a-1),微量养分归还量表现为过熟林(12082.46g·hm-2·a-1)>成龄林(9087.19g·hm-2·a-1)>幼龄林(7796.22g·hm-2·a-1);大量元素养分年归还量总体表现为N>Ca>K或Mg>P,微量养分表现为Fe>Mn>Zn>Cu;各组养分归还量均表现为落叶或其它>落枝>落花果。杉木凋落物养分归还量具有明显的月动态特征,N归还量与凋落量月动态模式相似,幼龄林与成龄林表现为双峰型(5月与8月),过熟林表现为三峰型(1-2月、4-5月和8月);P与K归还量的月动态表现三峰型,峰值出现的时间因发育阶段不同而不同;Ca与Mg归还量为单峰型(8月);Fe养分归还量为多峰型,2、5、6、8均出现归还高峰;幼龄林与成龄林杉木Mn归还量月动态为单峰型(8月),过熟林为双峰型(5和8月);三种发育阶段Cu, Zn归还量为双峰型(5、8月)。
     相关分析表明,杉木林地内微量养分归还量与土壤养分及有效性关系更密切,微量养分元素可能与其它离子发生交互作用,促进土壤养分的转移及释放;杉木凋落物中N含量越高、C:N越低、纤维素和木质素含量越低,越有利于土壤有机质的矿化。
     3、杉木人工林凋落物养分转移率较高,其中杉木枯枝和枯叶的N、P、K, Cu、Ca、Mg均存在不同程度的转移,而Fe、Mn、Zn均不发生养分转移。落叶的养分转移率表现为K或P>Cu>N>Ca>Mg,落枝的养分转移率表现为P>Cu>K>N或Ca> Mg,其中杉木落叶P转移率最高,不同发育阶段表现为成熟林(66.0%)>过熟林(65.4%)>幼龄林(60.9%),杉木落枝P转移率更高(71.0%-73.8%);落枝叶N的转移率在30%-40%之间,落枝叶K的转移率在47%-70%之间;杉木落枝叶Ca, Mg转移率分别为4%-40%和4%-20%。养分转移率季节动态变化较大,表现为落枝叶N、P的转移率为双峰型(4月和10月),7月最低;落枝叶K的转移率为双峰型(4月和7月);落枝叶Cu的转移率表同为4月最低(16.0%-24.7%),至7月开始升高,10月与1月仍保持较高的养分转移水平。影响杉木凋落物养分转移的各因素中,养分转移与新鲜和凋落组织的养分浓度关系比与受土壤影响更为密切,但养分转移并不仅仅是由高浓度向低浓度的简单迁移过程,而是与自身养分代谢有关的复杂过程。
     杉木凋落物养分转移量(N、P、K、Ca、Mg、Cu6种元素)分别为25.51、39.03和47.25kg·hm-2·a-1,随发育阶段的增加而增加。其中落叶转移量为18.94-37.61kg·hm-2·a-1,落枝为5.57-10.09kg·hm-2·a-1。与归还量相比,养分转移量相当可观,不同发育阶段杉木人工林枝叶养分转移量分别占归还量的71.3%、57.9%和64.9%。各养分转移量排序为N>K>Ca>Mg>P>Cu。杉木人工林落枝叶养分转移量具有明显季节动态。三种杉木林分落叶N、P转移量高峰均出现在夏季(3.27-7.11kg·hm-2和0.21-0.59kg·hm-2);K转移高峰出现在春季和夏季;Cu转移高峰出现在冬季和夏季。
     4、不同发育阶段杉木人工林细根生物量及时空分布差异明显。细根现存总量表现为成龄林(3.49t·hm-2)>过熟林(3.07t·hm-2)>幼龄林(2.80t·hm-2);活细根现存量表现为成龄林(2.73t·hm-2)>幼龄林(2.49t·hm-2)>过熟林(2.13t·hm-2),表现为随发育阶段增加呈“∧”趋势。杉木细根垂直分布具有表聚性,细根现存总量(0-20cm)占40.4%-46.3%,活细根现存量(0-20cm)占47.4%-54.4%,但死细根垂直异质性不明显。杉木细根现存量的季节动态表明,细根现存总量表现为4月份出现第一次峰值,随后下降,7月份较低,10月份有所回升,出现次高峰;杉木活细根现存量1月份与4月份均较低,到7月份开始上升,10月份活细根现存量也较高;杉木死细根现存量月动态变化与活细根相反,表现为1、4月份较高,到7月份开始显著下降至最低,10月份略有回升。
     不同发育阶段杉木人工林细根养分循环特征存在一定差异。幼龄林、成龄林和过熟林大量养分现存量分别为46.84、47.79和45.29kg·hm-2,微量养分现存量分别为1197.61、1720.49和1726.35g·hm-2;活细根养分现存量随发育阶段的增加而减小(大量养分:42.12、36.99和32.04kg·hm-2),死细根养分现存量与活细根相反,表现为随发育阶段的增加而增加(大量养分:4.74、10.81和13.24kg·hm-2(p<0.05);微量养分:162.63、448.57和588.50g·hm-2(p<0.05))。大量养分现存量表现为N>K或Ca>Mg.P,微量养分现存量表现为Fe>Mn.Cu或Zn。细根养分的空间分布表明:杉木活细根N、P、K、Mg、Fe、Cu、Zn元素养分浓度随径级的增加而减小,Ca养分浓度随径级的增加而增加;死细根N、P、K养分浓度随径级的增加而减小,其它元素不同发育阶段表现规律不一;活细根N、P、K、Fe、Cu、Zn养分浓度随序级的增加而减小,死细根N、P、K养分浓度随序级的增加而减小,Ca和Mg随序级增加而增加。
     不同发育阶段杉木人工林细根养分内循环研究表明:杉木细根K、Ca、Mg、Cu存在养分内循环,杉木细根N、P、Fe不发生养分内循环;各元素细根养分转移率总体表现为,各发育阶段细根养分转移率表现为幼龄林>过熟林>成龄林。杉木细根养分转移率与径级、序级相关性分析表明:K、Mg和Zn发生养分内循环的径级部位主要在0-0.5mm或0.5-1mm处,根序部位主要在1级或2级处。
Chinese fir (Cunninghamia lanceolata) is one of the most important native fast-growing evergreen coniferous species in southern China. Due to an increasing demand for timber, monoculture Chinese fir plantations were widely planted, however concerns have been expressed about the declining timber yield and soil fertility degradation on successive rotations of Chinese fir plantations. At present, the fundamental reasons contributing to the long-term problems are not clear. As a result, how to further reveal inter-mechanism of declining timber yield of Chinese fir plantations has become the major task in current forestry career.
     The decline in Chinese fir productivity has been attributed to a combination of factors including site preparation methods, management intensity and silvicultural practices. However the role of the physiological characteristics of the species and nutrient cycling utilization in contributing to the decline in productivity is yet to be explored. Litterfall and fine root are important components of forest biogeochemical and nutrient cycling. Nutrient return and turnover through above-and belowground litterfall is an important pathway for self-fertilization in forests, which is a critical way to sustain the long-term productivity of Chinese-fir plantations. Although litterfall characteristics, fine root turnover and nutrient cycling utilization regarding to Chinese fir plantations has been studied, nutrient translocation and utilization efficiency was seldom studied and which has important theoretical and practical significance to understand the mechanism of productivity decline in Chinese fir plantations.
     In view of this, this study focus on the problems in the nutrient cycling in Chinese fir plantations, from the aspect of the nutrient retranslocation and utilization, aboveground litterfall production, fine roots production, internal nutrient cycling in senescent leaf and branches and fine roots and nutrient distribution and fluxes were investigated in three monospecific Chinese-fir plantations at different developmental stages (10-,22-and34years) using the chronosequence method in Sanming city, Fujian province. The study will have important theoretical significance to understand the mechanism of productivity decline, also will have an important practical value to improve nutrient utilization and maximize forest productivity. The main results are as follows:
     1. The biomass, productivity and nutrient utilization characteristic varied in different-stages Chinese fir plantations. Total biomass of the stands increased with the stage in the order of38.11,104.03and138.24t·hm-2respectively for the young, mature and over-mature stands. The total productivity also increased with stand stage, which were4.80,6.97and8.11t·hm-2·a-1for the10-,22, and34-year old stands respectively. Nutrient utilization efficiency in different developmental-staged Chinese fir plantation increased with the stage increasing. Producing dry matter per ton required macronutrient (N, P, K, Ca, Mg) of18.58,13.66and11.82kg respectively in young, mature and over-mature stage. Producing dry matter per ton required micronutrients (Fe, Mn, Cu, Zn) of0.608,0.490and0.490kg respectively in young, mature and over-mature stage. Nutrient utilization efficiency of macronutrient was in the order of P>Mg>Ca>K>N, and the micronutrient was in the order of Cu>Zn>Fe or Mn.
     In conclusion, the young stage of Chinese-fir plantation was characterized by high nutrient uptake from the soil, low nutrient return, short turnover time and low nutrient utilization rate. In contrast, the mature stand circulation coefficient, turnover time, and nutrient utilization rate all increased, which indicates a higher nutrient uptake from soil as well as higher nutrient return and higher nutrient depletion. However, the turnover time in the over-mature stage stand was high and was characterized by lower uptake nutrient from the soil, higher nutrient return and utilization. This implies that harvesting Chinese-fir plantation at young stage would lead to high nutrient loss, which may not be sustainable in maintaining the long-term productivity of the species. As a result, prolonging the rotation of Chinese fir plantations properly will have great significance of soil fertility recovery.
     2. For litterfall production, the height and layout mode of litter trap had no significant effect on litterfall collection with the results of50cm>25cm>100cm and "random" mold>"×"mold>"+" mold. The area of trap had significant effect on litterfall collection (p<0.05), with the order of0.5m2>2m2>1m2. The percentage of total trap area accounting for samples had significant effects on litterfall collection (p<0.05) in the order of1.5%>0.75%>0.5%. Annual litterfall production in different developmental-staged stands varied temporally. On average, annual litterfall production was in the order of over-mature stage (507.84g·m-2·a-1)> mature stage (458.79g·m-2·a-1)>young stage (348.52g·m-2·a-1). Reduced major axis analysis showed a significant positive correlation between litterfall fragments and total production. The allometric index between needles, branches, flowers and cones, other components and total litterfall production was1.36,1.41,1.52and1.31respectively. The allometric indexes between needles and branches, needles and flowers, branches and flowers, needles and others, branches and others, flowers and others were0.91,0.82,0.84,1.19,1.19and1.32respectively. With the exception of other components, needles accounted for the largest percentage of litterfall production (32.9%-44.4%), followed by branches (15.2%-17.2%), and flower and cones accounting for the smallest percentage (2.4%-10.8%). Monthly dynamics of litterfall production of Chinese fir plantations was obvious with three peaks of April-May, August and December. During2012-2013, the young and mature stage plantations had two peaks (April-May and August) in litterfall, however, monthly dynamics in the over-mature stage plantation was three peaks (April-May, August and January-February) in2012, and was one peak (April) in2013. Needles and branches had similar monthly dynamics as they dropped together. Seasonal dynamics of litterfall was in the order of spring> summer> autumn> winter. Leaves fell in spring, branches and flowers fell in summer.
     Litterfall characteristics varied among different-staged Chinese fir plantations. Macronutrient concentration in litter of Chinese fir plantations was in the order of N> Ca> Mg> K> P, and micronutrient concentration was in the order of Mn> Fe> Zn> Cu.. Nutrient concentration in different litterfall components has obvious monthly dynamics, and it will be higher or lower evaluation of annual nutrient return by using nutrient concentration in one month. Macronutrient return (N, P, K, Ca and Mg) through litterfall increased with stand age, in the order of over-mature stage (146.61±25.19kg·hm-2·a-1)>mature stage (131.46±24.36kg·hm-2·a-1)>young stage (96.63±14.57kg·hm-2·a-1) respectively. Micronutrient return (Fe, Mn, Cu, Zn) also increased with stand age, following the order of over-mature stage (12082.46g-hm"2)> mature stage (9087.19g·hm-2)>young stage (7796.22g·hm-2) plantations respectively. The order of annual nutrient return by litterfall was N> Ca> K or Mg> P and Fe> Mn> Zn> Cu. Nutrient return in different components was in the order of leaves or other components>branches> flowers and cone. Monthly dynamics of N nutrient return was similar to litterfall production recording two peaks in the young and mature plantations (May and August), and three peaks in the over-mature stand (January-February, April-May and August). Monthly dynamics of P and K return were there peaks, and monthly dynamics of Ca and Mg had one peak in August. Monthly dynamics of Fe return had muti-peaks (Februay, May, June and August). Meanwhile the monthly dynamics of Mn return in the young and mature stands was one peak (August), and two peaks in the over-mature plantation (May and August). Monthly dynamics of Cu and Zn return were two peaks (May and August).
     Pearson correlation showed significant relationship between C, K, Fe, Cu and Zn returned and litterfall production. The micronutrient returned through litterfall had a significant relationship with soil nutrient availability. N and C concentration was significantly correlated with soil organic matter. On the other hand P, C:N, cellulose content and lignin content had significantly negative correlation with soil organic matter. It can be concluded that the higher N content and the lower C:N and cellulose and lignin content is more advantageous to the mineralization of soil organic matter.
     3. Independent-T test showed that N, P, K, Cu, Ca and Mg nutrients in senesced components retranslocated to the fresh ones, and Fe, Mn and Zn nutrients did not retranslocate when the leaves and branches senesced. Nutrients translocation rate of senesced needles was in the order of K> P> Cu> N> Ca> Mg, and the order for branches was P>Cu>K>N>Ca> Mg. The P nutrient retranslocation rate in leaves was higher following the order of over-mature stage (66.0%)>mature stage (65.4%)>young stage (60.9%), and the P nutrient retranslocation rate in branches was highest to71.0%-73.8%. The nutrient retranslocation rates of N, K, Ca, and Mg in senesced branches and leaves were30%-40%,47%-70%,4%-40%and4%-20%respectively. Monthly dynamics of N, P, K and Cu in senescenced leaves and branches was similar. N and P retranslocation rate peaked in April and October. Cu retranslocation rate was lowest in April (16.0%-24.7%), and higher in other months. Pearson correlation analysis showed that there was no significant correlation between nutrient retranslocation rate and soil nutrient pool. However, nutrient retranslocation rate was more related to nutrient content in fresh and dead tissues, but not a result of simple migration progress from high concentration to low concentration.
     The nutrient retranslocation of N, P, K, Ca, Mg and Cu in leaves and branches increased with age in order of25.51,39.03, and47.25kg·hm-2·a-1for young, mature and over-mature stands respectively. The nutrient retranslocation amounts were18.94-37.61kg·hm-2·a-1in leaves and5.57-10.09kg-hm'^a"1in branches. Nutrient translocation amount through leaves and branches was considerable compared to nutrient return through litterfall, accounting for71.3%,57.9%and64.9%in different-staged Chinese fir plantations. Nutrient rethanslocation amount was in the order of N>K>Ca>Mg>P>Cu. Moreover seasonal dynamics of N, P, K and Cu retranslocation was apparent. The highest N and P retranslocation was recorded in summer (3.27-7.11kg·hm-2and0.21-0.59kg·hm-2) and the lowest was in autumn (1.33-4.59kg·hm-1); the highest K retranslocation amount was in spring in mature and over-mature stands and summer in young stand; the highest Cu retranslocation amount was in winter and summer in young and mature stands and winter in over-mature stand.
     4. Fine root production and distribution varied in different-staged Chinese fir plantations. The total root biomass production was in the order of mature stage (3.49t-hm'2)>over-mature stage (3.07t·hm-2)> young stage (2.80t·hm-2) stands. The production of live fine roots was in the order of mature stage (2.73t·hm-2)> young stage (2.49t·hm-2)> over-mature stage (2.13t·hm-2) stands. The vertical distribution of fine roots of Chinese fir was accumulated in surface soil layer (0-20cm). The fine roots biomass production in0-20cm accounted for40.4%-46.3%of the total fine roots, and47.4%-54.4%of live fine roots. There was seasonal variation in fine root biomass production. Total production of fine root biomass showed two peaks with dominant peak in April and minor-peak in October. The production of live fine roots was high in January and April, while the pattern of dead fine roots showed opposite trend with high biomass in January and April and low biomass recorded in July and August.
     Fine root nutrient characteristics varied in different-aged Chinese fir plantations. The macronutrient amount (N, P, K, Ca and Mg) of total fine roots for the young, mature and over-mature Chinese-fir stands were46.84,47.79, and45.29kg-hm'2respectively.The micronutrient concentration (Fe, Mn, Cu, Zn) of total fine roots were1197.61,1720.49and1726.35g·hm-2for the young, mature and over-mature stands respectively. The nutrient amount in live fine roots decreased with the stage increasing, while the nutrient amount in dead find roots increased with the stage increasing. The order of nutrient accumulation was in the order of N>K or Ca>Mg>P and Fe>Mn>Cu or Zn. Pearson correlation analysis showed that the concentration of N, P, K, Mg, Fe, Cu and Zn concentration in live fine roots decreased with root diameter increasing, while concentration of Ca in live fine roots showed increased trend with root diameter increasing. The concentration of N、P、K in dead fine roots increased with diameter increasing, while the other nutrients in dead fine roots showed different pattern. The concentration of N, P, K, Fe, Cu and Zn in live fine roots decreased with root order increasing. The concentration of N, P and K in dead fine roots decreased with root order increasing, while the concentration of Ca and Mg in dead fine roots increased with root order increasing.
     Independent-T test showed that K, Ca, Mg, Cu nutrients retranslocated from dead roots to live roots, and N, P and Fe did not existed retranslocation when fine root seneced in Chinese fir plantations. The nutrient retranslocation rate was in the order of Cu>Ca>Mg>Mg and in the order of young stage> over-mature stage> mature stage. Pearson correlation analysis showed that K, Mg and Zn nutrient retranslocation exsted in the diameter of0.5-1mm and in the first and second order of fine roots.
引文
[I]Organization F A A. Global Forest Resources Assessment 2000[Z].2001.
    [2]Evans J. Plantation Silvculture/Sustainability of Plantations[M]. Encyclopedia of Forest Sciences, 2004:865-872.
    [3]Zhao D, Kane M, Borders B E, et al. Site preparation and competing vegetation control affect loblolly pine long-term productivity in the southern Piedmont/Upper Coastal Plain of the United States[J]. Annals of Forest Science.2009,66(7):705.
    [4]O'Hehir J F, Nambiar E K S. Productivity of three successive rotations of P. radiata plantations in South Australia over a century[J].2010(10):1869-1875.
    [5]俞新妥.中国杉木研究[J].福建林学院学报.1988(3):203-220.
    [6]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理.2010(1):1-8.
    [7]Tian D L, Xiang W H, Chen X Y, et al. A long-term evaluation of biomass production in first and second rotations of Chinese fir plantations at the same site [J]. Forestry.2011,84(4):411-418.
    [8]Guo J, Xie J, Lu H, et al. Carbon return and dynamics of litterfell in natural forest and monoculture plantation of Castanopsis kawakamii in subtropical China[J]. Forestry Studies in China.2004,6(1):33-36.
    [9]Kamruzzaman M, Sharma S, Hoque A T M R, et al. Litterfall of three subtropical mangrove species in the family Rhizophoraceae[J]. Journal of Oceanography.2012,68(6):841-850.
    [10]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学.2006(4):93-100.
    [11]Gholz HI F R. Nutrent dynamics in slash pine plantation ecosystems.[Z].1985:66,647-659.
    [12]张小全,吴可红,Dieter Murach树木细根生产与周转研究方法评述[J].生态学报,2000,20(5):875-883.
    [13]Tateno R, Hishi T, Takeda H. Above-and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen[J].2004, 193:297-306.
    [14]Gordon W S J, Ackson R B. Nutrient concentrations in fine roots[J]. Ecology.2000,81(1): 275-280.
    [15]Vogt K A, C G C, Vogt. Production, turover and nutrient dynamics of above-and below-ground detritus of world forests[J]. Advances in Ecological Research.1986,15:303-377.
    [16]项文化,田大伦,闫文德,等.第2代杉木林速生阶段营养元素的空间分布特征和生物循环[J].林业科学.2002,38(2):2-8.
    [17]李敦法,陈惠启.两个不同年龄杉木人工林生物产量的初步研究[J].黄冈林业科技.1980,(2):7-12.
    [18]Evans J. long-term productivity of forest plantaion-status in 1990[Z].1990,165-180.
    [19]Chu Chou D S. Effects of root residues on growth on pinus rakiate seedlings and a mycorrhizal fungus[J]. Annal of Applied Biology.1978,90:407-416.
    [20]Keeves A. Some evidence of loss of productivity with successive rotations of Pinus radiata in the south-east of South Australia[J]. Australian Forestry.1966,30(1):51-63.
    [21]Mccoll J. Symbolic nitrogen fixation by Daviesia mimoisedes under Eucalyptus. IUFRO, Symposium on Forest Site and Continuous Productivity, USDA, Foe [J].1983:122-129.
    [22]Webb L J, Tracy J J, Haydock K P. A factor toxic to seedlings of the same species associated with living roots of the non-gregarious subtropical rain forest tree Grevillea robusta [J].1967, (4): 13-25.
    [23]刘爱琴,范少辉,林开敏,等.不同栽植代数杉木林养分循环的比较研究[J].植物营养与肥料学报.2005,11(2):273-278.
    [24]马祥庆.杉木人工林连栽生产力下降研究进展[J].福建林学院学报.2001,21(4):380-384.
    [25]马祥庆,康述海,黄勇,等.花岗岩条件下杉木人工林的多代效应研究[J].福建林学院学报.2002,22(4):289-294.
    [26]陈乃全,尹建道,王义廷,等.落叶松人工林重荐更新效果的研究.中国林学会造林学会第二届学术讨论会《造林论文集》[C].1990.
    [27]孙翠玲,朱占学,王珍,等.杨树人工林地力退化及维护与提高土壤肥力技术的研究[J].林业科学.1995,31(6):506-512.
    [28]范少辉,马祥庆,陈绍栓,等.多代杉木人工林生长发育效应的研究[J].林业科学.2000,36(4):9-15.
    [29]俞新妥.杉木人工林地力和养分循环研究进展[J].福建林学院学报.1992,12(3):264-276.
    [30]刘煊章,田大伦,康文星,等.第二代杉木幼林生物量的定位研究[J].林业科学.1997,33(专刊2):61-66.
    [31]Cossalter C, Pye-Smith C. Fast-wood forestry myths and realities[M]. Centre for international forestry research, Bogor, Indonesia,2003:47.
    [32]Powers R F. On the sustainability of planted forests[J]. New Forests.1999,17:263-306.
    [33]Mcnabb K L, Wadouski L H. Multiple rotation yields for intensively managed plantations in the Amazon basin[M]. Planted Forests:Contributions to the Quest for Sustainable Societies. Springer Netherlands:365-375.
    [34]Woods R V. Second rotation decline in P.radiata plantations in South Australia has been corrected[J]. Water Air Soil Poll.1990,54:607-619.
    [35]陈立新.乐北山地人工林生态系统土壤肥力的研究[M].黑龙江:东北林业大学出版社,2000:7.
    [36]张浩军,金宏安,李仁智.关于人工林连栽地力和生产力下降问题[J].林业资源管理.1993,(2):55-58.
    [37]赵大军.人工落叶松纯林连栽对地力影响的研究[D].东北林业大学硕士学位论文,1995.
    [38]Xu D P, Yang Z J, Zhang N N. Effects of site management on tree growth and soil properties of a second-rotation plantation of Eucalyptus urophylla in Guangdong province, China[J]. Site Management and Productivity in Tropical Plantation Forests.2004,45.
    [39]Ma X Q, Liu C J, Hannu I, et al. Biomass, litterfall and the nutrient fluxes in Chinese fir stands of different age in subtropical China[J]. Journal of Forestry Research (Harbin).2002,13(3): 165-170.
    [40]Ma X Q, Heal K V, Liu A Q, et al. Nutrient cycling and distribution in different-aged plantations of Chinese fir in southern China[J]. Forest Ecology and Management.2007,243(1):61-74.
    [41]贺珑,曾红高,罗洪.不同栽植代数的25年实生杉木生长规律研究[J].现代农业科技.2008(24):40-41.
    [42]王周绪.人工林地力退化的机理和恢复方式[J].中国林业.2008,(17):44-45.
    [43]杨玉盛,邱仁辉,俞新妥,等.杉木连栽土壤微生物及生化特性的研究[J].生物多样性.1999,(1):1-7.
    [44]俞元春.杉木林土壤肥力变化和长期生产力维持研究[D].南京林业大学,1999.
    [45]俞新妥,张其水.杉木连栽林地土壤生化特性及土壤肥力的研究[J].福建林学院学报.1989,9(3):263-271.
    [46]冯宗玮.杉术人工林生长发育与环境相互关系的定位研究[C].1980.
    [47]方奇.杉木连栽对土壤肥力及其林木生长的影响[J].林业科学.1987,(4):389-397.
    [48]俞新妥.杉木人工林地力和养分循环研究进展[J].福建林学院学报.1992,12(3):264-276.
    [49]杨玉盛,俞新妥,邱仁辉,等.不同栽杉代数根际土壤肥力及生物学特性变化[J].应用与环境生物学报.1999,(3):23-27.
    [50]马祥庆,黄宝龙.人工林地力衰退研究综述[J].南京林业大学学报.1997,(2):79-84.
    [51]刘乐中,杨玉盛,郭剑芬,等.杉木人工林皆伐火烧后土壤呼吸研究[J].亚热带资源与环境学报.2008,3(1):8-14.
    [52]范少辉,盛炜彤,马祥庆,等.多代连栽对不同发育阶段杉木人工林生产力的影响[J].林业科学研究.2003,16(5):560-567.
    [53]范少辉,何宗明,卢镜铭,等.立地管理措施对2代5年生杉木林生长影响[J].林业科学研究.2006,19(1):27-31.
    [54]盛炜彤,范少辉.杉木人工林的育林干扰对长期立地生产力的影响[J].林业科学.2003,39(5):37-43.
    [55]俞新妥,杨玉盛,何智英.杉木幼林地水土流失规律的研究[J].林业科学.1993,29(1):25-32.
    [56]张先仪.整地方式对水土保持及杉木幼林生长影响的研究[J].林业科学.1986,22(3):225-232.
    [57]方晰,田大伦,秦国宣,等.杉木林采伐迹地连栽和撂荒对林地土壤养分与酶活性的影响[J].林业科学.2009,45(12):65-71.
    [58]田大伦,方晰,康文星.杉木林不同更新方式对林地土壤性质的影响[J].中南林学院学报.2003,23(2):1-5.
    [59]盛炜彤,范少辉.杉木及其人工林自身特性对长期立地生产力的影响[J].林业科学研究.2002,15(6):629-636.
    [60]陈楚莹,廖利平,汪思龙.杉木人工林生态学[M].北京:科学出版社,2000.
    [61]张家城,盛炜彤.杉木人工林树上宿存枯死枝、叶在冠层与在枯枝落叶层分解的比较研究[J].林业科学.2001,37(6):2-10.
    [62]俞新妥.中国杉木研究进展(2000-2005)Ⅰ.杉木生理生态研究综述[J].福建林学院学报.2006,26(2):177-185.
    [63]杨玉盛.不同栽杉代数29年生杉木林净生产力及营养元素生物循环的研究[Z].中国浙江杭州:1999.
    [64]马祥庆,何智英,俞新妥.不同林地清理方式对杉木人工林地力的影响[J].林业科学.1995,(6):485-490.
    [65]马祥庆,刘爱琴,何智英,等.整地方式对杉木人工林生态系统的影响[J].山地学报.2000,18(3):237-243.
    [66]黄跃延.立地管理措施对7年生2代杉木林生长的影响[J].福建林业科技.2009,(4):26-29.
    [67]Bi J, Blanco J A, Seely B, et al. Yield decline in Chinese-fir plantations a simulation investigation with implications for model complexity [J]. Canadian Journal of Forest Research. 2007,37(9):1615-1630.
    [68]马祥庆,叶世坚,陈绍栓.轮伐期对杉木人工林地力维护的影响[J].林业科学.2000,36(6):47-52.
    [69]俞新妥.杉木栽培生物学研究——杉木持续速生丰产原理及应用的系列研究(学术总结)[J].福建林学院学报.1991,(1):1-7.
    [70]马祥庆,庄孟能,叶章善.杉木拟赤杨混交林林分生产力及生态效应研究[J].植物生态学报.1998,22(2):83-90.
    [71]杨智杰,陈光水,谢锦升,等.杉木、木荷纯林及其混交林凋落物量和归还量[J].应用生态学报.2010,21(9):2235-2240.
    [72]杨玉盛,陈光水,郭剑芬,等.杉木观光木混交林凋落物分解及养分释放的研究(英文)[J].植物生态学报.2002,26(3):275-282.
    [73]陈爱玲,陈青山,蔡丽萍.杉木拟赤杨混交林土壤肥力的研究[J].土壤与环境.2000,9(4):284-286.
    [74]陈爱玲,陈青山,蔡丽萍.杉木建柏混交林土壤肥力的研究[J].南京林业大学学报(自然科学版).2001,25(3):4346.
    [75]陈龙池,汪思龙,陈楚莹.杉木人工林衰退机理探讨[J].应用生态学报.2004,15(10):1953-1957.
    [76]姜培坤,徐秋芳.杉木林地和根际土壤酚类物质分析[J].浙江林业科技.2000,20(5):1-4.
    [77]马祥庆,刘爱琴,黄宝龙.杉木人工林自毒作用研究[J].南京林业大学学报.2000,24(1):15-19.
    [78]罗承德,张健,刘继龙.四川盆周山地杉木人工林衰退与铝毒害阈值的探讨[J].林业科学.2000,36(1):9-14.
    [79]曹光球.杉木自毒作用及其与主要混交树种化感作用的研究[D].福建农林大学,2006.
    [80]侯振宏,张小全,徐德应,等.杉木人工林生物量和生产力研究[J].中国农学通报.2009,25(5):97-103.
    [81]薛立,杨鹏.森林生物量研究综述[J].福建林学院学报.2004,24(3):283-288.
    [82]刘雯雯,项文化,田大伦,等.区域尺度杉木生物量通用相对生长方程整合分析[J].中南林业科技大学学报.2010,30(4):7-14.
    [83]田大伦.杉木林生态系统功能过程[M].北京:科学出版社,2005.
    [84]刘增文,高文俊,潘开文,等.枯落物分解研究方法和模型讨论[J].生态学报.2006,26(6):19932000.
    [85]吕晓涛,唐建维,何有才,等.西双版纳热带季节雨林的生物量及其分配特征[J].植物生态学报.2007,31(1):11-22.
    [86]王金叶,车克钧,蒋志荣.祁连山青海云杉林平衡研究[J].西北林学院学报.2000,15(1):9-14.
    [87]方精云,陈安平.中国森林植被库的动态变化及其意义[J].植物学报.2001,43(9):967-973.
    [88]方精云,刘国华,朱彪,等.北京东灵山三种温带森林生态系统的循环[J].中国科学.D辑:地球科学.2006,36(6):533-543.
    [89]方精云,王娓.作为地下过程的土壤呼吸:我们理解了多少?[J].植物生态学报.2007,(3):345-347.
    [90]方晰,田大伦,项文化,等.杉木人工林林地土壤CO2释放量及其影响因子的研究[J].林业科学.2005,41(2):1-7.
    [91]杨书运,张庆国,蒋跃林,等.中国森林系统对全球平衡的作用与地位[J].江苏林业科技.2006,33(1):4549.
    [92]杨少红,高人,陈光水,等.不同栽杉代数杉木林C库与C吸存[J].东北林业大学学报.2006,36(4):4245.
    [93]周传艳,周国逸,王春林,等.广东省森林植被恢复下的储量动态[J].北京林业大学学报.2007,29(2):60-65.
    [94]潘维俦,李利村,高正衡,等.杉木人工林生态系统中的生物产量及其生产力的研究[J].湖南林业科技.1978,(5):1-12.
    [95]冯宗炜,陈楚莹,张家武,等.不同自然地带杉木林的生物生产力[J].植物生态学与地植物学丛刊.1984,(2):93-100.
    [96]温远光,梁乐荣,黎洁娟,等.广西不同生态地理区域杉木人工林的生物生产力[J].广西农学院学报.1988,(2):55-66.
    [97]冯宗炜,张家武,邓仕坚.我国亚热带湖南桃源杉木人工林生态系统生物量的研究[J].杉木人工林生态学研究论文集.中国科学院林业土壤研究所.1980:173-188.
    [98]罗云裳.广东西江地区杉木人工林生物量与立地因子相关的研究[J].林业科学.1989,25(2):147-150.
    [99]潘维俦,田大伦,李利村,等.杉木人工林养分循环的研究(一)不同生育阶段杉木林的产量结构和养分动态[J].中南林学院学报.1981,(1):1-21.
    [100]张林,黄永,罗天祥,等.林分各器官生物量随林龄的变化规律——以杉木、马尾松人工林为例[J].中国科学院研究生院学报.2005,(2):170-178.
    [101]段爱国,张建国,何彩云,等.杉木人工林生物量变化规律的研究[J].林业科学研究.2005,18(2):125-132.
    [102]Ebermayer E. Die Qesamte Lehreder Woldstreumit Rucksichtauf die Chemische Staticdes Woldbaues [M]. Berlin:Julius Spriuger:1876:116,
    [103]Cole D W. Distribution and cycling of nitrogen,phosphorus, potassioum and calcium in a second-growth Douglas fir ecosystem. In symposioum on promary production and Menoral cycling in Natural ecosystem,[M]. Univeristy of Mame Press:1967:197-232.
    [104]Bormann F H, Likens G E. Pattern and process in a forest ecosystem[M]. New york,1979.
    [105]Bazilevich N I, Rodin L E. The biological cycle of nitrogen and ash elements in plant communities of the tropical and subtropical zones[C].//Forestry Abstr:1966.
    [106]Dvigeaud P温带落叶松矿质元素的生物循环.[J].植物生态学译丛(第一集).北京:科学出版社.1974,1(1).
    [107]Golley F B, Mcginnis J T, Clements R G, et al. Mineral cycling in a tropical moist forest ecosystem[M]. Unversity Georgia Press,1975.
    [108]Tsutsumi T, Kawahara T, Shidei T. The circulation of nutrients in forest ecosystem. I. On the amount of nutrients contained in the above-ground parts of single tree and of stand[J]. Journal of Japanese Forest Society.1968,50(3):66-74.
    [109]侯学煜.中国植被地理及其优势植物的化学成分[M].北京:科学出版社:1982.
    [110]冯宗炜,陈楚莹,王开平,等.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究[J].植物生态学与地植物学丛刊.1985,(4):245-256.
    [111]聂道平,沈国舫,董世仁.油松人工林养分循环的研究——Ⅲ.养分元素生物循环和林分养分的平衡[J].北京林业大学学报.1986,(2):8-19.
    [112]刘增文,李雅素,吕月玲,等,刺槐主要养分元素内循环及外循环研究[J].南京林业大学学报.1997,21(4):8-12.
    [113]潘维俦,田大伦,雷志星,等.杉木人工林养分循环的研究——(二)丘陵区速生杉木林的养分含量、积累速率和生物循环[J].中南林学院学报.1983(1):1-17.
    [114]田大伦,项文化,闫文德.马尾松与湿地松人工林生物量动态及养分循环特征[J].生态学报.2004,(10):2207-2210.
    [115]张昌顺,李昆.人工林养分循环研究现状与进展[J].世界林业研究.2005(04):35-39.
    [116]朱建林,郭景唐,欧国菁.油松树冠营养元素浓度空间变异的研究[J].北京林业大学学报.1992,(S5):43-49.
    [117]杨玉盛,陈光水,谢锦升,等.杉木-观光木混交林群落N、P养分循环的研究[J].植物生态学报.2002,26(4):473-480.
    [118]卢琦,罗天祥,庄嘉,等.桂东北栲树林营养元素的空间格局[J].生态学报.1995,15(2):155-162.
    [119]潘维俦,田大伦,雷志星,等.杉木人工林养分循环的研究——(二)丘陵区速生杉木林的养分含量、积累速率和生物循环[J].中南林学院学报.1983,(1):1-17.
    [120]肖祥希.马尾松人工林生态系统养分特性的研究[J].福建林业科技.2000,27(4):14-18.
    [121]Ashagrie Y, Zech W. Litter production and nutrient cycling in two plantations and a Podocarpus falcatus dominated natural forest ecosystems in south-eastern highlands of Ethiopia[J]. African Journal of Agricultural Research.2013,8(38):4810-4818.
    [122]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学报.2002,26(1):89-95.
    [123]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学.2006,42(4):93-100.
    [124]王凤友.森林凋落量研究综述[J].生态学进展.1989,6(2):82-89.
    [125]Wang Q K, Wang S L, Huang Y. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China[J]. Forest Ecology And Management.2008,255(3-4):1210-1218.
    [126]杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学.2004,40(3):19-25.
    [127]郭剑芬,陈光水,钱伟,等.万木林自然保护区2种天然林及杉木人工林凋落量及养分归还[J].生态学报.2006,26(12):4091-4098.
    [128]胡红玲,张健,刘洋,等.模拟氮沉降对华西雨屏区巨桉林凋落叶分解的影响[J].林业科学.2011,47(8):25-30.
    [129]He X, Lin Y, Han G, et al. Litterfall interception by understorey vegetation delayed litter decomposition in Cinnamomum camphora plantation forest[J]. Plant and soil.2013,372(1-2): 207-219.
    [130]周丽丽,蔡丽平,马祥庆,等.不同发育阶段杉木人工林凋落物的生态水文功能[J].水土保持学报.2012,(5):249-253.
    [131]Damian Lopez-Lopez J, Mendez Gonzalez J, Abel Najera-Luna J, et al. Litterfall production in Pinus halepensis Mill, and Pinus cembroides Zucc. and its Relationship with some climatic factors[J]. Agrociencia.2013,47(5):497-510.
    [132]Ribeiro Valim E A, Jr. Nalini H A, Kozovits A R. Litterfall dynamics in a iron-rich rock outcrop complex in the southeastern portion of the Iron Quadrangle of Brazil[J]. Acta Botanica Brasilica. 2013,27(2):286-293.
    [133]刘庆.川西亚高山针叶林与天然林凋落物的比较研究[D].中科院成都生物所硕士学位论文,2001.
    [134]刘蕾.神农架4种典型森林的凋落物现存量、凋落物分解及养分循环动态[D].三峡大学硕士学位论文,2012.
    [135]Reiners W. Changes in litterfall along a gradient in altitude[J]. Ecology.1987,75(3):620-629.
    [136]神农架4种典型森林的凋落物现存量、凋落物分解及养分循环动态[D].三峡大学硕士学位论文,2012.
    [137]田大伦,宁晓波.不同龄组马尾松林凋落物量及养分归还量研究[J].中南林学院学报.1995,(2):163-169.
    [138]杨会侠,汪思龙,范冰,等.不同林龄马尾松人工林年凋落量与养分归还动态[J].生态学杂志.2010,29(12):2334-2340.
    [139]杨玉盛,林鹏,郭剑芬,等.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解(英文)[J].生态学报.2003,23(7):1278-1289.
    [140]田大伦.马尾松林杆材阶段养分循环及密度关系的研究[J].林业科学.1989,25(2):106-112.
    [141]Gonzalez-Rodriguez H, Dominguez-Gomez T G, Cantu-Silva I, et al. Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico[J]. Plant Ecology.2011, 212, (10):1747-1757.
    [142]杨玉盛,陈银秀,何宗明,等.福建柏和杉木人工林凋落物性质的比较[J].林业科学.2004,40(1):2-10.
    [143]邓纯章,侯建萍,李寿昌,等.哀牢山北段主要森林类型凋落物的研究[J].植物生态学与地植物学学报.1993,17(4):364-370.
    [144]周东雄.杉木乳源木莲混交林凋落物研究[J].生态学杂志.2005,24(6):595-598.
    [145]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展[J].江西农业大学学报.2000,(3):405-410.
    [146]史振华,何宗明,谢建闽,等.5-7年生杉木幼林凋落物数量与月动态[J].福建农业大学学报.2006,(3):278-282.
    [147]陈金耀.天然杉木混交林及主要伴生树种凋落物动态变化[J].福建林学院学报.1998,22(3):63-67.
    [148]郭晋平,丁颖秀,张芸香.关帝山华北落叶松林凋落物分解过程及其养分动态[J].生态学报.2009,29(10):5684-5695.
    [149]李洁冰.亚热带4种森林凋落物及其分解动态特征[D].中南林业科技大学硕士学位论文,2011.
    [150]林瑞余,何宗明,陈光水,等.木荚红豆人工林凋落物季节动态[J].福建林学院学报.2002,(1):65-69.
    [151]向元彬,胡红玲,胡庭兴,等.华西雨屏区巨桉人工林凋落物数量及其分解特征[J].四川农业大学学报.2011,29(4):465-471.
    [152]郑逢中,卢昌义,郑文教,等.福建九龙口秋茄红树林凋落物季节动态及落叶能量季节流动[J].2000,39(5):693-698.
    [153]Aerts R, Chapin Iii F S. The mineral nutrition of wild plants revisited[J]. Advances in ecological research.2000, (30):1-67.
    [154]沈善敏,宇万太,张璐,等.杨树主要营养元素内循环及外循环研究Ⅱ.落叶前后养分在植株体内外的迁移和循环[J].应用生态学报.1993,4(1):27-31.
    [155]沈善敏,宇万太,张璐,等.杨树主要营养元素内循环及外循环研究Ⅰ.落叶前后各部位养分浓度及养分贮量变化[J].应用生态学报.1992,(4):296-301.
    [156]廖利平.国外林木养分内循环研究[J].生态学杂志.1994,(6):34-38.
    [157]Huang J J, Wang X H, E Y. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management[J].2007,239:150-158.
    [158]Milla R, Castro-Diez P, Maestro-Martinez M, et al. Does the Gradualness of Leaf Shedding Govern Nutrient Resorption from Senescing Leaves in Mediterranean Woody Plants?[J]. Plant and Soil.2005,278(1-2):303-313.
    [159]Hosseini S M, Rouhi-Moghaddam E, Ebrahimi E, et al. Hosseini S M, Rouhi-Moghaddam E, Ebrahimi E, et al. Comparison of growth, nutrition and soil properties of pure stands of Quercus castaneifolia and mixed with Zelkova carpinifolia in the Hyrcanian forests of Iran[J]. Forest Ecology and Management.2008,225:1149-1160.
    [160]Chapin Iii F S, Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves[J]. Ecology.1991,72(2):709-715.
    [161]Wright I J, Westoby M. Nutrient concentration, resorption and lifespan:leaf traits of Australian sclerophyll species[J]. Functional Ecology.2003, (17):10-19.
    [162]Kobe R K, Lepczyk C A, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set[J]. Ecology.2005,86:2780-2792.
    [163]Drenovsky R E, Koehler C E, Skelly K, et al. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees[J]. Oecologia.2013,171(1):39-50.
    [164]Li Y, Jing C, Mao W, et al. N and P resorption in a pioneer shrub (Artemisia halodendron) inhabiting severely desertified lands of Northern China[J]. Journal of Arid Land.2014,6(2): 174-185.
    [165]Wang W, Wang M, Lin P. Seasonal changes in element contents in mangrove element retranslocation during leaf senescene[J]. Plant and Soil.2003,252(2):187-193.
    [166]Yuan Z, Li L, Han X, et al. Foliar Nitrogen Dynamics and Nitrogen Resorption of a Sandy Shrub Salix gordejevii in Northern China[J]. Plant and Soil.2005,278(1-2):183-193.
    [167]Nambiar E K S, Fife D N. Growth and nutrient retranslocation in needles of radiata pine in relation to nitrogen supply[J]. Annals of Botany.1987,60(2):147-156.
    [168]Del Arco J M, Escudero A, Garrido M V. Effects of site characteristics on nitrogen retranslocation from senescing leaves[J]. Ecology.1991:701-708.
    [169]Boerner R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. Journal of Applied Ecology.1984:1029-1040.
    [170]Eckstein R L, Karlsson P S. Above-ground growth and nutrient use by plants in a subarctic environment:effects of habitat, life-form and species[J]. Oikos.1997:311-324.
    [171]王希华,黄建军,闫恩荣.天童常绿阔叶林若干树种的叶片营养转移研究[J].广西植物.2004,24(1):81-85.
    [172]Kilic D, Kutbay H G, Ozbucak T B, et al. Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevational gradient[J]. Annals of Forest Science.2010,67(2):213.
    [173]Killingbeek K. nutrient insenesced leaves:keys t o the search for potential resorption and resorption proficiency[J]. Ecology.1996,77:1716-1727.
    [174]Harrington R A, Fownes J H, Vitousek P M. Production and Resource Use Efficiencies in N-and P-Limited Tropical Forests:A Comparison of Responses to Long-term Fertilization[J]. Ecosystems.2001,4(7):646-657.
    [175]Kumar J I N, Kumar R N, Bhoi R K, et al. Seasonal changes of bioelements in litter and their potential return to green leaves in five species of tropical dry deciduous forest, western lndia[J]. Journal of Forestry Research.2010,21(1):33-38.
    [176]廖利平.国外林木养分内循环研究[J].生态学杂志.1994,13(6):34-38.
    [177]刘增文,李雅素,吕月玲.树木养分内循环研究初报[J].林业科技.1997,22(3):1-4.
    [178]徐福余,王力华,李培芝,等.若干北方落叶树木叶片养分的内外迁移Ⅰ.浓度和含量的变化[J].应用生态学报.1997,8(1):1-6.
    [179]Schlesinger W H, Delucia E H, Billings W D. Nutrient-use efficiency of woody plants on contrasting soils in the western Great Basin, Nevada[J]. Ecology.1989:105-113.
    [180]Kost J A. Kost J A, Boerner R E. Foliar nutrient dynamics and nutrient use efficiency in California.[J]. Ecology.1985,66:602-606.
    [181]Colin-Belgrand M, Ranger J, Bouchon J. Internal nutrient translocation in chestnut tree stemwood:III. Dynamics across an age series of Castanea sativa (Miller)[J].1996,78(6): 729-740.
    [182]曾德慧,陈广生,陈伏生,等.不同林龄樟子松叶片养分含量及其再吸收效率[J].林业科学.2005,41(5):21-27.
    [183]李志安,林永标,彭少麟.华南人工林凋落物养分及其转移[J].应用生态学报.2000,(3):321-326.
    [184]薛立,罗山.常绿与落叶阔叶树种叶片中N、P变化及转移[J].林业科学研究.2003,16(2):166-170.
    [185]薛立,徐燕,吴敏等.四种阔叶树种中氮和的季节动态及其转移[J].生态学报.2005,25(3):520-526.
    [186]贺伟,贾黎明,郝宝刚,等.混栽杨树-刺槐间素养分转移途径的研究[J].应用生态学报.2003,14(4):481-486.
    [187]Meinen C, Hertel D, Leuschner C. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity:is there evidence of below-ground overyielding?[J]. Oecologia.2009,161(1):99-111.
    [188]Bakker M R, Augusto L, Achat D L. Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites[J]. Plant and Soil.2006,286(1-2): 37-51.
    [189]Mancuso S, Lukac M. Fine Root Turnover[M]. Measuring Roots, Springer Berlin Heidelberg, 2012,363-373.
    [190]Lukac M, Godbold D L. Fine root biomass and turnover in southern taiga estimated by root inclusion nets[J]. Plant and Soil.2010,331(1-2):505-513.
    [191]Borken W, Kossmann G, Matzner E. Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands[J]. Plant and Soil.2007,292(1-2):79-93.
    [192]Santantonio D, Santatonio E. Seasonal changes in live and dead fine roots during two successive years in a thinned plantaion of Pinus radiata in New Zealand[J]. New Zealand Journal of Forestry Science (New Zealand).1987.
    [193]Foot morphological plassticity and nutrient acquisition of Perennial Grass species from habits of different nutrient availability[J]. Oecologia.1998,115:351-358.
    [194]Rosenvald K, Ostonen I, Uri V, et al. Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence[J]. European Journal of Forest Research.2013,132(2):219-230.
    [195]Joslin J D, Henderson G S. Organic matter and nutrients associated with fine foot turnover in a whiite oak stand.[J]. Forest Science.1987,33(2):330-346.
    [196]Van P H, Sougnez-Remy F, Weissen, et al. Root Turnover in a Beech and a Spruce Stand of the Beigian Arpotheisis [J]. Plant and soil.1985,105:87-103.
    [197]Mcclaugherty C A, Aber J D. The role of fine roots in the organic matter and nitrogen budgers of two forested ecosystems[J]. Ecology.1982,63:1481-1490.
    [198]Nadelhoffer K J, Aber J D, Melillo J M. Fine roots, net primary production, and soil nitrogen availability:a new hypothesis[J]. Ecology.1985,66(4):1377-1390.
    [199]Montagnoli A, Terzaghi M, Di Iorio A, et al. Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy[J]. Ecological Research.2012,27(6):1015-1025.
    [200]Fahey T J, Hughes J W. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH[J]. Journal of ecology.1994:533-548.
    [201]Burton A J, Pregitzer K S, Zogg G P, et al. Latitudinal variation in sugar maple fine root respiration[J]. Canadian Journal of Forest Research.1996,26(10):1761-1768.
    [202]Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs.2002,72(2):293-309.
    [203]贾淑霞,赵妍丽,丁国泉,等.落叶松和水曲柳不同根序细根形态结构、组织氮浓度与根呼吸的关系[J].植物学报.2010,45(2):174-181.
    [204]王向荣,王政权,韩有志,等.水曲柳和落叶松不同根序之间细根直径的变异研究[J].植物生态学报.2005,29(6):5-11.
    [205]Sun J, Gu J, Wang Z. Discrepancy in fine root turnover estimates between diameter-based and branch-order-based approaches:a case study in two temperate tree species[J]. Journal of Forestry Research.2012,23(4):575-581.
    [206]张小全,吴可红.森林细根生产和周转研究[J].林业科学.2001,37(3):126-138.
    [207]Grier C C, Vogt K A, Keyes M R, et al. Biomass distribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades[J]. Canadian Journal of Forest Research.1981,11(1):155-167.
    [208]Finer L, Messier C, De G L. Fine-root dynamics in mixed boreal conifer-broad-leafed forest stands at different successional stages after fire[J]. Canadian Journal of Forest Research.1997, 27(3):304-314.
    [209]李凌浩,邢雪荣.武夷山甜槠林细根生物量和生长量研究[J].应用生态学报.1998,9(4):337-340.
    [210]Kimmins J P, Cao F L 译. Forest Ecology. Beijing:China's forestry press[M].2005:85-110.
    [211]Hendrick R, Pregitzer K. The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems[J]. Canadian Journal of Forest Research.1993,23(12): 2507-2520.
    [212]周本智,傅懋毅.庙山坞自然保护区毛竹林细根生产和周转研究[J].江西农业大学学报.2008,30(2):239-245.
    [213]秦艳,胡永宁,王林和,等.毛乌素沙地臭柏、油蒿群落细根生产与生长过程中养分的动态[J].中国草地学报.2013,35(5):96-102.
    [214]朱强根.苏北不同杨树人工林经营模式下土壤呼吸及杨树细根研究[D].南京林业大学,2007.
    [215]林希昊,陈秋波,华元刚,等.不同树龄橡胶林土壤水分和细根生物量[J].应用生态学报.2011,(2):331-336.
    [216]Chatain A, Read J, Jaffre T. Does leaf-level nutrient-use efficiency explain Nothofagus-dominance of some tropical rain forests in New Caledonia?[J]. Plant Ecology.2009, 201(1):51-66.
    [217]郭忠玲,郑金萍,马元丹,等.长白山几种主要森林群落木本植物细根生物量及其动态[J].生态学报.2006,(9):2855-2862.
    [218]叶功富,张立华,侯杰,等.滨海沙地木麻黄人工林细根生物量及其动态研究[J].应用与环境生物学报.2007,13(4):481-485.
    [219]王存国,韩士杰,周玉梅,等.长白山阔叶红松林群落的细根现存量及养分内循环[J].林业科学.2012,48(3):148-153.
    [220]陈光水,何宗明,谢锦升,等.福建柏和杉木人工林细根生产力、分布及周转的比较[J].林业科学.2004,40(4):15-21.
    [221]杨玉盛,陈光水,林鹏,等.格氏栲天然林与人工林细根生物量、季节动态及净生产力[J].生态学报.2003,23(9):1719-1730.
    [222]Jackson R B, Monney, Schulze E D. A global budget for fine root biomass, surface ares, and nutrient contents[J]. Proceedings of the National Academy of Sciences.1997:7362-7366.
    [223]Steele S J, Gower S T, Vogel J G, et al. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada[J]. Tree physiology. 1997,17(8-9):577-587.
    [224]Persson H, Von Fircks Y, Majdi H E A. Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application[J]. Plant and Soil.1995, 168(1):161-165.
    [225]李培芝,范世华,王力华,等.杨树细根及草根的生产力与周转的研究[J].应用生态学报.2001,12(6):829-832.
    [226]Matamala R, Gonzalez-Meler M A, Jastrow J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential[J]. Science.2003,302(5649):1385-1387.
    [227]廖利平,高洪.人工混交林中杉木,恺木和刺楸细根养分过移的初步研究[J].应用生态学报.2000,11(2):161-164.
    [228]蒋宗垲.福建柏和杉木人工林细根N、P养分含量动态[J].福建师范大学学报(自然科学版).2006,22(4):107-111.
    [229]翟明普,蒋三乃,贾黎明.杨树刺槐混交林细根养分动态研究[J].林业科学.2004,40(4): 46-51.
    [230]梅莉,王政权,程云环,等.林木细根寿命及其影响因子研究进展[J].植物生态学报.2004,28(4):704-710.
    [231]Ratnam J, Sankaran M, Hanan N P, et al. Nutrient resorption patterns of plant functional groups in atropical savanna:variation and functional significance[J]. Oecologia.2008,157(1):141-151.
    [232]黄石竹.水曲柳和落叶松细根养分内循环的研究[D].东北林业大学,2006.
    [233]黄石竹,张彦东,王政权.树木细根养分内循环[J].生态学杂志.2006,25(11):1395-1399.
    [234]Meier C E, Grier C C, Cole D W. Below and ground N and P use by Abies amabilis stands[J]. Ecology.1985,66:1928-1942.
    [235]Nambiar E K S. Do nutrients retrans?locate from fine roots[J]. Canada journal of forest research. 1987,17:913-918.
    [236]Ferrier R C, Alexander I J. Internal redistribution of N in Sitka spruce seedlings with party droughted root systems[J]. Forest Science.1991,37(3):860-870.
    [237]Ritz K, Newman E I. Evidence of rapid cycling of phosphorus from dying roots to living plants[J].1985,45:174-180.
    [238]Nambiar E. Sustained productivity of forests is a continuing challenge to soil science[J]. Soil Science Society of America Journal.1996,60(6):1629-1642.
    [239]Vogt K A, Vogt D J, Asbjomsen H. Roots, nutrients and their relationship to spatial patterns[J]. Plant and soil.1995,168/169:113-123.
    [240]The physiology of metal toxicity in plants[J]. Annual Review of Plant Physiology.1978,29(1): 511-566.
    [241]银森录,孔德良,郭大立.鼎湖山9种常见树木细根组织N浓度的季节变化[J].植物生态学报.2011(11):1106-1116.
    [242]高甲荣,张东升,肖斌,等.黄土区油松人工林生态系统营养元素分配格局和积累的研究[J].北京林业大学学报.2002,24(1):26-30.
    [243]秦武明,何斌,余浩光,等.马占相思人工林不同年龄阶段的生物生产力[J].东北林业大学学报.2007,35(1):22-24.
    [244]唐罗忠,刘志龙,虞木奎,等.两种立地条件下麻栎人工林地上部分养分的积累和分配[J].植物生态学报,2010,34(6):661-670.
    [245]刘世海,余新晓.京北山区刺槐林主要养分元素积累与分配的研究[J].北京林业大学学报.2003,25(6):20-25.
    [246]Olsen S, Sommers L. Phosphorus. In:Page AL., Miller RH, Keeney DR. (Eds.), Methods of Soil Analysis, Part 2. [M]. Agronomy Society of America and Soil Science Society of America, Madison, WI,1982:403-430.
    [247]Institute of Soil Academia Sinica. Analysis of Soil Physics and Chemistry[M]. Sciences and Technology of Shanghai,1978.
    [248]波钦诺克X.H.,荆家海,丁钟荣译.植物生物化学分析方法[M].北京:科学出版社,1981.
    [249]Hagen-Thorn A, Varnagiryte I, Nihlgard B. Autum nutrient resorption and losses in four deciduous forest tree species[J]. Forest Ecology and Management.2006:33-39.
    [250]Carrera A L, Bertille M B, Sain C L. Relationship between plant nitrogen conservation stragegies and the dynamics of soil nitrogen in the arid Patagonian Monte, Argentina[J]. Plant and Soil. 2003,255:595-604.
    [251]吴勇.台湾桤木林草复合细根特性研究[D].四川农业大学,博士学位论文,2011.
    [252]邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述[J].应用生态学报.2000,11(5):785-790.
    [253]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学 报.2006,(2):373-382.
    [254]赵琼,曾德慧.林木生长氮限制的诊断方法研究进展[J].生记学杂志.2009,28(1):122-128.
    [255]Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist.2005,168:377-385.
    [256]方晰,田大伦,项文化,等.第2代杉木人工林微量元素的积累、分配及其生物循环特征[J].生态学报.2003,23(7):1313-1320.
    [257]何斌.杉木二代林微量元素积累的动态特征[J].东北林业大学学报.2009,37(4):5-7.
    [258]温肇穆,梁宏温,黎跃.杉木成熟林乔木层营养元素生物循环的研究[J].植物生态学与地植物学学报.1991,(1):36-.45.
    [259]何斌,吴庆标,黄秀英,等.杉木二代林生态系统素积累的动态特征[J].东北林业大学学报.2009,(7):36-38.
    [260]聂道平.森林生态系统营养元素的生物循环[J].林业科学研究.1991,(4):435.-440.
    [261]刘增文,李雅素.刺槐人工林养分利用效率[J].生态学报.2003,23(3):444-449.
    [262]Chapin F S. The mineral nutrition of wild plants[J]. Annual review of ecology and systematics. 1980:233-260.
    [263]张硕新,刘光哲.华山松人工林的养分循环[J].西北林学院学报.1989(1):22-27.
    [264]何斌,秦武明,余浩光,等.不同年龄阶段马占相思(Acacia mangium)人工林营养元素的生物循环[J].生态学报.2007,27(12):5158-5167.
    [265]王宏星.不同发育阶段日本落叶松人工林养分特征的研究[D].中国林业科学研究院,2012.
    [266]杨玉盛,邱仁辉,何宗明,等.不同栽杉代数29年生杉木林净生产力及营养元素生物循环的研究[J].林业科学.1998,(6):5-13.
    [267]Niklas K, Cobb E D. Evidence for "diminishing returns" from the scaling of stem diamter and specific leaf area[J]. American Journal of Botany.2008,95:549-557.
    [268]Shaiek O, Loustau D, Trichet P, et al. Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments[J]. Annals of Forest Science.2011,68(3):443-452.
    [269]Subedi M R, Sharma R P. Allometric biomass models for bark of Cinnamomum tamala in mid-hill of Nepal[J]. Biomass and Bioenergy.2012(47):44-49.
    [270]李妍,李海涛,金冬梅,等.WBE模型及其在生态学中的应用:研究概述[J].生态学报.2007(07):3018-3031.
    [271]温远光,韦盛章.杉木人工林凋落物动态及其与气候因素的相关分析[J].生态学报.1990,10(4):367-372.
    [272]Portillo-Estrada M, Korhonen J F J, Pihlatie M, et al. Inter-and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests[J]. Annals Of Forest Science.2013,70(4):367-379.
    [273]林瑞余,陈银秀,黄荣臻,等.杉木观光木混交林凋落物养分特征及动态变化[J].东北林业大学学报.2002,30(1):17-23.
    [274]Gonzalez-Rodriguez H, Ramirez-Lozano R G, Cantu-Silva I, et al. Litterfall Production and Nureint Returns Through Leaves in a Microphyllous Desert Scrubland, Northeastern Mexico[J]. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente.2013,19(2):249-262.
    [275]Polyakova O, Billor N. Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands[J]. Forest Ecology and Management.2007,253(1):11-18.
    [276]Chave J, Navarrete D, Almeida S, et al. Regional and seasonal patterns of litterfall in tropical South America[J].2010,7(1):43-44.
    [277]张新平,王襄平,朱彪,等.我国东北主要森林类型的凋落物产量及其影响因素[J].植物 生态学报.2008,32(5):1031-1040.
    [278]Liu C J, Westman C J, Berg B, et al. Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia[J]. Global Ecology and Biogeography.2004,13(2): 105-114.
    [279]Lv G H, Zhou G S, Wang X Y. Factors controlling litterfall production of forest in China.[J]. Advanced Materials Research.2013,726:4248-4251.
    [280]刘胜祥,黎维平.植物学[M].北京:科学出版社,2007.
    [281]Wang H, Wang S, Lin K, et al. Litterfall and Element Fluxes in a Natural Hardwood Forest and a Chinese-fir Plantation Experiencing Frequent Typhoon Disturbance in Central Taiwan[J]. Biotropica.2013,45(5):541-548.
    [282]俞新妥.中国杉木研究[J].福建林学院学报.1988(3):203-220.
    [283]王樟华,王希华,沈国春.台风干扰对天童常绿阔叶林凋落物量的影响[J].华东师范大学学报(自然科学版).2014,(1):79-89.
    [284]Lin H, Hong T, Wu C, et al. Monthly variation in litterfall and the amount of nutrients in an Aleurites montanaplantation[J]. Forestry Studies in China.2012,14(1):30-35.
    [285]孙志虎.长白落叶松人工用材林长期生产力维持的研究[D].东北林业大学,2005.
    [286]宁晓波,项文化,王光军,等.湖南会同连作杉木林凋落物量20年动态特征[J].生态学报.2009,(9):5122-5129.
    [287]黄承才,张骏,江波,等.浙江省杉木生态公益林凋落物及其与植物多样性的关系[J].林业科学.2006,42(6):7-12.
    [288]刘爱琴,林开敏,范少辉,等.不同栽植代数杉木林凋落物特性的比较[J].应用与环境生物学报.2004,10(5):585-590.
    [289]高玉春,高人,杨智杰,等.杉木中龄林和老龄林凋落物数量、组成及动态比较[J].亚热带资源与环境学报.2010,5(2):39-45.
    [290]房焕英,刘文飞,吴建平,等.杉木人工林凋落量及气候因子敏感性分析[J].福建林学院学报.2013,33(3):273278.
    [291]Osman K T. Nutrient Dynamics in Forest Soil[M]. Forest Soils, Springer International Publishing, 2013,97-121.
    [292]杨玉盛,林鹏,郭剑芬,等.格氏栲天然林与人工林凋落物数量、养分归还及凋落叶分解(英文)[J].生态学报.2003,23(7):1278-1289.
    [293]翁轰,李志安,屠梦照,等.鼎湖山森林凋落物量及营养元素含量研究[J].植物生态学与地植物学学报.1993(4):299-304.
    [294]林益明,何建源,杨志伟,等.武夷山甜槠群落凋落物的产量及其动态[J].厦门大学学报(自然科学版).1999,2(2):128-134.
    [295]杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学.2004,40(3):19-25.
    [296]屠梦照,姚文华,翁轰,等.鼎湖山南亚热带常绿阔叶林凋落物的特征[J].土壤学报.1993,30(1):34--42.
    [297]田大伦,赵坤.田大伦,赵坤.杉木人工林生态系统凋落物的研究:I.凋落物的数量,组成及动态变化[J].中南林学院学报.1989,(A9):3844.
    [298]傅金和,潘维俦.杉木人工林中微量营养元素的含量、积累和生物循环[J].林业科学研究.1990,3(3):280-285.
    [299]费世民.火炬松人工林养分体内转移与内循环研究[J].林业科学.2001,37(3):14-19.
    [300]徐异.不同杉木林经营模式的凋落物特征及其生态功能[D].福建农林大学,2012.
    [301]李跃林,李志辉,谢耀坚.巨尾桉人工林养分循环研究[J].生态学报.2001,21(10):1734-1740.
    [302]Zhou G Y, Guan L L, Wei X H, et al. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China[J]. Plant Ecology.2007,188(1):77-89.
    [303]Malhi Y, Doughty C, Galbraith D. The allocation of ecosystem net primary productivity in tropical forests[J]. Philosophical Transactions of the Royal Society B:Biological Sciences.2011, 366(1582):3225-3245.
    [304]Da Silva P, Poggiani F, Libardi P L, et al. Fertilizer management of eucalypt plantations on sandy soil in Brazil:Initial growth and nutrient cycling[J]. Forest Ecology and Management. 2013,301(SI):67-78.
    [305]衣晓丹.不同发育阶段杉木人工林土壤理化性质及凋落物养分储存量研究[D].北京林业大学,2013.
    [306]葛晓改,肖文发,曾立雄,等.不同林龄马尾松凋落物基质质量与土壤养分的关系[J].生态学报.2012,32(3):852-862.
    [307]Scott N A, Binkley D. Foliage litter quality and annual net N mineralization:comparison across North American forest sites[J]. Oecologia.1997,111(2):151-159.
    [308]宋新章,江洪,余树全,等.中亚热带森林群落不同演替阶段优势种凋落物分解试验[J].应用生态学报.2009,20(3):537-542
    [309]Nikolaidou A, Pavlatou-Ve A, Kostoppulou S E A. Litter quality and decomposition of Vitis vinifera L. residues under organic and conventional farming systems[J]. European Journal of Soil Biology.2010,46(3/4):208-217.
    [310]Moore T, Trofymow J, Prescott C, et al. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests[J]. Ecosystems.2006,9(1):46-62.
    [311]Moore T, Trofymow J, Prescott C E E A. Nature and nurture in the dynamics of C. N and P during litter decomposition in Canadian forests[J]. Plant Soil.2011,339(1/2):163-175.
    [312]王文卿,林鹏.树木叶片衰老过程中养分元素内吸收研究[J].武汉植物学研究.1999,17(S1):117-122.
    [313]薛立,罗山.常绿和落叶阔叶树叶中N和P的变化及转移[J].林业科学研究.2003,16(2):166-170.
    [314]郭峰,周运超.不同密度马尾松林针叶养分含量及其转移特征[J].南京林业大学学报(自然科学版).2010,34(4):93-96.
    [315]陈灵芝,黄建国,严昌荣.中国森林生态系统养分循环[M].北京:气象出版社,1997:16-233.
    [316]Chapin F, Kedrowski R. Seasonal changes in nitrogen and phosphorous fractions and autumn retranslocation in evergreen and deciduous Taiga tree[J]. Ecology.1983,64:376-391.
    [317]Drenovsky R E, Batten K M. Invasion by Aegilops triuncialis (Barb Goatgrass) Slows Carbon and Nutrient Cycling in a Serpentine Grassland[J]. Biological Invasions.2007,9(2):107-116.
    [318]Drenovsky R E, Richards J H. Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs[J]. Plant Ecology.2006,183(2):305-314.
    [319]Pensa M, Sellin A. Soil type affects nitrogen conservation in foliage of small Pinus sylvestris L. trees[J]. Plant and Soil.2003,253(2):321-329.
    [320]Cartaxana P, Catarino F. Nitrogen resorption from senescing leaves of three salt marsh plant species[J]. Plant Ecology.2002,159(1):95-102.
    [321]赵勇,吴明作,樊巍,等.太行山针、阔叶森林凋落物分解及养分归还比较[J].自然资源学报.2009,24(9):1616-1624.
    [322]杨丽韫,李文华.长白山原始阔叶红松林细根分布及其周转的研究[J].北京林业大学学报.2005,27(2):1-5.
    [323]杨玉盛,陈光水,何宗明,等.杉木观光木混交林和杉木纯林群落细根生产力、分布及养 分归还(英文)[J].应用与环境生物学报.2002,(3):223-233.
    [324]李树战,田大伦,王光军,等.湖南4种主要人工林群落的细根生物量及时空动态[J].中南林业科技大学学报.201 1,31(5):63-68.
    [325]程云环,韩有志,王庆成,等.落叶松人工林细根动态与土壤资源有效性关系研究[J].植物生态学报.2005,29(3):403-410.
    [326]周玮,周运超.马尾松细根与土壤养分含量研究[J].浙江林业科技.2009,29(6):6-10.
    [327]郭灵辉,王道杰,张云红,等.蒋家沟新银合欢人工林土壤养分分布及其与细根的关系[J].中国水土保持.2010,(12):46-49.
    [328]林希昊,王真辉,陈秋波,等.不同树龄橡胶林土壤养分变化特征及对细根的影响[J].热带作物学报.2009,30(8):1094-1098.
    [329]Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs.2002,72(2):293-309.
    [330]Guo D L, Mitehell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia.2004,140(3):450-457.
    [331]刘佳,项文化,徐晓,等.湖南会同5个亚热带树种的细根构型及功能特征分析[J].植物生态学报.2010,34(8):938-945.
    [332]常文静,郭大立.中国温带、亚热带和热带森林45个常见树种细根直径变异[J].植物生态学报.,32(6):1248-1257.
    [333]郭忠玲,郑金萍,马元丹,等.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报.2006,26(4):1037-1046.
    [334]杨玉盛,陈光水,何宗明,等.杉木观光木混交林群落细根净生产力及周转[J].林业科学.2001,37(S1):35.-41.
    [335]温达志,魏平,孔国辉,等.鼎湖山南亚热带森林细根生产力与周转[J].植物生态学报.1999,23(4):74-82.
    [336]廖利平,邓仕坚,于小军,等.不同连栽代数杉木人工林细根生长、分布与营养物质分泌特征[J].生态学报.2001,21(4):569-573.
    [337]单建平,陶大立,王淼,等.长白山阔叶红松林细根周转的研究[J].应用生态学报.1993,4(3):241-245.
    [338]施济普,唐建维.西双版纳不同热带森林群落土壤表层的细根年动态[J].广西植物.2002,22(6):509-512.
    [339]杨玉盛,陈光水,何宗明,等.杉木观光木混交林群落细根净生产力及周转[J].林业科学.2001,37(S1):35-41.
    [340]Lopez B, Sabate S, Gracia C A. Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest[J]. Plant and Soil.2001,230(1):125-134.
    [341]Makkonen K, Helmisaari H S. Makkonen K, Helmisaari H S. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand[J]. Forest Ecology and Management.1998,102(2):283-290.
    [342]杨玉盛.杉木林可持续经营研究[M].北京:中国林业出版社,1998.
    [343]吴楚,王政权,范志强.树木根系衰老研究的意义与现状[J].应用生态学报.2004,15(7):1276-1280.
    [344]杨玉盛.杉木观光木混交林凋落物和细根对地力作用研究[D].厦门大学,2002.
    [345]Salifu K F, Timmer V R. Nutrient retranslocation response of Picea mariana seedlings to nitrogen supply[J]. Soil Science Society of America.,65:905-913.
    [346]吴勇,李贤伟,荣丽,等.柳杉细根衰老过程中的养分内循环[J].林业科学.2010,46(2):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700