用户名: 密码: 验证码:
突触中突变亨廷顿蛋白通过抑制突触素Ⅰ磷酸化导致突触功能障碍
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亨廷顿病(Huntington’s disease,HD)是一种家族遗传性神经退行性疾病,临床上,以运动障碍、精神异常和痴呆为特点;病理学上,以纹状体和大脑皮质神经元选择性死亡为特征。HD由亨廷顿基因第一外显子中的CAG三核苷酸序列过度重复(>35)编码突变亨廷顿蛋白(mutant huntingtin,mHtt)所致。正常Htt主要表达、定位于神经元细胞质内,与细胞内的膜结构和许多细胞器如线粒体、高尔基体、内质网、内吞小体、自噬囊泡的功能密切相关。mHtt在神经元胞质和核内形成不溶性聚集物,且聚集物的数量随着年龄的增长逐渐增多。mHtt可通过影响基因表达、线粒体功能、细胞内运输、新陈代谢产生毒性作用。突触作为神经元特有的结构容易受到毒性蛋白的损害,突触功能障碍常见于多种神经退行性疾病中。尽管许多研究已经对HD中突触功能障碍有一定的探索,但mHtt是否以及如何直接导致HD的神经功能障碍的机制目前尚不明确,其对于神经细胞突触功能的影响也有待进一步研究。正因为神经元具有特有的突触结构,所以探讨突触mHtt是否可以导致年龄相关性的HD神经症状和早期死亡,以及突触mHtt是否直接引起突触神经递质释放功能的障碍,对区分mHtt对各个亚细胞区的功能影响至关重要。
     本实验通过构建表达突触小体相关蛋白(synaptosomal-associated protein25,SNAP25)与Htt融合蛋白(SNAP25-Htt20Q/150Q)的质粒,制备一种将mHtt选择性地靶向定位在突触前细胞质中的新型HD转基因小鼠模型:SNAP25-Htt150Q小鼠和相应的SNAP25-Htt20Q对照小鼠,并应用这种新的HD转基因小鼠模型对突触mHtt的毒性及其相关机制进行研究,以期揭示突触mHtt在HD的致病机理中的作用。
     1.突触Htt在SNAP25-Htt转基因小鼠神经元突触中选择性表达
     采用小鼠胚胎原核注射方法建立转基因小鼠模型,挑选出可以稳定繁殖、转基因表达位置及表达量明确的SNAP25-Htt20Q/150Q品系。比较SNAP25-Htt20Q/150Q转基因小鼠品系转基因mHtt表达水平结果表明,SNAP25-Htt150Q表达水平低于SNAP25-Htt20Q中的表达水平。同时,与利用小鼠内源性亨廷顿基因启动子表达HttCAG150的基因敲入(knock in,KI)小鼠[1]相比,SNAP25-Htt150Q mHtt表达水平低于Htt CAG150全长mHtt内源性表达水平。
     亚细胞器差速离心方法可以富集突触蛋白,用此方法提取SNAP25-Htt20Q/150Q转基因小鼠大脑皮质突触蛋白结果显示,两种融合蛋白都富集在突触前组分,并且该组分中也发现了Htt的降解片段。用抗Htt抗体(mEM48)对SNAP25-Htt150Q转基因小鼠脑片进行免疫组织化学染色表明,SNAP25-Htt150Q在大脑皮质和纹状体中形成细胞核外神经毡聚集物。电子显微镜(EM)结果也进一步证实mHtt聚集物存在于轴突和突触前细胞质中,而不存在于突触后细胞质和突触前膜。
     Western Blot和免疫荧光双标结果显示,SNAP25-Htt150Q在神经突起中形成聚集物,而大多数Htt的聚集物不能被SNAP25抗体所标记,表明SNAP25-Htt150Q的蛋白质水解可能会导致mHtt片段缺失SNAP25表位并更容易聚集。尽管SNAP25靶向性地将mHtt定位在突触前,但可能有部分SNAP25-Htt150Q由于蛋白质水解作用导致融合蛋白发生断裂。
     通过亚细胞器分离、免疫荧光染色和电子显微镜的手段,充分证明了mHtt转基因产物选择性地表达在转基因小鼠的突触前细胞质,并且主要由切割后的不含有SNAP25的mHtt片段形成聚集物。因此,本课题成功构建了将mHtt特异性表达在突触前细胞质中的一种新型HD小鼠模型。
     2.SNAP25-Htt150Q转基因小鼠HD症状随年龄进行性加重
     为了判断SNAP25-Htt150Q小鼠是否出现类似于大多数HD转基因小鼠模型的症状,对SNAP25-Htt转基因小鼠进行了行为学检测,发现老龄SNAP25-Htt150Q转基因小鼠出现典型的HD表型,如:体重减轻、抱屈反射和弓背外观。该表型呈年龄相关性地渐进性发展。SNAP25-Htt150Q转基因小鼠早于野生型和SNAP25-Htt20Q转基因小鼠死亡。旋转杆实验、声学刺激、明暗穿箱实验及平衡木行走实验均表明突触mHtt能导致小鼠出现进行性的运动能力下降。
     3.突触mHtt引起神经病理学损害并抑制神经递质释放
     对小鼠脑片进行星形胶质细胞标记蛋白胶质纤维酸性蛋白(GFAP)抗体染色,发现SNAP25-Htt150Q转基因小鼠皮质、纹状体和小脑各脑区GFAP染色明显增强,提示突触mHtt引起神经元损伤后反应性的神经胶质细胞增生。对GFAP的Western Blot检测也证实SNAP25-Htt150Q小鼠纹状体中星形胶质细胞明显增生。
     应用电生理方法检测突触mHtt对突触电活动功能的影响发现,SNAP25-Htt150Q小鼠大脑切片的感觉运动皮质中成对脉冲刺激的振幅(PPF)及长时程增强(LTP)的信号强度明显降低;分离出SNAP25-Htt转基因小鼠的皮质纹状体脑片检测[3H]谷氨酸释放,结果表明SNAP25-Htt150Q脑片谷氨酸释放减少,而[3H]GABA释放并未受到影响,由此表明谷氨酸囊泡释放更容易受到突触mHtt损伤;采用PC12-Htt-exon1-20Q/150稳转细胞系评估突变mHtt是否影响囊泡释放发现,PC12稳转细胞系中[3H]多巴胺释放的测定结果显示mHtt能抑制PC12细胞神经递质多巴胺的释放。
     4.突触mHtt与突触素I的C端相互作用增强
     突触mHtt是选择性地定位在突触前细胞质,可与突触囊泡异常结合导致突触信号传递障碍。从野生型(wild type,WT)小鼠脑皮质中分离出突触小体蛋白,分别与PC12-Htt-exon1-20Q/150Q稳转细胞系来源的蛋白样品孵育后进行检测,发现相比于PC12-Htt-exon1-20Q,突触小体更容易与PC12-Htt-exon1-150Q结合。为了探索mHtt与突触蛋白的相互作用,用mEM48抗体对SNAP25-Htt转基因小鼠脑皮质突触蛋白进行免疫沉淀,并对沉淀得到的蛋白进行质谱分析,发现了578种蛋白质和1732种多肽,并证实SNAP25-Htt150Q可以沉淀更多的突触素I蛋白。应用SNAP25-Htt转基因小鼠、Htt CAG150KI小鼠脑组织及PC12-Htt-exon1-20Q/150Q稳转细胞系模型,经免疫共沉淀实验显示mHtt相比于正常Htt与突触素I相互作用更强。
     突触素I有1a和1b两个亚型,在其各个结构域上含有大量的磷酸化位点,而其C端具有脯氨酸富集结构域这一特殊片段。用删除C端脯氨酸富集结构域的片段化突触素I (tsynapsin)与Htt-exon1-20Q/150Q共转染HEK293细胞后,免疫共沉淀分析显示,尽管突触素Ia和突触素Ib都与mHtt相互作用,但去除脯氨酸富集结构域后则消除了突触素I与mHtt的结合关系。
     5.mHtt通过突触素I脯氨酸富集区的相互作用抑制突触素I磷酸化
     突触素I参与囊泡锚定、融合、并从突触前膜释放神经递质中的功能,这一过程与突触素I的磷酸化水平直接相关。在HEK293细胞中表达不同片段长度的突触素I,检测mHtt是否影响突触素I的磷酸化水平。比较全长突触素Ib和截断C端的突触素I(tsynapsin) N端9号位点丝氨酸的磷酸化水平显示,Htt-150Q抑制突触素Ib中9号位点丝氨酸磷酸化水平,而与Htt-20/150Q共转染的tsynapsin中9号位点丝氨酸磷酸化水平无明显差异。因此,mHtt对突触素I磷酸化的抑制依赖于mHtt与突触素I的C端脯氨酸富集区结构域的相互作用。
     对PC12-Htt稳转细胞系和SNAP25-Htt转基因小鼠脑蛋白进行Western Blot分析,检测突触素I不同位点的磷酸化抗体水平,结果显示,PC12-Htt-exon1-150Q细胞及SNAP25-Htt150Q转基因小鼠脑皮质中内源性突触素I的S9、S549和S603位点的磷酸化水平均明显降低。
     以上研究表明,mHtt在突触前可通过与突触素I蛋白C端区域的异常相互作用使多个位点的磷酸化降低,从而抑制突触神经递质释放,导致神经病理学损害与相应神经症状,为探索治疗HD的方法提供了新的靶点。
Huntington’s disease (HD) is an inherited neurodegenerative disease.Clinically, Huntington’s disease is characterized by irrepressible motor dysfunction,psychiatric disturbances and cognitive deterioration to dementia. The pathologicalcharacteristic feature of HD is selectively neurodegeneration preferentially in striataland cortex neurons. HD is caused by CAG repeats (>35CAGs) in exon1ofhuntingtin gene which generates mutant huntingtin (mHtt) with a polyglutamine(polyQ) expansion. Normal huntingtin mainly expresses in cytoplasm of neuron,and is associated with membrane structure and organelle, such as mitochondrion,Golgi, endoplasmic reticulum, endosome and autophagic vacuoles. Mutanthuntingtin leads to formation of aggregates in cytoplasma and nucleus and thedisease progresses over time. We know that mutant htt in different subcellularregions affects multiple cellular functions. For example, mutant htt in the nucleuscan affect gene expression, mitochondrial function, intracellular trafficking, andmetabolism. Considering neuronal cells have unique, long neuronal processes andsynapses that may be vulnerable to toxic proteins, many studies have focused onsynaptic function, revealing that synaptic dysfunction is the common pathologicalevent in a variety of neurodegenerative diseases. Although synaptic dysfunction inHD mouse models has been well-documented, but whether and how synaptic mutant huntingtin directly mediates HD neuropathology remains to be determined.Since synapses are unique to neuronal cells, understanding whether synaptic mHttcould cause age-dependent progression of neurological symptoms and early death,or synaptic mHtt caused neuropathology and inhibited neurotransmitter release iscritical for unraveling the selective neuropathology seen in HD.
     Therefore, we fused exon1htt containing normal (20Q) or150Q (150Q) tosynaptosomal-associated protein25(SNAP25) to generate SNAP25-htt transgenicmice: SNAP25-Htt150Q and SNAP25-Htt20Q as control. And we studied thesetransgenic mice which selectively express huntingtin in the presynaptic terminals, tounderstanding whether and how synaptic mutant huntingtin directly mediates HDneuropathology.
     Transgenic mutant htt selectively accumulated in the presynapticterminals in transgenic mice. We used SNAP25-Htt20Q/150Q for pronuclearinjection of mouse embryos. Then we selected the SNAP25-Htt20Q/150Q lines thatcould be bred to F1generation and showed the clear expression of transgene.Genomic DNA and Western Blot analysis revealed that transgenic mutant htt wasexpressed at a lower level than control SNAP25-Htt20Q and was notoverexpressed compared to endogenous mutant htt.
     To better assess the relative levels of transgenic htt in presynaptic terminals,we performed subcellular fractionation, which could enrich presynaptic proteins,such as SNAP25. The results showed that both SNAP25-Htt20Q andSNAP25-Htt150Q were enriched in the presynaptic fraction. Importantly, degradedhtt fragments were also present in the presynaptic fraction.
     We performed immunofluorescent staining, which could better reveal thesubcellular localization of proteins. SNAP25-Htt150Q was clearly present as punctaoutside the nuclei of neuronal cells in the cortex and striatum. To verify that mutanthtt was indeed localized in the presynaptic terminals, we performed electronmicroscopy (EM). EM examination revealed the presence of htt aggregates in theaxons and presynaptic, but not postsynaptic terminals.
     Since Western Blot had demonstrated that these htt fragments were notlabeled by anti-SNAP25, we further verified that cleaved htt fragments wereresponsible for forming synaptic aggregates, the majority of synaptic aggregateswere not labeled by anti-SNAP25. In the mouse brain and in the synapses oftransfected neurons, the negative staining of the majority of htt aggregatessuggested that the most htt aggregates in the mouse brain were formed by cleavedhtt fragments lacking SNAP25. Also, these aggregates were not associated with thepresynaptic plasma membrane, perhaps because they were formed by smallhuntingtin fragments without SNAP25.
     Thus, using fractionation assays, immunofluorescent staining and EM, wefound convincing evidence that transgenic htt was selectively accumulated in thepresynaptic terminals in transgenic mice and this accumulation was age-dependentand largely mediated by cleaved htt fragments without SNAP25. Therefore, wegenerated novel SNAP25-Htt20Q/150Q transgenic mouse model that selectivelyexpress mutant huntingtin in synapses.
     Age-dependent progression of neurological symptoms inSNAP25-Htt150Q transgenic mice. In order to value whether transgenicSNAP25-Htt150Q mice showed progressive neurological phenotypes similar toother HD transgenic mice, we observed the SNAP25-Htt150Q transgenic mice tofind some phenotype such as reduced body weight, clasping, and hunchbackappearance. These symptoms occurred in old mice in an age-dependent mannerand importantly, did not occur in SNAP25-Htt20Q mice that expressed a higherlevel of SNAP25-Htt20Q than SNAP25-Htt150Q, indicating that polyQ expansion,rather than tagging htt with SNAP25, was responsible for the neurologicalsymptoms. Strikingly, transgenic SNAP25-Htt150Q mice die earlier than WT andSNAP25-Htt20Q transgenic mice.
     Using rotarod performance assessment, acoustic startle responses, thelight-dark box test and the beam-walking assay to test the transgenic micephenotype, our findings showed that SNAP25-Htt150Q mice recapitulated the neurological symptoms as other established HD transgenic mice.
     Synaptic mutant huntingtin caused neuropathology and inhibitedneurotransmitter release. It remained unclear whether synaptic mutant htt couldcause early neuropathology, such as reactive gliosis which was an early sign ofneurodegeneration due to glial proliferation in response to neuronal injury. Wetherefore stained the brains of our HD mouse models using an antibody againstglial fibrillary acidic protein (GFAP), an astrocytic marker protein. We found thatthere was an obvious increase in GFAP staining in SNAP25-Htt150Q transgenicmouse brain regions, including the cortex, striatum, corpus callosum, andcerebellum. Western Blot and quantitation of the ratio of GFAP to GAPDH alsoverified the increased astrocytic gliosis in the SNAP25-Htt150Q mouse striatumversus WT and SNAP25-Htt20Q transgenic mouse brains. These results suggestedthat mutant htt in presynaptic terminals could mediate neuronal injury andneuropathological changes.
     Electrophysiological studies of corticostriatal slices from mice had suppliedan approach to test glutamate release. Given the presynaptic localization oftransgenic mutant htt in SNAP25-Htt150Q mice, it was important to examinewhether mutant htt affected synaptic neurotransmitter release. Evaluation thestrength of synaptic transmission by measuring the field excitatory post-synapticpotentials (fEPSPs) in the sensorimotor cortex of the mouse brain slices, theamplitude of paired-pulse facilitation (PPF), and examination of the long-termpotentiation (LTP) of fEPSPs indicated that the expanded glutamine repeat inSNAP25-Htt150Q had specific toxicity, and the pre-synaptic function, especially thecapacity for glutamate release, which was impaired in SNAP25-Htt150Q mice.
     To verify the reduction in glutamate release occurred in the striatum, weisolated the mouse brain striatal slices and performed glutamate release assaysusing[3H]glutamate. We found that glutamate release was selectively reduced in theSNAP25-Htt150Q slices, and[3H]GABA release did not appear to be significantlyimpacted, suggesting that vesicular release of glutamate was more vulnerable to synaptic mutant htt.
     PC12cells provided a cellular model to measure vesicular dopamine releasethat was dependent on synapsin-1phosphorylation. We measured[3H]dopaminerelease from these PC12cells and found that mutant htt indeed inhibited dopaminerelease.
     Mutant htt bound to C-terminal synapsin-1. Because it was selectivelylocalized in the presynaptic terminals, transgenic mutant htt may abnormally boundsynaptic vesicles to impair synaptic transmission. To test this hypothesis, we usedsynaptosomes isolated from WT mouse cortex, and then incubated them with thelysates of transfected PC12cells, which stably expressed either normal (20Q) orpolyQ expanded (150Q) exon1htt. We found that more mutant htt (150Q) thannormal htt (20Q) bound synaptosomes. To explore how mutant htt bound moresynaptosomes, we wanted to use htt immunoprecipitates and mass spectrometry toidentify synaptic proteins that bound mutant htt. We isolated synaptosomes fromSNAP25-Htt150Q mouse brains, and then immunoprecipitated synaptic proteinswith an antibody to htt (mEM48). The precipitated proteins were subjected to massspectrometry, which identified578proteins and1732peptides. This experimentrevealed that synapsin-1, a presynaptic vesicle protein that plays an important rolein neurotransmitter release from vesicles was a good candidate to associate withmutant htt, as it was increased in SNAP25-Htt150Q immunoprecipitates. To verifythat mutant htt associates with synapsin-1in vivo, we performed httimmunoprecipitation using brain tissues from our newly generated HD mouse, HDCAG150KI mouse and PC12stable cell lines. All of these htt immunoprecipitationsupported the idea that mutant htt in synapse bound more tightly to synapsin-1.
     Synapsin-1consists of two isoforms,1a and1b, which contains a number ofphosphorylation sites and a proline-rich domain at their C-terminal region. Becausethe proline-rich domain can serve as a binding region for vesicle trafficking, wegenerated a truncated synapsin-1(tsynapsin) by deleting the C-terminal proline-richregion and expressed it with exon1-20Q or exon1-150Q htt in transfected HEK293 cells. Immunoprecipitation of htt revealed that, while both synapsin-1a and-1bcould associate with htt, depletion of the proline domain eliminated the associationof synapsin-1with htt.
     Synaptic mutant htt inhibited synapsin-1phosphorylation.Phosphorylation of synapsin-1critically regulates the function of synapsin-1, and S9phosphorylation in the N-terminal region of synapsin-1is important for synapticvesicle neurotransmitter release. By expressing truncated synapsin-1lacking thisC-terminal region in HEK293cells, we then tested if mutant htt bound theC-terminal region of synapsin-1to affect synapsin-1phosphorylation. Comparingthe phosphorylation of N-terminal synapsin-1at serine9(S9) of full-lengthsynapsin-1b and truncated synapsin-1(tsynapsin), we found that while S9phosphorylation in full-length synapsin-1was inhibited by htt-150Q, the samephosphorylation in tsynapsin was not affected by htt-150Q as compared to htt-20Q.Thus, the inhibition of synapsin-1phosphorylation by mutant htt depended on theinteraction of mutant htt with C-terminal region of synapsin-1.
     To investigate whether mutant htt could affect the phosphorylation ofendogenous synapsin-1, we performed Western Blot analysis of PC12cells and HDmouse brains with antibodies to different phosphorylated synapsin-1, as theabnormal interaction of mutant htt with synapsin-1could also affect otherphosphorylation sites of synapsin-1. We compared endogenous synapsin-1phosphorylation in PC12cells expressing exon-1150Q htt via Western Blot andspecific antibodies to different phosphorylation sites in synapsin-1and found areduction in S9, S549, and S603phosphorylation in synapsin-1. It was important tovalidate this finding in the HD mouse brain. Examination of SNAP25-Htt150Qtransgenic mouse brain tissues revealed that these phosphorylations were alsoreduced in the HD mouse brains.
     Many genetic mouse models of Huntington’s disease (HD) had establishedthat mutant huntingtin accumulated in various sub cellular regions to affect a varietyof cellular functions, but whether and how synaptic mutant huntingtin directly mediates HD neuropathology remaind to be determined. We generated transgenicmice that selectively express mutant huntingtin in the presynaptic terminals.Despite its low level, synaptic mutant huntingtin caused age-dependentneurological symptoms and earlier death in mice, as well as defects in synapticneurotransmitter release. Mass spectrometry analysis of synaptic fraction andimmunoprecipitation of synapsin-1from HD CAG150KI mouse brain revealedmutant huntingtin bound to synapsin-1, a protein whose phosphorylation wascritical for neurotransmitter release. We found that polyQ expansion enhanced theinteraction of exon-1huntingtin with C-terminal region of synapsin-1to reducesynapsin-1phosphorylation. Our findings pointed to a critical role for synaptichuntingtin in the neurological symptoms of HD, providing a new therapeutic target.
引文
1. Harper PS. Huntington disease and the abuse of genetics. Am J Hum Genet1992;50(3):460-464.
    2. Ross CA&Tabrizi SJ. Huntington's disease: from molecular pathogenesis toclinical treatment. Lancet Neurol2011;10:83-98.
    3. Conneally PM, Haines JL, Tanzi RE, Wexler NS, Penchaszadeh GK, Harper PS,Folstein SE, Cassiman JJ, Myers RH&Young AB. Huntington disease: no evidencefor locus heterogeneity. Genomics1989;5(2):304-308.
    4. Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, Sapp E, Wang Y, Qin ZH,Chen JD, Nevins, JR, Aronin N&DiFiglia, M. Huntingtin is present in the nucleus,interacts with the transcriptional corepressor C-terminal binding protein, andrepresses transcription. J Biol Chem2002;277(9):7466-7476.
    5. Strehlow AN, Li JZ&Myers RM. Wild-type huntingtin participates in proteintrafficking between the Golgi and the extracellular space. Hum Mol Genet2007;16(4):391-409.
    6. Caviston JP, Ross JL, Antony SM, Tokito M&Holzbaur EL. Huntingtin facilitatesdynein/dynactin-mediated vesicle transport. Proc Natl Acad Sci USA2007;104(24):10045-10050.
    7. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP&Aronin N.Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophicneurites in brain. Science1997;277(5334):1990-1993.
    8. Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ,Hersch SM&Li XJ. Nuclear and neuropil aggregates in Huntington's disease:relationship to neuropathology. J Neurosci1999;19(7):2522-2534.
    9. Heng MY, Detloff PJ&Albin RL. Rodent genetic models of Huntington disease.Neurobiol Dis2008;32(1):1-9.
    10. Menalled LB&Chesselet MF. Mouse models of Huntington's disease. TrendsPharmacol Sci2002;23(1):32-39.
    11. Zhou H, Cao F, Wang Z, Yu ZX, Nguyen HP, Evans J, Li SH&Li XJ. Huntingtinforms toxic NH2-terminal fragment complexes that are promoted by theage-dependent decrease in proteasome activity. J Cell Biol2003;163(1):109-118.
    12. Bence NF, Sampat RM&Kopito RR. Impairment of the ubiquitin-proteasomesystem by protein aggregation. Science2001;292(5521):1552-1555.
    13. Li JY, Plomann M&Brundin P. Huntington's disease: a synaptopathy? Trends MolMed2003;9(10):414-420.
    14. Wishart TM, Parson SH&Gillingwater TH. Synaptic vulnerability inneurodegenerative disease. J Neuropathol Exp Neurol2006;65(8):733-739.
    15. Milnerwood AJ&Raymond LA. Early synaptic pathophysiology inneurodegeneration: insights from Huntington's disease. Trends Neurosci2010;33(11):513-523.
    16. Li H, Wyman T, Yu ZX, Li SH&Li XJ. Abnormal association of mutant huntingtinwith synaptic vesicles inhibits glutamate release. Hum Mol Genet2003;12(16):2021-2030.
    17. Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H&Li XJ. Interaction of Huntingtondisease protein with transcriptional activator Sp1. Mol Cell Biol2002;22(5):1277-1287.
    18. Rizo J&Sudhof TC. Snares and Munc18in synaptic vesicle fusion. Nat RevNeurosci2002;3(8):641-653.
    19. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH,Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA&BorcheltDR. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing amutant N-terminal fragment of huntingtin. Hum Mol Genet1999;8(3):397-407.
    20. Tebbenkamp AT, Swing D, Tessarollo L&Borchelt DR. Premature death andneurologic abnormalities in transgenic mice expressing a mutant huntingtin exon-2fragment. Hum Mol Genet2011;20(8):1633-1642.
    21. Gu Z, Liu W&Yan Z. β-Amyloid impairs AMPA receptor trafficking and functionby reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. JBiol Chem2009;284(16):10639-10649.
    22. DiFiglia M, Sapp E, Chase K, Schwarz C, Meloni A, Young C, Martin E, VonsattelJP, Carraway R&Reeves SA. Huntingtin is a cytoplasmic protein associated withvesicles in human and rat brain neurons. Neuron1995;14(5):1075-1081.
    23. Wolcott RM, Jennings SR&Chervenak R. In utero exposure to ethanol affectspostnatal development of T-and B-lymphocytes, but not natural killer cells. AlcoholClin Exp Res1995;19(1):170-176.
    24. Maneuf YP&McKnight AT. Calcitonin gene-related peptide-mediated increase inK+-induced [(3)H]-dopamine release from rat caudal striatal slices. Neurosci Lett2001;310(2-3):73-76.
    25. Patel DR, Young AM&Croucher MJ. Presynapticalpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor-mediatedstimulation of glutamate and GABA release in the rat striatum in vivo: a dual-labelmicrodialysis study. Neuroscience2001;102(1):101-111.
    26. Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH&Li XJ. Suppression ofneuropil aggregates and neurological symptoms by an intracellular antibodyimplicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol2008;181(5):803-816.
    27. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA,Scherzinger E, Wanker EE, Mangiarini L&Bates GP. Formation of neuronalintranuclear inclusions underlies the neurological dysfunction in mice transgenic forthe HD mutation. Cell1997;90(3):537-548.
    28. Li S&Li XJ. Multiple pathways contribute to the pathogenesis of Huntingtondisease. Mol Neurodegener2006;1:19.
    29. Brooks SP, Janghra N, Workman VL, Bayram-Weston Z, Jones L&Dunnett SB.Longitudinal analysis of the behavioural phenotype in R6/1(C57BL/6J)Huntington's disease transgenic mice. Brain Res Bull2012;88(2-3):94-103.
    30. Pekny M&Nilsson M. Astrocyte activation and reactive gliosis. Glia2005;50(4):427-434.
    31. Joshi PR, Wu NP, Andre VM, Cummings DM, Cepeda C, Joyce JA, Carroll JB,Leavitt BR, Hayden MR, Levine MS&Bamford NS. Age-dependent alterations ofcorticostriatal activity in the YAC128mouse model of Huntington disease. JNeurosci2009;29(8):2414-2427.
    32. Mohamad O, Song M, Wei L&Yu SP. Regulatory Roles of the NMDA ReceptorGluN3A Subunit in Locomotion, Pain Perception and Cognitive Functions in AdultMice. J Physiol2012;(Sep24.[Epub ahead of print]).
    33. Li SH, Cheng AL, Li H&Li XJ. Cellular defects and altered gene expression inPC12cells stably expressing mutant huntingtin. J Neurosci1999;19(13):5159-5172.
    34. Fornasiero EF, Bonanomi D, Benfenati F&Valtorta F. The role of synapsins inneuronal development. Cell Mol Life Sci2010;67(9):1383-1396.
    35. Shupliakov O, Haucke V&Pechstein A. How synapsin I may cluster synapticvesicles. Semin Cell Dev Biol2011;22(4):393-399.
    36. Ren X&Hurley JH. Proline-rich regions and motifs in trafficking: from ESCRTinteraction to viral exploitation. Traffic2011;12(10):1282-1290.
    37. Iwata SI, Hewlett GH, Ferrell ST, Kantor L&Gnegy ME. Enhanced dopaminerelease and phosphorylation of synapsin I and neuromodulin in striatalsynaptosomes after repeated amphetamine. J Pharmacol Exp Ther1997;283(3):1445-1452.
    38. Schweitzer ES, Sanderson MJ&Wasterlain CG. Inhibition of regulatedcatecholamine secretion from PC12cells by the Ca2+/calmodulin kinase II inhibitorKN-62. J Cell Sci1995;108(Pt7):2619-2628.
    39. Steiner JP, Dawson TM, Fotuhi M&Snyder SH. Immunophilin regulation ofneurotransmitter release. Mol Med1996;2(3):325-333.
    40. Smith R, Brundin P&Li JY. Synaptic dysfunction in Huntington's disease: a newperspective. Cell Mol Life Sci2005;62(17):1901-1912.
    41. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R,Bissada N, Hossain SM, Yang YZ, Li XJ, Simpson EM, Gutekunst CA, Leavitt BR&Hayden MR. Selective striatal neuronal loss in a YAC128mouse model ofHuntington disease. Hum Mol Genet2003;12(13):1555-1567.
    42. Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH, Tao J, Yamazaki I,Li SH&Sun YE. Full-length human mutant huntingtin with a stable polyglutaminerepeat can elicit progressive and selective neuropathogenesis in BACHD mice. JNeurosci2008;28:6182-6195.
    43. Suopanki J, Gotz C, Lutsch G, Schiller J, Harjes P, Herrmann A&Wanker EE.Interaction of huntingtin fragments with brain membranes--clues to earlydysfunction in Huntington's disease. J Neurochem2006;96(3):870-884.
    44. Cummings DM, Cepeda C&Levine MS. Alterations in striatal synaptictransmission are consistent across genetic mouse models of Huntington's disease.ASN Neuro2010;2(3): e00036.
    45. Landles C, Sathasivam K, Weiss A, Woodman B, Moffitt H, Finkbeiner S, Sun B,Gafni J, Ellerby LM, Trottier Y, Richards WG, OsmandA, Paganetti P&Bates GP.Proteolysis of mutant huntingtin produces an exon1fragment that accumulates asan aggregated protein in neuronal nuclei in Huntington disease. J Biol Chem2010;285(12):8808-8823.
    46. Sathasivam K, Neueder A, Gipson TA, Landles C, Benjamin AC, Bondulich MK,Smith DL, Faull RL, Roos RA, Howland D, Detloff PJ, Housman DE&Bates GP.Aberrant splicing of HTT generates the pathogenic exon1protein in Huntingtondisease. Proc Natl Acad Sci USA2013;110(6):2366-2370.
    47. Borrell-Pages M, Zala D, Humbert S&Saudou F. Huntington's disease: fromhuntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci2006;63(22):2642-2660.
    48. Shirasaki DI, Greiner ER, Al-Ramahi I, Gray M, Boontheung P, Geschwind DH,Botas J, Coppola G, Horvath S, Loo JA&Yang XW. Network organization of thehuntingtin proteomic interactome in mammalian brain. Neuron2012;75(1):41-57.
    49. Truant R, Atwal R&Burtnik A. Hypothesis: Huntingtin may function in membraneassociation and vesicular trafficking. Biochem Cell Biol2006;84(6):912-917.
    1. Group THsDCR. A novel gene containing a trinucleotide repeat that is expandedand unstable on Huntington's disease chromosomes. Cell1993;72(6):971-983.
    2. Andrew S, Theilmann J, Almqvist E, Norremolle A, Lucotte G, Anvret M, SorensenSA, Turpin JC&Hayden MR. DNA analysis of distinct populations suggestsmultiple origins for the mutation causing Huntington disease. Clin Genet1993;43(6):286-294.
    3. Kieburtz K, MacDonald M, Shih C, Feigin A, Steinberg K, Bordwell K,Zimmerman C, Srinidhi J, Sotack J&Gusella J. Trinucleotide repeat length andprogression of illness in Huntington's disease. J Med Genet1994;31(11):872-874.
    4. Paulsen JS&Conybeare RA. Cognitive changes in Huntington's disease. AdvNeurol2005;96:209-225.
    5. Gusella JF, MacDonald ME, Ambrose CM&Duyao MP. Molecular genetics ofHuntington's disease. Arch Neurol1993;50(11):1157-1163.
    6. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP&Aronin N.Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophicneurites in brain. Science1997;277(5334):1990-1993.
    7. Sapp E, Penney J, Young A, Aronin N, Vonsattel JP&DiFiglia M. Axonal transportof N-terminal huntingtin suggests early pathology of corticostriatal projections inHuntington disease. J Neuropathol Exp Neurol1999;58(2):165-173.
    8. Ross CA&Tabrizi SJ. Huntington's disease: from molecular pathogenesis toclinical treatment. Lancet Neurol2011;10(1):83-98.
    9. Li S&Li XJ. Multiple pathways contribute to the pathogenesis of Huntingtondisease. Mol Neurodegener2006;1:19.
    10. Margolis RL&Ross CA. Expansion explosion: new clues to the pathogenesis ofrepeat expansion neurodegenerative diseases. Trends Mol Med2001;7(11):479-482.
    11. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED&Richardson EP.Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol1985;44(6):559-577.
    12. Kremer HP, Roos RA, Dingjan G, Marani E&Bots GT. Atrophy of thehypothalamic lateral tuberal nucleus in Huntington's disease. J Neuropathol ExpNeurol1989;49(4):371-382.
    13. Petersen A, Mani K&Brundin P. Recent advances on the pathogenesis ofHuntington's disease. Exp Neurol1999;157(1):1-18.
    14. Graveland GA, Williams RS&DiFiglia M. Evidence for degenerative andregenerative changes in neostriatal spiny neurons in Huntington's disease. Science1985;227(4688):770-773.
    15. Reiner A, Albin RL, Anderson KD, Damato CJ, Penney JB&Young AB.Differential Loss of Striatal Projection Neurons in Huntington Disease. Proc NatlAcad Sci USA1988;85(15):5733-5737.
    16. Richfield EK, MaguireZeiss KA, Vonkeman HE&Voorn P. Preferential loss ofpreproenkephalin versus preprotachykinin neurons from the striatum ofHuntington's disease patients. Annals of Neurology1995;38(6):852-861.
    17. Albin RL, Young AB, Penney JB, Handelin B, Balfour R, Anderson KD, Markel DS,Tourtellotte WW&Reiner A. Abnormalities of striatal projection neurons andN-methyl-D-aspartate receptors in presymptomatic Huntington's disease. N Engl JMed1990;322(18):1293-1298.
    18. Albin RL, Reiner A, Anderson KD, Dure LSt, Handelin B, Balfour R, Whetsell WO,Jr., Penney JB&Young AB. Preferential loss of striato-external pallidal projectionneurons in presymptomatic Huntington's disease. Ann Neurol1992;31(4):425-430.
    19. Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ,Hersch SM&Li XJ. Nuclear and neuropil aggregates in Huntington's disease:relationship to neuropathology. J Neurosci1999;19(7):2522-2534.
    20. Li H, Li SH, Johnston H, Shelbourne PF&Li XJ. Amino-terminal fragments ofmutant huntingtin show selective accumulation in striatal neurons and synaptictoxicity. Nat Genet2000;25(4):385-389.
    21. Li H, Li SH, Yu ZX, Shelbourne P&Li XJ. Huntingtin aggregate-associated axonaldegeneration is an early pathological event in Huntington's disease mice. J Neurosci2001;21(21):8473-8481.
    22. Li SH, Cheng AL, Li H&Li XJ. Cellular defects and altered gene expression inPC12cells stably expressing mutant huntingtin. J Neurosci1999;19(13):5159-5172.
    23. Gafni J&Ellerby LM. Calpain activation in Huntington's disease. J Neurosci2002;22(12):4842-4849.
    24. Graham RK, Slow EJ, Deng Y, Bissada N, Lu G, Pearson J, Shehadeh J, Leavitt BR,Raymond LA&Hayden MR. Levels of mutant huntingtin influence the phenotypicseverity of Huntington disease in YAC128mouse models. Neurobiol Dis2006;21(2):444-455.
    25. Sawa A, Nagata E, Sutcliffe S, Dulloor P, Cascio MB, Ozeki Y, Roy S, Ross CA&Snyder SH. Huntingtin is cleaved by caspases in the cytoplasm and translocated tothe nucleus via perinuclear sites in Huntington's disease patient lymphoblasts.Neurobiol Dis2005;20(2):267-274.
    26. Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR&Ellerby LM.Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation ofcalpain/caspase fragments in the nucleus. J Biol Chem2004;279(19):20211-20220.
    27. Wellington CL, Ellerby LM, Gutekunst CA, Rogers D, Warby S, Graham RK,Loubser O, van Raamsdonk J, Singaraja R, Yang YZ, Gafni J, Bredesen D, HerschSM, Leavitt BR, Roy S, Nicholson DW&Hayden MR. Caspase cleavage of mutanthuntingtin precedes neurodegeneration in Huntington's disease. J Neurosci2002;22(18):7862-7872.
    28. Sun B, Fan W, Balciunas A, Cooper JK, Bitan G, Steavenson S, Denis PE, Young Y,Adler B, Daugherty L, Manoukian R, Elliott G, Shen W, Talvenheimo J, TeplowDB, Haniu M, Haldankar R, Wypych J, Ross CA, Citron M&Richards WG.Polyglutamine repeat length-dependent proteolysis of huntingtin. Neurobiol Dis2002;11(1):111-122.
    29. Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB,Mandel JL&Trottier Y. Proteases acting on mutant Huntingtin generate cleavedproducts that differentially build up cytoplasmic and nuclear inclusions. MolecularCell2002;10(2):259-269.
    30. Kim YJ, Sapp E, Cuiffo BG, Sobin L, Yoder J, Kegel KB, Qin ZH, Detloff P, AroninN&DiFiglia M. Lysosomal proteases are involved in generation of N-terminalhuntingtin fragments. Neurobiol Dis2006;22(2):346-356.
    31. Ratovitski T, Nakamura M, D'Ambola J, Chighladze E, Liang Y, Wang WF, GrahamR, Hayden MR, Borchelt DR, Hirschhorn RR&Ross CA. N-terminal proteolysis offull-length mutant huntingtin in an inducible PC12cell model of Huntington'sdisease. Cell Cycle2007;6(23):2970-2981.
    32. Ratovitski T, Gucek M, Jiang HB, Chighladze E, Waldron E, D'Ambola J, Hou ZP,Liang YD, Poirier MA, Hirschhorn RR, Graham R, Hayde MR, Cole RN&RossCA. Mutant Huntingtin N-terminal Fragments of Specific Size MediateAggregation and Toxicity in Neuronal Cells. Journal of Biological Chemistry2009;284(16):10855-10867.
    33. Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH,Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA&BorcheltDR. Intranuclear inclusions and neuritic aggregates in transgenic mice expressing amutant N-terminal fragment of huntingtin. Hum Mol Genet1999;8(3):397-407.
    34. Palfi S, Brouillet E, Jarraya B, Bloch J, Jan C, Shin M, Conde F, Li XJ, Aebischer P,Hantraye P&Deglon N. Expression of mutated huntingtin fragment in the putamenis sufficient to produce abnormal movement in non-human primates. Mol Ther2007;15(8):1444-1451.
    35. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C,Lawton M, Trottier Y, Lehrach H, Davies SW&Bates GP. Exon1of the HD genewith an expanded CAG repeat is sufficient to cause a progressive neurologicalphenotype in transgenic mice. Cell1996;87(3):493-506.
    36. Tebbenkamp AT, Swing D, Tessarollo L&Borchelt DR. Premature death andneurologic abnormalities in transgenic mice expressing a mutant huntingtin exon-2fragment. Hum Mol Genet2011;20(8):1633-1642.
    37. Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA,Scherzinger E, Wanker EE, Mangiarini L&Bates GP. Formation of neuronalintranuclear inclusions underlies the neurological dysfunction in mice transgenic forthe HD mutation. Cell1997;90(3):537-548.
    38. Gafni J&Ellerby LM. Calpain activation in Huntington's disease. J Neurosci2002;22(12):4842-4849.
    39. Graham RK, Slow EJ, Deng Y, Bissada N, Lu G, Pearson J, Shehadeh J, Leavitt BR,Raymond LA&Hayden MR. Levels of mutant huntingtin influence the phenotypicseverity of Huntington disease in YAC128mouse models. Neurobiol Dis2006;21(2):444-455.
    40. McGuire JR, Rong J, Li SH&Li XJ. Interaction of Huntingtin-associated protein-1with kinesin light chain: implications in intracellular trafficking in neurons. J BiolChem2006;281(6):3552-3559.
    41. Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, CordelieresFP, De Mey J, MacDonald ME, Lessmann V, Humbert S&Saudou F. Huntingtincontrols neurotrophic support and survival of neurons by enhancing BDNFvesicular transport along microtubules. Cell2004;118(1):127-138.
    42. Rong J, McGuire JR, Fang ZH, Sheng G, Shin JY, Li SH&Li XJ. Regulation ofintracellular trafficking of huntingtin-associated protein-1is critical for TrkAprotein levels and neurite outgrowth. J Neurosci2006;26(22):6019-6030.
    43. Li SH, Gutekunst CA, Hersch SM&Li XJ. Interaction of huntingtin-associatedprotein with dynactin P150Glued. J Neurosci1998;18(4):1261-1269.
    44. Gunawardena S, Her LS, Brusch RG, Laymon RA, Niesman IR, Gordesky-Gold B,Sintasath L, Bonini NM&Goldstein LS. Disruption of axonal transport by loss ofhuntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron2003;40(1):25-40.
    45. Wishart TM, Parson SH&Gillingwater TH. Synaptic vulnerability inneurodegenerative disease. J Neuropathol Exp Neurol2006;65(8):733-739.
    46. Lee WC, Yoshihara M&Littleton JT. Cytoplasmic aggregates trappolyglutamine-containing proteins and block axonal transport in a Drosophilamodel of Huntington's disease. Proc Natl Acad Sci USA2004;101(9):3224-3229.
    47. Szebenyi G, Morfini GA, Babcock A, Gould M, Selkoe K, Stenoien DL, Young M,Faber PW, MacDonald ME, McPhaul MJ&Brady ST. Neuropathogenic forms ofhuntingtin and androgen receptor inhibit fast axonal transport. Neuron2003;40(1):41-52.
    48. Gunawardena S&Goldstein LS. Polyglutamine diseases and transport problems:deadly traffic jams on neuronal highways. Arch Neurol2005;62(1):46-51.
    49. Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ&Hersch SM. The cellular andsubcellular localization of huntingtin-associated protein1(HAP1): comparison withhuntingtin in rat and human. J Neurosci1998;18(19):7674-7686.
    50. Li H, Li SH, Cheng AL, Mangiarini L, Bates GP&Li XJ. Ultrastructurallocalization and progressive formation of neuropil aggregates in Huntington'sdisease transgenic mice. Hum Mol Genet1999;8(7):1227-1236.
    51. Li H, Wyman T, Yu ZX, Li SH&Li XJ. Abnormal association of mutant huntingtinwith synaptic vesicles inhibits glutamate release. Hum Mol Genet2003;12(16):2021-2030.
    52. Dudek NL, Y Dai&Muma NA. Neuroprotective effects of calmodulin peptide76-121aa: disruption of calmodulin binding to mutant huntingtin. Brain Pathol2010;20(1):176-189.
    53. Li JY, Plomann M&Brundin P. Huntington's disease: a synaptopathy? Trends MolMed2003;9(10):414-420.
    54. Cepeda C, Hurst RS, Calvert CR, Hernández-Echeagaray E, Nguyen OK, Jocoy E,Christian LJ, Ariano MA&Levine MS. Transient and progressiveelectrophysiological alterations in the corticostria-tal pathway in a mouse model ofHuntington’s disease. J Neurosci2003;23(3):961–969.
    55. André VM, Cepeda C, Fisher YE, Huynh M, Bardakjian N, Singh S,Yang XW&Levine MS. Differential electrophysiological changes in striatal output neurons inHuntington’s disease. J Neurosci2011;31(4):1170–1182.
    56. Joshi PR, Wu NP, Andre VM, Cummings DM, Cepeda C, Joyce JA, Carroll JB,Leavitt BR, Hayden MR, Levine MS&Bamford NS. Age-dependent alterations ofcorticostriatal activity in the YAC128mouse model of Huntington disease. JNeurosci2009;29(8):2414-2427.
    57. Ariano MA, Aronin N, Difiglia M, Tagle DA, Sibley DR, Leavitt BR, Hayden MR&Levine MS. Striatal neurochemical changes in transgenic models of Huntington’sdisease. J Neurosci Res2002;68(6):716–729.
    58. Rebec GV, Conroy SK&Barton SJ. Hyperactive striatal neurons in symptomaticHuntington R6/2mice: variations with behavioral state and repeated ascorbatetreatment. Neuroscience2006;137(1):327–336.
    59. Luthi-Carter R, Strand A, Peters NL, Solano SM, Hollingsworth ZR, Menon AS,Frey AS, Spektor BS, Penney EB, Schilling G, Ross CA, Borchelt DR, Tapscott SJ,Young AB, Cha JH&Olson JM. Decreased expression of striatal signaling genes ina mouse model of Huntington’s disease. Hum Mol Genet2000;9(9):1259–1271.
    60. Cha JH, Kosinski CM, Kerner JA, Alsdorf SA, Mangiarini L, Davies SW, Penney JB,Bates GP&Young AB. Altered brain neurotransmitter receptors in transgenic miceexpressing a portion of an abnormal human Huntington disease gene. Proc NatlAcad Sci1998;95(11):6480–6485.
    61. Zeron MM, Hansson O, Chen N, Wellington CL, Leavitt BR, Brundin P, HaydenMR&Raymond LA. Increased sensitivity to N-methyl-D-aspartatereceptor-mediated excitotoxicity in a mouse model of Huntington's disease. Neuron2002;33(6):849-860.
    62. Li H&Henry JL. Adenosine action on interneurons and synaptic transmission ontointerneurons in rat hippocampus in vitro. Eur J Pharmacol2000;407(3):237-244.
    63. Morton AJ, Faull RL&Edwardson JM (2001). Abnormalities in the synapticvesicle fusion machinery in Huntington's disease. Brain Res Bull.56(2):111-117.
    64. Morton AJ&Edwardson JM. Progressive depletion of complexin II in a transgenicmouse model of Huntington's disease. J Neurochem2001;76(1):166-172.
    65. Modregger J, DiProspero NA, Charles V, Tagle DA&Plomann M. PACSIN1interacts with huntingtin and is absent from synaptic varicosities in presymptomaticHuntington's disease brains. Hum Mol Genet2002;11(21):2547-2558.
    66. Smith R, Brundin P&Li JY. Synaptic dysfunction in Huntington's disease: a newperspective. Cell Mol Life Sci2005;62(17):1901-1912.
    67. Starling AJ, Andre VM, Cepeda C, de Lima M, Chandler SH&Levine MS.Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockadeoccur early in development in the R6/2mouse model of Huntington's disease. JNeurosci Res2005;82(3):377-386.
    68. Ali NJ&Levine MS. Changes in expression of N-methyl-D-aspartate receptorsubunits occur early in the R6/2mouse model of Huntington's disease. DevNeurosci2006;28(3):230-238.
    69. Vonsattel JP&DiFiglia M. Huntington disease. J Neuropathol Exp Neurol1998;57(5):369-384.
    70. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR&Bezprozvanny I. Huntingtin and huntingtin-associated protein1influence neuronalcalcium signaling mediated by inositol-(1,4,5) triphosphate receptor type1. Neuron2003;39(2):227-239.
    71. Li XJ, Li SH, Sharp AH, Nucifora FC, Schilling G, Lanahan A, Worley P, SnyderSH&Ross CA. A huntingtin-associated protein enriched in brain with implicationsfor pathology. Nature1995;378(6555):398-402.
    72. Hoffner G, Kahlem P&Djian P. Perinuclear localization of huntingtin as aconsequence of its binding to microtubules through an interaction with beta-tubulin:relevance to Huntington's disease. J Cell Sci2002;115(Pt5):941-948.
    73. Gutekunst CA, Levey AI, Heilman CJ, Whaley WL, Yi H, Nash NR, Rees HD,Madden JJ&Hersch SM. Identification and localization of huntingtin in brain andhuman lymphoblastoid cell lines with anti-fusion protein antibodies. Proc Natl AcadSci USA1959;92(19):8710-8714.
    74. Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K,Kazemi-Esfarjani P, Lynn FC, Wellington C, Metzler M, Goldberg YP, Kanazawa I,Gietz RD&Hayden MR. HIP1, a human homologue of S. cerevisiae Sla2p,interacts with membrane-associated huntingtin in the brain. Nat Genet1997;16(1):44-53.
    75. Metzler M, Legendre-Guillemin V, Gan L, Chopra V, Kwok A, McPherson PS&Hayden MR. HIP1functions in clathrin-mediated endocytosis through binding toclathrin and adaptor protein2. J Biol Chem2001;276(42):39271-39276.
    76. Mishra SK, Agostinelli NR, Brett TJ, Mizukami I, Ross TS&Traub LM. Clathrin-and AP-2-binding sites in HIP1uncover a general assembly role for endocyticaccessory proteins. J Biol Chem2001;276(49):46230-46236.
    77. Waelter S, Scherzinger E, Hasenbank R, Nordhoff E, Lurz R, Goehler H, Gauss C,Sathasivam K, Bates GP, Lehrach H&Wanker EE. The huntingtin interactingprotein HIP1is a clathrin and alpha-adaptin-binding protein involved inreceptor-mediated endocytosis. Hum Mol Genet2001;10(17):1807-1817.
    78. Metzler M, Li B, Gan L, Georgiou J, Gutekunst CA, Wang Y, Torre E, Devon RS,Oh R, Legendre-Guillemin V, Rich M, Alvarez C, Gertsenstein M, McPherson PS,Nagy A, Wang YT, Roder JC, Raymond LA&Hayden MR. Disruption of theendocytic protein HIP1results in neurological deficits and decreased AMPAreceptor trafficking. EMBO J2003;22(13):3254-3266.
    79. Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M,Hackam AS, Tam J, Vaillancourt JP, Houtzager V, Rasper DM, Roy S, Hayden MR&Nicholson DW. Recruitment and activation of caspase-8by theHuntingtin-interacting protein Hip-1and a novel partner Hippi. Nat Cell Biol2002;4(2):95-105.
    80. Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, Warby S, Yanai A,Gutekunst CA, Leavitt BR, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V,Michel J, Hersch SM, Ikeda JE&Hayden MR. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. HumMol Genet2002;11(23):2815-2828.
    81. Milnerwood AJ&Raymond LA. Early synaptic pathophysiology inneurodegeneration: insights from Huntington's disease. Trends Neurosci2010;33(11):513-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700