用户名: 密码: 验证码:
蛋白激酶D1(PKD1)调控的信号通路在非小细胞肺癌发生发展中作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重威胁人类健康的一类疾病,已成为我国城市居民死亡原因的首位,占全部死亡总数的25%。其中肺癌的发病在全球都呈现迅速上升趋势,死亡率在全球范围内居恶性肿瘤首位。过去30年间,我国肺癌死亡率上升了465%,成为上升速度最快的癌症,并已成为我国首位恶性肿瘤死亡原因。相关研究显示,目前我国肺癌发病率每年增长26.9%,肺癌的发病和死亡已成为一个严峻的问题。吸烟、空气污染被认为与肺癌的发病密切相关。肺癌分为两类:非小细胞肺癌(Non-small cell lung cancer, NSCLC)和小细胞肺癌(Small cell lung cancer,SCLC),其中非小细胞肺癌占所有肺癌的85%左右,是最常见、最致命的一种肺癌。尽管早期诊断技术不断发展,但仍有约七成的肺癌患者在确诊时已到晚期。目前临床上广泛采用的治疗手段如外科治疗、放疗、化疗等治疗效果均不理想。随着遗传学、分子生物学等医学科学的不断发展,基于致癌基因的分子靶向治疗正在逐步兴起。具有靶向性的表皮生长因子受体(EGFR)阻断剂,如吉非替尼、埃罗替尼等已被用于晚期的NSCLC二、三线治疗。但这些靶向药物又表现出对EGFR突变的人群有较好疗效,而对EGFR未突变患者效果不理想。所以,深入研究NSCLC中发挥关键作用的信号传导通路,对于揭示肺癌发生发展的分子机制及寻找NSCLC治疗新靶点具有重要的意义。
     蛋白激酶D (Protein kinase D, PKD)是一种新发现的钙离子/钙调蛋白依赖性的丝氨酸/苏氨酸蛋白激酶。研究发现PKD在受到G蛋白偶联受体(Guanosine-binding Protein Coupled Receptor, GPCR)激动剂、生长因子及佛波酯等刺激后活化,参与调控多条细胞内信号传导通路。PKD家族有三种同源结构的成员,分别是PKD1,PKD2和PKD3,其中PKD1是PKD家族中研究最为深入的成员。PKD1基因(又称为PRKD1)位于人类染色体14q11位置。PKD1在人体内脑、心脏、肺等多个器官中广泛表达,并在细胞增殖、凋亡,细胞侵袭,血管生成等一系列生物学行为中起重要的调控作用。同时,PKD1在维持心肌细胞功能和心血管系统健康及免疫调节方面还起到关键作用。因此,PKD1表达及功能的失衡与癌症、心血管疾病等多种疾病的发生发展密切相关。近年来的研究发现,PKD1在多种肿瘤中表达异常,如在前列腺癌、乳腺癌、胃癌和结直肠癌中PKD1显著下调,而过表达的PKD1在胰腺癌、皮肤癌的发展中起重要作用。由于PKD1作为一个关键激酶在介导细胞外刺激至胞内信号变化中发挥作用,使得通过调控PKD1表达水平和激酶活性来治疗肿瘤成为可能。
     肿瘤细胞中异常表达的PKD1通过调控多条信号传导通路影响肿瘤细胞的生物学行为。研究发现,细胞内PKD1可被GPCR激动剂激活并引起下游促分裂素原活化蛋白激酶(mitogen-activated protein kinases,MAPK), c-Jun N-terminal kinase (JNK)和NFκB等信号通路的活化。但PKD1在细胞分子信号通路网络中的作用和相关机制未完全阐明。同时,PKD1在NSCLC中的表达及功能尚无相关文献报道。在本课题中我们深入研究了PKD1对PI3K/Akt、Ⅱa型HDAC及InTOR-S6K1等信号通路的调控作用并探讨了PKD1在NSCLC中的表达、功能和调控机制。旨在进一步深入研究PKD1调控的分子信号通路及其对细胞生物学行为的作用,并阐明PKD1相关通路在NSCLC发生发展的作用和机制。为肺癌的防治提供新的治疗靶点和理论依据。
     目的
     1.探讨PKD1对P13K/Akt通路的调控作用和机制;
     2.明确PKD1调控组蛋白去乙酰酶(HDAC)4,5,7磷酸化及PKD1/HDAC通路对细胞周期和增殖的影响;
     3.确定PKD1在NSCLC中的表达及对NSCLC发生发展的作用;
     4.揭示PKD1在NSCLC细胞中作用的分子机制。
     第一部分PKDl对PI3K/Akt通路的调控作用和机制研究
     [研究目的]
     1.探讨特异性抑制或敲除PKD1对PI3K/Akt通路活性的作用;
     2.明确PKD1调控P13K/Akt通路的分子机制;
     3.在转基因小鼠模型中探讨验证PKD1对Akt的调控作用。
     [研究方法]
     1.应用不同浓度梯度的PKD1特异性抑制剂kb NB142-70抑制PKD1活性,观察在不同GPCR激动剂对Akt磷酸化(pAkt-Thr308,pAkt-Ser473)水平变化的作用。
     2.分别应用PKD1抑制剂CRT0066101和PKD1特异性siRNA处理或转染细胞,观察PKD1抑制或敲除对Akt磷酸化(pAkt-Thr308,pAkt-Ser473)水平的影响。
     3.向细胞内转染荧光蛋白(GFP)标记的AAKT-PH质粒,然后应用5μM kb NB142-70预处理细胞,荧光显微镜观察处理组和对照组在GPCR激动剂血管紧张素II(Angiotensin Ⅱ, Ang Ⅱ)刺激下AKT-PH的动态变化,以检测细胞膜磷脂酰肌醇三磷酸(phosphatidylinositol-3-phosphate,PIP3)的生成;免疫共沉淀检测选择性抑制PKD1对ANG II诱导的PI3K p85α亚基磷酸化及PI3K p85α--PTEN复合物形成的影响。
     4.构建PKD1过表达的转基因小鼠,取小鼠的肠上皮细胞,应用、;western blot免疫蛋白印迹法检测PKD1和pAkt-Thr308, pAkt-Ser473表达,从而在体内验证PKD1对pAkt的负性调控作用。
     [结果]
     1.特异性抑制PKD1可以增强GPCR诱导的Akt活性,主要表现在pAkt-Thr308, pAkt-Ser4乃的表达水平显著上调。Akt活性的增强与PKD1激酶活性的抑制程度呈负相关。
     2.通过转染两种PKD1特异性siRNA下调PKD1水平能显著增强ANG Ⅱ诱导的细胞内pAkt-Thr308, pAkt-Ser4刀的表达水平。
     3.抑制PKD1能显著增强PI3K介导的PIP3生成;Kb NB142-70能显著抑制PKD1诱导的PI3K p85α亚基磷酸化和PI3K p85α-PTEN复合物形成。
     4.转基因小鼠肠上皮中过表达的PKD1能抑制pAkt的表达。
     [结论]
     1.特异性PKD1能增强PI3K-Akt信号通路活性,PKD1负性调控PI3K-Akt信号通路。
     2.PKD1通过抑制P13K介导的PIP3生成、PI3K p85α亚基的磷酸化以及增加PI3K p85α-PTEN复合物形成参与调控P13K-Akt信号通路。
     第二部分PKI)1依赖的Ⅱa型HDAC磷酸化在调控细胞增殖中的作用和机制研究
     [研究目的]
     1.探讨PKD1介导的II a型HDAC (HDAC4, HDAC5, HDAC7)磷酸化;
     2.明确PKD1在诱导HDAC5由细胞核向细胞质迁移中的作用;
     3.探讨PKD1/Ⅱa型HDAC调控轴在细胞周期、细胞DNA合成和细胞增殖中的作用;
     4.在PKD1转基因小鼠模型中,研究并验证PKD1对IIa型HDAC磷酸化的调控作用。[研究方法]
     1.分别应用PKD1抑制剂(5μM kb NB142-70和CRT0066101)及PKD1特异性siRNA处理或转染细胞,western blot免疫蛋白印迹检测在GPCR或佛波酯等PKD1激动剂刺激下,细胞内HDAC4Ser246, HDAC5Ser259, HDAC7Ser155及HDAC4Ser632, HDAC5Ser498, HDAC7Ser486磷酸化蛋白表达水平。
     2.预先应用3.5μM kb NB142-70处理细胞2小时,随后使用50nMAngII处理细胞1小时,然后将细胞清洗、固定。应用细胞染色技术观察HDAC5从胞核向胞质的定向迁移。
     3.向细胞内分别转染FLAG标记的突变型HDAC5(HDAC5Ser259, Ser498突变为Ala),然后使用3.5μM kb NB142-70处理细胞2小时,随后应用50nM Ang Ⅱ刺激细胞1小时,刺激结束后将细胞固定、染色,观察FLAG标记的HDAC5在细胞内的定位。
     4.应用HDAC抑制剂MC1568(5μM)和TMP269(3μM)处理细胞,[3H]胸腺嘧啶检测细胞DNA合成,流式细胞术检测细胞周期,细胞计数法检测细胞增殖。
     5.构建PKD1转基因小鼠模型,在体内观察PKD1对Ⅱa型HDAC磷酸化的作用。[研究结果]
     1.PKD1抑制剂及特异性siRNA能抑制GPCR激动剂或佛波酯诱导的IIa型HDAC磷酸化。
     2.特异性抑制PKD1能诱导HDAC5从胞核向胞质移动。
     3.HDAC5磷酸化位点突变为非磷酸化位点时,HDAC5胞质的移动受到抑制。
     4.tHDAC抑制剂能显著降低细胞DNA合成和细胞增殖,抑制细胞从G0/G1期转入G2/M期。
     5.在PKD1高表达小鼠模型中磷酸化HDAC水平较未处理小鼠组显著升高。[结论]
     1.PKD1是诱导Ⅱa型HDAC磷酸化及HDAC5出核的关键上游调控因子。
     2.PKD1-HDAC信号通路能调控细胞增殖和DNA合成,抑制细胞向G2/M期转化。
     第三部分PKD1在NSCLC中表达、功能及作用机制研究[研究目的]
     1.明确PKD1在NSCLC中瘤组织中表达水平及其与临床病理因素的关系;
     2.探讨PKD1对mTOR-S6K1信号通路的调控作用,明确PKD1调控mTOR-S6K1信号的机制;
     3.探讨PKD1下调对NSCLC细胞增殖的作用。
     [研究方法]
     1.收集34例NSCLC手术病人肿瘤组织及癌旁正常组织,并于-80℃保存。提取组织RNA,荧光定量PCR (qRT-PCR)分析肿瘤组织和正常组织中PKD1表达量,并分析PKD1与病人临床病理因素间的关系。
     2.分别应用不同浓度PKD1抑制剂Kb NB142-70和PKD1特异性siRNA处理或转染NSCLC A549和H520细胞,western blot免疫蛋白印迹检测细胞在佛波酯刺激后pS6K1,pS6,pERK,pAkt的表达量,分析PKD1抑制对pS6K1表达量的作用。
     3.分别应用P13K抑制剂-LY294002,BKM120和MEK抑制剂-U0126,PD0325901,观察上述抑制剂对Kb NB142-70激活的mTOR-S6K1信号通路的影响。
     4.转染PKD1特异性siRNA,比较转染细胞和对照组A549和H520细胞在佛波酯刺激下细胞增殖情况的差异。[结果]
     1.在34例NSCLC患者中有26例患者肿瘤组织中PKD1表达量显著低于癌旁正常组织(P<0.05),其中,低表达的PKD1与NSCLC血管侵袭和淋巴结转移呈显著相关(P<0.05)。
     2.PKD1抑制剂或特异性siRNA能激活S6K1(表现为pS6Kl Ser235/236表达升高),同时伴随细胞内pERK和pAkt表达量升高。
     3.PI3K和MEK/ERK抑制剂能有效阻断Kb NB142-70激活的S6K1和S6。
     4.PKD1siRNA转染组的NSCLC细胞增殖较对照组明显增加。
     [结论]
     1.PKD1在NSCLC肿瘤组织中显著低表达,且与肺癌的疾病进展相关。
     2.在NSCLC细胞受到佛波酯PMA刺激时,PKD1能负向调控mTOR-S6K1信号通路的活性。3.PKD1调控mTOR-S6K1的机制是PKD1通过抑制pAkt和pEK的表达近进而影响其下游mTOR信号通路。
     4.特异性敲除PKD1增强细胞增殖能力,PKD1具有抑制细胞增殖的作用。PKD1表达的缺失可能在NSCLC的发生发展中发挥重要作用。PKD1有望成为NSCLC治疗的新靶点。
Malignant tumor is a serious threat to human health and disease. As the Number one cause of all deaths in China, it accounts for25%of all deaths. Globally, the morbidity of lung cancer is increasing rapidly and remains the leading cause of cancer death. In the past30years, the mortality for lung cancer increased for465%. It was reported that the morbidity of lung cancer is increasing26.9%every year. Smoking, air pollution is strongly associated with lung cancer. Lung cancer comprises non-small cell lung cancer(NSCLC) and small cell lung cancer (SCLC), in which NSCLC accounts for85%of all cases and is identified as the most commom and fatal lung cancer. Despite the development of early diagnosis menthods, around70%of patients therefore present with advanced stage IIIB or IV disease. Surgery, radical radiotherapy and chemotherapy is the major treatment method but5-year cure rates have only barely improved. With these problems in mind, it is timely that a new approach to treatment is emerging with targeted therapy. Mutations in the epidermal growth factor receptor (EGFR) have been identified in NSCLC, and overexpression of EGFR and its ligands has made it an attractive target for various antitumor strategies. EGFR inhibitors such as gefitinib and erotinib are gradually applied in advanced NSCLC patients. However, EGFR-TKI inhibitors represent better efficacy for specific population, and the tolerance of these drugs urgently need to be resolved. Therefore, further understanding of the related cancer cell signaling pathway and exploring novel therapy target is necessary.
     Protein kinase D (PKD) is a novel serine-threonine protein kinase family within the CAMK group. PKD is activated by a number of different agents, including GPCR agonists, growth factors and phorbol esters. The PKD family contains3members that are homologous in structure and function, namely, PKD1, PKD2,and PKD3. PKD1is the founding and the most studied member of the family. The PKD1gene, located on human chromosome14q11, is broadly expressed in many organs, including the thyroid, brain, heart, and lungs. PKD1has been shown to play important roles in a variety of cellular functions that regulate intracellular signal transduction pathways, cell survival, proliferation, motility, invasion, angiogenesis, and apoptosis. PKD1also plays a critical role in cardiac cell functioning and maintenance of cardiovascular health. Thus, the deregulation of PKD1has been connected with the development of cancers, cardiovascular hypertrophy and other diseases. Recently, PKD1has been shown to be downregulated in prostate cancer, breast cancer, gastric cancer and colon cancer. However, the overexpression of PKD1has been shown to play a role in the development of pancreatic cancer and skin cancers. Because PKD1functions as a critical kinase that integrates extracellular signals into intracellular processes by modulating a multitude of signaling pathways, the regulation of PKD1levels and/or activity through pharmacological or genetic intervention might aid in cancer treatment.
     PKD1modulates a variaty of cancer-related signaling pathways and therefore regulates multiple biological functions which are critical for the functions of the cancer cells. PKD1mediates the activation of MAPK, JNK and NFκB signaling pathways in response to GPCR agonists. However, the exact functions of PKD1in the signaling pathways regulation is still unknown. In the present study, we aim to explore the regulation of PI3K/Akt and HDAC mediated by PKD1. Also, we examine the expression of PKD1in NSCLC tissues and explore the function and mechanism of PKD1in NSCLC. These results raise the possibility that tumor-specific delivery of the PKD1gene or PKD1activators may have potential therapeutic value in NSCLC patients.
     Objectives:
     1. To identify the activity of PI3K/Akt regualted by PKD1;
     2. To explore the phosphorylations of HDAC4,5,7mediated by PKD1and its impacts for cell cycle and cell proliferation;
     3. To examine the expression patterns and functions of PKD1in NSCLC;
     4. To explore the possible mechanism of PKD1functions in NSCLC.
     Section Ⅰ PKD1Mediates Negative Feedback of PI3K/Akt Activation in Response to G Protein-Coupled Receptors
     Objectives:
     1. To examine the impacts of PKD1inhibitors and siRNAs to PI3K/Akt;
     2. To explore the mechanism of PKD1regulating PI3K/Akt;
     3. To validate the regulation pathway in transgenic animal models.
     Methods:
     1. Stimulation of intestinal epithelial IEC-18cells with angiotensin Ⅱ (ANG Ⅱ), a mitogenic agonist that activates Gq-coupled receptors endogenously expressed by these cells. Cultures of IEC-18cells were treated with increasing concentrations of the selective PKD family inhibitor kb NB142-70for1h and then challenged with50nM ANG Ⅱ. Akt phosphorylation at Thr308and Ser473was examined by western blot.
     2. IEC-18cells were treated with another PKD family inhibitor CRT0066101or transfected with siRNAs. Akt phosphorylation at Thr308and Ser473was examined by western blot.
     3. Cultures of IEC-18cells were treated without or with kb NB142-70or CRT0066101, stimulated with ANG Ⅱ and lysed. The p85aregulatory subunit of PI3K was immunoprecipitated from the lysates and the resulting immunoprecipitates were analyzed by immunoblotting with a motif-specific antibody that detects Ser/Thr phosphorylated by PKD family members. We then examined whether PKD1stimulates binding of p85ato PTEN in intestinal epithelial cells.
     4. we used transgenic mice that express elevated PKD1protein in the small intestine epithelium. Total PKD1and pAkt was examined by western blot.
     Results:
     1. Exposure of IEC-18cells to the selective PKD family inhibitor kb NB142-70potentiates GPCR-induced Akt activation. The selective PKD family inhibitor CRT0066101and knockdown of PKD1potentiate GPCR-induced Akt phosphorylation at Thr308and Ser473.
     2. Inhibition of PKD1increases Akt translocation to the plasma membrane in response to GPCR agonists. Inhibitors of class Ⅰ A PI3K and EGFR prevent the potentiation of Akt induced by suppression of PKD1activity.
     3. ANG Ⅱ markedly increased the phosphorylation of p85adetected by a PKD motif-specific antibody and enhanced the association of p85awith PTEN.
     4. Transgenic mice overexpressing PKD1showed a reduced phosphorylation of Akt at Ser473in intestinal epithelial cells compared to wild type littermates.
     Conclusions:
     1. PKD1activation mediates feedback inhibition of PI3K/Akt signaling.
     2. PKD1-mediated phosphorylation of p85α mediates negative feedback of PIP3accumulation and Akt phosphorylation in GPCR-stimulated cells, at least in part, by enhancing the stimulatory association of p85a with PTEN. Section Ⅱ Protein Kinase D1mediates Class Ⅱa Histone Deacetylase Phosphorylation and Nuclear Extrusion:Role in Mitogenic Signaling
     Objectives:
     To examine whether class Ⅱa histone deacetylases (HDACs) play a role in mitogenic signaling mediated by protein kinase D1(PKD1)
     Methods:
     1. Cell lysates were analyzed by Western blotting using antibodies thatrecognize class Ⅱa HDACs4,57and9. We then used an antibody that detects the phosphorylated state of HDAC4at Ser246, HDAC5at Ser259and HDAC7at Ser155and a second antibody that recognizes the phosphorylated state HDAC4at Ser632, HDAC5at Ser498and HDAC7at Ser486in cells stimulated with GPCR agonists(ANGII).
     2. We used the recently identified preferential PKD family inhibitors kb NB142-70and CRT0066101which act as potent PKD1inhibitors in intact IEC-18cells. Cultures of IEC-18cells were treated with increasing concentrations of kb NB142-70or CRT0066101for1h and then stimulated with ANGⅡ.
     3. The effect of ANG Ⅱ on endogenous HDAC5nucleocytoplasmic shuttling was examined by immunofluorescence analysis. Cultures of IEC-18cells were transfected with epitope (FLAG)-tagged HDAC5or an identical construct in which Ser259and Ser498were mutated to non-phosphorylatable Ala.
     4. Cultures of IEC-18cells in serum-free medium were stimulated with ANG Ⅱ in the absence or presence ofincreasing concentrations of the specific class Ⅱa HDAC inhibitor MC1568and DNA synthesis was assessed by measuring [3H]thymidine incorporation into acid-precipitable material.
     5. We then used transgenic mice that express elevated PKD1protein in the small intestine epithelium and display a marked increase in DNAsynthesizing cells in their intestinal crypts and a significant increase in the length and total number of cells per crypt.
     Results:
     1. Class Ⅱa HDAC4,5and7are prominently expressed in these cells. Simulation with angiotensin Ⅱ (ANG Ⅱ), a potent mitogen for IEC-18cells, induced a striking increase in the phosphorylation of HDAC4at Ser246and Ser632, HDAC5at Ser259and Ser498and HDAC7at Ser155.
     2. Treatment with the PKD family inhibitors kb NB142-70and CRT0066101or siRNA-mediated knockdown of PKD1prevented ANG Ⅱ-induced phosphorylation of HDAC4,5and7.
     3. PKD1-mediated phosphorylation of HDAC5induces its nuclear extrusion into the cytoplasm. In contrast, HDAC5with Ser259and Ser498mutated to Ala was localized to the nucleus in both unstimulated and stimulated cells.
     4. Treatment of IEC-18cells with specific inhibitors of class ⅡaHDACs, including MC1568and TMP269, prevented cell cycle progression, DNA synthesis and proliferation induced in response to GPCR/PKD1activation.
     5. The PKD1/class Ⅱa HDAC axis also functions in intestinal epithelial cell in vivo.
     Conclusions:
     Our results reveal a PKD1/classIIa HDAC axis in intestinal epithelial cells leading to mitogenic signaling.
     Section Ⅲ PKD1is downregulated in non-small cell lung cancer and mediates the feedback inhibition of mTORCl-S6K1axis in response
     to phorbol ester
     Objectives:
     1. To determine the expression patterns and the role of PKD1in NSCLC;
     2. To elucidate the regulation of the mTORC1activity by PKD1.
     Methods:
     1. Thirty-four pairs of human NSCLC and matched normal bronchiolar epitheliums were enrolled and evaluated for PKD1expression by quantitative real-time PCR.
     2. Exposure of NSCLC A549and H520cells to the PKD family inhibitor kb NB 142-70(Kb), S6K1phosphorylation at Thr389and S6phosphorylation at Ser235/236was determined by western blot.
     3. We then used the PI3K inhibitors LY294002, BKM120and MEK inhibitors U0126, PD0325901to block the enhanced S6K1activity induced by the PKDl inhibition by Kb.
     Results:
     1. PKD1was downregulated in26of34cancer tissues in comparison with matched normal epitheliums. Moreover, patients with venous invasion or lymph node metastasis showed significant lower expression of PKD1.
     2. Exposure of NSCLC A549and H520cells to the PKD family inhibitor kb NB142-70(Kb), at concentrations that inhibited PKD1activation, strikingly potentiated S6K1phosphorylation at Thr389and S6phosphorylation at Ser235/236in response to phorbol ester (PMA).
     3. Knockdown of PKD1with siRNA also strikingly enhanced S6K1phosphorylation in response to PMA stimulation.
     4. exposure of cells to either Kb/PI3K inhibitor or Kb/MEK inhibitor strikingly inhibits S6K1and S6phosphorylation in response to PMA.
     Conclusions:
     Our results identify decreased expression of the PKD1as a marker for NSCLC and the loss of PKD1expression increases the malignant potential of NSCLC cells. This may be due to the function of PKD1as a negative regulator of mTORCl-S6K1. Re-expression or activation of PKDl might serve as a potential therapeutic target for NSCLC treatment.
引文
1 Valverde, A. M., Sinnett-Smith, J., Van Lint, J. & Rozengurt, E. Molecular cloning and characterization of protein kinase D:a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci U S A 91,8572-8576 (1994).
    2 Johannes, F. J., Prestle, J., Eis, S., Oberhagemann, P. & Pfizenmaier, K. PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem 269, 6140-6148 (1994).
    3 Jaggi, M., Du, C., Zhang, W. & Balaji, K. C. Protein kinase D1:a protein of emerging translational interest. Front Biosci 12,3757-3767 (2007).
    4 Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298,1912-1934, doi:10.1126/science.1075762 (2002).
    5 Rozengurt, E., Rey, O. & Waldron, R. T. Protein kinase D signaling. J Biol Chem 280,13205-13208, doi:10.1074/jbc.R500002200 (2005).
    6 Van Lint, J. et al. Protein kinase D:an intracellular traffic regulator on the move. Trends Cell Biol 12,193-200 (2002).
    7 Rykx, A. et al. Protein kinase D:a family affair. FEBS Lett 546,81-86 (2003).
    8 Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101,6062-6067, doi:10.1073/pnas.0400782101(2004).
    9 Rozengurt, E. Protein kinase D signaling:multiple biological functions in health and disease. Physiology 26,23-33 (2011).
    10 Waldron, R. T. & Rozengurt, E. Protein kinase C phosphorylates protein kinase D activation loop Ser744 and Ser748 and releases autoinhibition by the pleckstrin homology domain. Journal of Biological Chemistry 278,154-163 (2003).
    11 Cuello, F. et al. Protein kinase D selectively targets cardiac troponin I and regulates myofilament Ca2+ sensitivity in ventricular myocytes. Circulation research 100,864-873 (2007).
    12 Doppler, H. & Storz, P. A novel tyrosine phosphorylation site in protein kinase D contributes to oxidative stress-mediated activation. J Biol Chem 282, 31873-31881, doi:10.1074/jbc.M703584200 (2007).
    13 Fugmann, T. et al. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J Cell Biol 178, 15-22, doi:10.1083/jcb.200612017 (2007).
    14 Hurd, C. & Rozengurt, E. Uncoupling of protein kinase D from suppression of EGF-dependent c-Jun phosphorylation in cancer cells. Biochem Biophys Res Commun 302,800-804 (2003).
    15 Jacamo, R., Sinnett-Smith, J., Rey, O., Waldron, R. T. & Rozengurt, E. Sequential protein kinase C (PKC)-dependent and PKC-independent protein kinase D catalytic activation via Gq-coupled receptors:differential regulation of activation loop Ser(744) and Ser(748) phosphorylation. J Biol Chem 283, 12877-12887, doi:10.1074/jbc.M800442200 (2008).
    16 Rybin, V. O., Guo, J. & Steinberg, S. F. Protein kinase D1 autophosphorylation via distinct mechanisms at Ser744/Ser748 and Ser916. J Biol Chem 284, 2332-2343, doi:10.1074/jbc.M806381200 (2009).
    17 Guha, S., Tanasanvimon, S., Sinnett-Smith, J. & Rozengurt, E. Role of protein kinase D signaling in pancreatic cancer. Biochem Pharmacol 80,1946-1954, doi:10.1016/j.bcp.2010.07.002(2010).
    18 LaValle, C. R. et al. Protein kinase D as a potential new target for cancer therapy. Biochim Biophys Acta 1806,183-192, doi:10.1016/j.bbcan.2010.05.003(2010).
    19 Rozengurt, E. Mitogenic signaling pathways induced by G protein-coupled receptors. Journal of cellular physiology 213,589-602 (2007).
    20 Sinnett-Smith, J., Zhukova, E., Hsieh, N., Jiang, X. & Rozengurt, E. Protein kinase D potentiates DNA synthesis induced by Gq-coupled receptors by increasing the duration of ERK signaling in swiss 3T3 cells. Journal of Biological Chemistry 279,16883-16893 (2004).
    21 Wagner, E. F. & Nebreda, A. R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Reviews Cancer 9,537-549 (2009).
    22 Kisfalvi, K., Hurd, C., Guha, S. & Rozengurt, E. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells. Journal of cellular physiology 223,309-316 (2010).
    23 Brenner, W. et al. Adhesion of renal carcinoma cells to endothelial cells depends on PKCμ, BMC cancer 10,183 (2010).
    24 Storz, P. Mitochondrial ROS-radical detoxification, mediated by protein kinase D. Trends in cell biology 17,13-18 (2007).
    25 Storz, P. & Toker, A. Protein kinase D mediates a stress-induced NF-kappaB activation and survival pathway. EMBO J 22,109-120, doi:10.1093/emboj/cdg009 (2003).
    26 Muller, S. & H Kramer, O. Inhibitors of HDACs-effective drugs against cancer? Current cancer drug targets 10,210-228 (2010).
    27 Ha, C. H. et al. Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. Journal of Biological Chemistry 283,14590-14599 (2008).
    28 Ha, C. H., Jhun, B. S., Kao, H.-Y. & Jin, Z.-G. VEGF stimulates HDAC7 phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis. Arteriosclerosis, thrombosis, and vascular biology 28,1782-1788 (2008).
    29 Watkins, J. L. et al. Phosphorylation of the Par-1 polarity kinase by protein kinase D regulates 14-3-3 binding and membrane association. Proceedings of the National Academy of Sciences 105,18378-18383 (2008).
    30 Jaggi, M. et al. in Urologic Oncology:Seminars and Original Investigations. 402-406 (Elsevier).
    31 Jaggi, M., Chauhan, S. C., Du, C. & Balaji, K. Bryostatin 1 modulates β-catenin subcellular localization and transcription activity through protein kinase D1 activation. Molecular cancer therapeutics 7,2703-2712 (2008).
    32 Jaggi, M. et al. E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Res 65,483-492 (2005).
    33 Woods, A. J., White, D. P., Caswell, P. T. & Norman, J. C. PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions. EMBO J 23,2531-2543, doi:10.1038/sj.emboj.7600267 (2004).
    34 Jaggi, M., Rao, P. S., Smith, D. J., Hemstreet, G. P. & Balaji, K. C. Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun 307,254-260 (2003).
    35 Du, C., Jaggi, M., Zhang, C. & Balaji, K. C. Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin. Cancer Res 69, 1117-1124, doi:10.1158/0008-5472.can-07-6270 (2009).
    36 Eiseler, T., Doppler, H., Yan, I. K., Goodison, S. & Storz, P. Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res 11, R13 (2009).
    37 Kim, M. et al. Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis 29, 629-637 (2008).
    38 Wu, C. et al. BioGPS:an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10, R130 (2009).
    39 Jaggi, M., Du, C., Zhang, W. & Balaji, K. C. Protein kinase D1:a protein of emerging translational interest. Front Biosci 12,3757-3767 (2007).
    40 Syed, V., Mak, P., Du, C. & Balaji, K. β-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. Journal of cellular biochemistry 104,82-95 (2008).
    41 Hassan, S., Biswas, M. H. U., Zhang, C., Du, C. & Balaji, K. Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 28,4386-4396 (2009).
    42 Smith, D. J. et al. Metallothioneins and resistance to cisplatin and radiation in prostate cancer. Urology 67,1341-1347 (2006).
    43 LaValle, C. R. et al. Novel protein kinase D inhibitors cause potent arrest in prostate cancer cell growth and motility. BMC chemical biology 10,5 (2010).
    44 LaValle, C. R. et al. Protein kinase D as a potential new target for cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1806, 183-192 (2010).
    45 Eiseler, T., Schmid, M. A., Topbas, F., Pfizenmaier, K. & Hausser, A. PKD is recruited to sites of actin remodelling at the leading edge and negatively regulates cell migration. FEBS letters 581,4279-4287 (2007).
    46 Du, C., Zhang, C., Hassan, S., Biswas, M. H. U. & Balaji, K. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer research 70,7810-7819 (2010).
    47 Perez, C. E. R., Nie, W., Sinnett-Smith, J., Rozengurt, E. & Yoo, J. TNF-a potentiates lysophosphatidic acid-induced COX-2 expression via PKD in human colonic myofibroblasts. American Journal of Physiology-Gastrointestinal and Liver Physiology 300, G637 (2011).
    48 Guha, S., Lunn, J. A., Santiskulvong, C. & Rozengurt, E. Neurotensin stimulates protein kinase C-dependent mitogenic signaling in human pancreatic carcinoma cell line PANC-1. Cancer research 63,2379-2387 (2003).
    49 Guha, S., Rey, O. & Rozengurt, E. Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer research 62,1632-1640 (2002).
    50 Trauzold, A. et al. PKCμ prevents CD95-mediated apoptosis and enhances proliferation in pancreatic tumour cells. Oncogene 22,8939-8947 (2003).
    51 Harikumar, K. B. et al. A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Molecular cancer therapeutics 9,1136-1146 (2010).
    52 Ristich, V., Bowman, P., Dodd, M. & Bollag, W. Protein kinase D distribution in normal human epidermis, basal cell carcinoma and psoriasis. British Journal of Dermatology 154,586-593 (2006).
    53 Jadali, A. & Ghazizadeh, S. Protein kinase D is implicated in the reversible commitment to differentiation in primary cultures of mouse keratinocytes. Journal of Biological Chemistry 285,23387-23397 (2010).
    54 Arun, S. N., Kaddour-Djebbar, I., Shapiro, B. A. & Bollag, W. B. Ultraviolet B irradiation and activation of protein kinase D in primary mouse epidermal keratinocytes. Oncogene 30,1586-1596 (2011).
    55 陈万青&张思维.中国肿瘤登记的代表性研究.中国肿瘤17,832-835(2008).
    56 Franke, T. PI3K/Akt:getting it right matters. Oncogene 27,6473-6488 (2008).
    57 Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nature reviews Molecular cell biology 11,329-341 (2010).
    58 Chan, T. O., Rittenhouse, S. E. & Tsichlis, P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases:kinase activation by phosphoinositide-dependent phosphorylation. Annual review of biochemistry 68,965-1014 (1999).
    59 Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149,274-293 (2012).
    60 Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101 (2005).
    61 Chiu, T., Santiskulvong, C. & Rozengurt, E. EGF receptor transactivation mediates ANG II-stimulated mitogenesis in intestinal epithelial cells through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway. American Journal of Physiology-Gastrointestinal and Liver Physiology 288, G182-G194 (2005).
    62 Buchanan, F. G et al. Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci U S A 103,1492-1497, doi:10.1073/pnas.0510562103 (2006).
    63 Jiang, X., Sinnett-Smith, J. & Rozengurt, E. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells. Biochemical and biophysical research communications 387,521-524(2009).
    64 Kajiya, M. et al. Muscarinic Type 3 Receptor Induces Cytoprotective Signaling in Salivary Gland Cells through Epidermal Growth Factor Receptor Transactivation. Molecular pharmacology 82,115-124 (2012).
    65 Ueda, H., Morishita, R., Narumiya, S., Kato, K. & Asano, T. Galphaq/11 signaling induces apoptosis through two pathways involving reduction of Akt phosphorylation and activation of RhoA in HeLa cells. Exp Cell Res 298, 207-217, doi:10.1016/j.yexcr.2004.04.015 (2004).
    66 Batty, I., Fleming, I. & DOWNES, C. Muscarinic-receptor-mediated inhibition of insulin-like growth factor-1 receptor-stimulated phosphoinositide 3-kinase signalling in 1321N1 astrocytoma cells. Biochem. J 379,641-651 (2004).
    67 Berna, M. J. et al. Gastrointestinal growth factors and hormones have divergent effects on Akt activation. Cellular signalling 21,622-638 (2009).
    68 Wu, E. H., Tam, B. H. & Wong, Y. H. Constitutively active alpha subunits of G(q/11) and G(12/13) families inhibit activation of the pro-survival Akt signaling cascade. FEBS J 273,2388-2398, doi:10.1111/j.1742-4658.2006.05245.x(2006).
    69 Taboubi, S. et al. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration. Molecular biology of the cell 21,946-955 (2010).
    70 Ben-Ami, I., Yao, Z., Naor, Z. & Seger, R. Gq protein-induced apoptosis is mediated by AKT kinase inhibition that leads to protein kinase C-induced c-Jun N-terminal kinase activation. Journal of Biological Chemistry 286, 31022-31031 (2011).
    71 Courtois-Cox, S., Jones, S. & Cichowski, K. Many roads lead to oncogene-induced senescence. Oncogene 27,2801-2809 (2008).
    72 Napoli, E. et al. Mitochondrial dysfunction in Pten haplo-insufficient mice with social deficits and repetitive behavior:interplay between Pten and p53. PloS one 7, e42504 (2012).
    73 Luckhart, S. et al. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS pathogens 9, e1003180 (2013).
    74 Miyauchi, H. et al. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. The EMBO journal 23, 212-220 (2004).
    75 Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer cell 19,58-71 (2011).
    76 Muranen, T. et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer cell 21,227-239 (2012).
    77 Sinnett-Smith, J., Rozengurt, N., Kui, R., Huang, C. & Rozengurt, E. Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts. Journal of Biological Chemistry 286,511-520 (2011).
    78 Young, S. H., Rozengurt, N., Sinnett-Smith, J. & Rozengurt, E. Rapid protein kinase D1 signaling promotes migration of intestinal epithelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 303, G356 (2012).
    79 Rozengurt, E. & Walsh, J. H. Gastrin, CCK, signaling, and cancer. Annual Review of Physiology 63,49-76 (2001).
    80 Kwon, Y., Hofmann, T. & Montell, C. Integration of phosphoinositide-and calmodulin-mediated regulation of TRPC6. Molecular cell 25,491-503 (2007).
    81 Geering, B., Cutillas, P. R., Nock, G., Gharbi, S. I. & Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proceedings of the National Academy of Sciences 104,7809-7814 (2007).
    82 Dhand, R. et al. PI 3-kinase is a dual specificity enzyme:autoregulation by an intrinsic protein-serine kinase activity. The EMBO journal 13,522 (1994).
    83 Foukas, L. C., Beeton, C. A., Jensen, J., Phillips, W. A. & Shepherd, P. R. Regulation of phosphoinositide 3-kinase by its intrinsic serine kinase activity in vivo. Molecular and cellular biology 24,966-975 (2004).
    84 Lee, J. Y., Chiu, Y.-H., Asara, J. & Cantley, L. C. Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85a Src homology-2 domains. Proceedings of the National Academy of Sciences 108, 14157-14162 (2011).
    85 Cosentino, C. et al. p85 regulatory subunit of PI3K mediates cAMP-PKA and estrogens biological effects on growth and survival. Oncogene 26,2095-2103 (2007).
    86 Comb, W. C, Hutti, J. E., Cogswell, P., Cantley, L. C. & Baldwin, A. S. p85a SH2 domain phosphorylation by IKK promotes feedback inhibition of PI3K and Akt in response to cellular starvation. Molecular cell 45,719-730 (2012).
    87 Sinnett-Smith, J. et al. Protein kinase D mediates mitogenic signaling by Gq-coupled receptors through protein kinase C-independent regulation of activation loop Ser744 and Ser748 phosphorylation. Journal of Biological Chemistry 284,13434-13445 (2009).
    88 Jacamo, R., Sinnett-Smith, J., Rey, O., Waldron, R. T. & Rozengurt, E. Sequential Protein Kinase C (PKC)-dependent and PKC-independent Protein Kinase D Catalytic Activation via Gq-coupled Receptors DIFFERENTIAL REGULATION OF ACTIVATION LOOP SER744 AND SER748 PHOSPHORYLATION. Journal of Biological Chemistry 283,12877-12887 (2008).
    89 Ittner, A. et al. Regulation of PTEN activity by p38delta-PKD1 signaling in neutrophils confers inflammatory responses in the lung. J Exp Med 209, 2229-2246, doi:10.1084/jem.20120677 (2012).
    90 Pouyssegur, J., Volmat, V. & Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochemical pharmacology 64, 755-763 (2002).
    91 Murphy, L. O., MacKeigan, J. P. & Blenis, J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Molecular and cellular biology 24, 144-153 (2004).
    92 Rosso, A. et al. p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. Journal of Biological Chemistry 281, 4339-4347 (2006).
    93 Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436,725-730 (2005).
    94 Nishi, J.-i. et al. Vascular endothelial growth factor receptor-1 regulates postnatal angiogenesis through inhibition of the excessive activation of Akt. Circulation research 103,261-268 (2008).
    95 Cheng, J., Phong, B., Wilson, D. C., Hirsch, R. & Kane, L. P. Akt fine-tunes NF-kappaB-dependent gene expression during T cell activation. J Biol Chem 286,36076-36085, doi:10.1074/jbc.M111.259549 (2011).
    1 Burgess, A. W. Growth control mechanisms in normal and transformed intestinal cells. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences 353,903-909 (1998).
    2 Goke, M., Kanai, M. & Podolsky, D. K. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. American Journal of Physiology-Gastrointestinal and Liver Physiology 274, G809-G818 (1998).
    3 Kanai, M., Mullen, C. & Podolsky, D. K. Intestinal trefoil factor induces inactivation of extracellular signal-regulated protein kinase in intestinal epithelial cells. Proceedings of the National Academy of Sciences 95,178-182 (1998).
    4 Rozengurt, E. Protein kinase D signaling:multiple biological functions in health and disease. Physiology 26,23-33 (2011).
    5 Rozengurt, E., Rey, O. & Waldron, R. T. Protein kinase D signaling. J Biol Chem 280,13205-13208, doi:10.1074/jbc.R500002200 (2005).
    6 Ni, Y., Sinnett-Smith, J., Young, S. H. & Rozengurt, E. PKD1 Mediates Negative Feedback of PI3K/Akt Activation in Response to G Protein-Coupled Receptors. PloS one 8, e73149 (2013).
    7 Sinnett-Smith, J., Rozengurt, N., Kui, R., Huang, C. & Rozengurt, E. Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts. Journal of Biological Chemistry 286,511-520 (2011).
    8 Young, S. H., Rozengurt, N., Sinnett-Smith, J. & Rozengurt, E. Rapid protein kinase D1 signaling promotes migration of intestinal epithelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 303, G356 (2012).
    9 Chiu, T. & Rozengurt, E. PKD in intestinal epithelial cells:rapid activation by phorbol esters, LPA, and angiotensin through PKC. American Journal of Physiology-Cell Physiology 280, C929-C942 (2001).
    10 Chiu, T. et al. Vasopressin-mediated mitogenic signaling in intestinal epithelial cells. American Journal of Physiology-Cell Physiology 282, C434-C450 (2002).
    11 Rey, O., Zhukova, E., Sinnett-Smith, J. & Rozengurt, E. Vasopressin-induced intracellular redistribution of protein kinase D in intestinal epithelial cells. Journal of cellular physiology 196,483-492 (2003).
    12 Jacamo, R., Sinnett-Smith, J., Rey, O., Waldron, R. T. & Rozengurt, E. Sequential Protein Kinase C (PKC)-dependent and PKC-independent Protein Kinase D Catalytic Activation via Gq-coupled Receptors DIFFERENTIAL REGULATION OF ACTIVATION LOOP SER744 AND SER748 PHOSPHORYLATION. Journal of Biological Chemistry 283,12877-12887 (2008).
    13 Sinnett-Smith, J. et al. Protein kinase D mediates mitogenic signaling by Gq-coupled receptors through protein kinase C-independent regulation of activation loop Ser744 and Ser748 phosphorylation. Journal of Biological Chemistry 284,13434-13445 (2009).
    14 Waldron, R. T. et al. Activation loop Ser744 and Ser748 in protein kinase D are transphosphorylated in vivo. Journal of Biological Chemistry 276, 32606-32615 (2001).
    15 Haberland, M., Montgomery, R. L.& Olson, E. N. The many roles of histone deacetylases in development and physiology:implications for disease and therapy. Nature Reviews Genetics 10,32-42 (2009).
    16 Parra, M. & Verdin, E. Regulatory signal transduction pathways for class Ⅱa histone deacetylases. Current opinion in pharmacology 10,454-460 (2010).
    17 Mielcarek, M. et al. HDAC4 reduction:a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS biology 11, e1001717(2013).
    18 Jensen, E. D., Gopalakrishnan, R. & Westendorf, J. J. Bone morphogenic protein 2 activates protein kinase D to regulate histone deacetylase 7 localization and repression of Runx2. Journal of Biological Chemistry 284, 2225-2234 (2009).
    19 Matthews, S. A. et al. Essential role for protein kinase D family kinases in the regulation of class II histone deacetylases in B lymphocytes. Molecular and cellular biology 26,1569-1577 (2006).
    20 Monovich, L. et al. A novel kinase inhibitor establishes a predominant role for protein kinase D as a cardiac class Ⅱa histone deacetylase kinase. FEBS letters 584,631-637(2010).
    21 Vega, R. B. et al. Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Molecular and cellular biology 24,8374-8385 (2004).
    22 Fielitz, J. et al. Requirement of protein kinase D1 for pathological cardiac remodeling. Proceedings of the National Academy of Sciences 105,3059-3063 (2008).
    23 Ha, C. H. et al. Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. Journal of Biological Chemistry 283,14590-14599(2008).
    24 Wang, S. et al. Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proceedings of the National Academy of Sciences 105,7738-7743 (2008).
    25 Liu, Y., Contreras, M., Shen, T., Randall, W. R. & Schneider, M. F. a-Adrenergic signalling activates protein kinase D and causes nuclear efflux of the transcriptional repressor HDAC5 in cultured adult mouse soleus skeletal muscle fibres. The Journal of physiology 587,1101-1115 (2009).
    26 Dequiedt, F. et al. Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor-induced Nur77 expression and apoptosis. The Journal of experimental medicine 201,793-804 (2005).
    27 Parra, M, Kasler, H., McKinsey, T. A., Olson, E. N. & Verdin, E. Protein kinase Dl phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation. Journal of Biological Chemistry 280,13762-13770 (2005).
    28 Wu, S. S., Chiu, T. & Rozengurt, E. ANG II and LPA induce Pyk2 tyrosine phosphorylation in intestinal epithelial cells:role of Ca2+, PKC, and Rho kinase. American Journal of Physiology-Cell Physiology 282, C1432-C1444 (2002).
    29 Chiu, T., Santiskulvong, C. & Rozengurt, E. ANG II stimulates PKC-dependent ERK activation, DNA synthesis, and cell division in intestinal epithelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 285, G1-G11 (2003).
    30 Chiu, T., Santiskulvong, C. & Rozengurt, E. EGF receptor transactivation mediates ANG I1-stimulated mitogenesis in intestinal epithelial cells through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway. American Journal of Physiology-Gastrointestinal and Liver Physiology 288, G182-G194 (2005).
    31 Young, S. H. & Rozengurt, E. Qdot nanocrystal conjugates conjugated to bombesin or ANG II label the cognate G protein-coupled receptor in living cells. American Journal of Physiology-Cell Physiology 290, C728-C732 (2006).
    32 Sinnett-Smith, J., Zhukova, E., Hsieh, N., Jiang, X. & Rozengurt, E. Protein kinase D potentiates DNA synthesis induced by Gq-coupled receptors by increasing the duration of ERK signaling in swiss 3T3 cells. Journal of Biological Chemistry 279,16883-16893 (2004).
    33 Zhukova, E., Sinnett-Smith, J. & Rozengurt, E. Protein kinase D potentiates DNA synthesis and cell proliferation induced by bombesin, vasopressin, or phorbol esters in Swiss 3T3 cells. Journal of Biological Chemistry 276, 40298-40305 (2001).
    34 Zugaza, J. L., Waldron, R. T., Sinnett-Smith, J. & Rozengurt, E. Bombesin, vasopressin, endothelin, bradykinin, and platelet-derived growth factor rapidly activate protein kinase D through a protein kinase C-dependent signal transduction pathway. Journal of Biological Chemistry 272,23952-23960 (1997).
    35 Kisfalvi, K., Hurd, C., Guha, S. & Rozengurt, E. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells. Journal of cellular physiology 223,309-316 (2010).
    36 Harikumar, K. B. et al. A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Molecular cancer therapeutics 9,1136-1146 (2010).
    37 Guha, S., Rey, O. & Rozengurt, E. Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Research 62,1632-1640 (2002).
    38 Duong, V. et al. Specific activity of class Ⅱ histone deacetylases in human breast cancer cells. Molecular Cancer Research 6,1908-1919 (2008).
    39 Mai, A. et al. Class Ⅱ (Ⅱa)-selective histone deacetylase inhibitors.1. Synthesis and biological evaluation of novel (aryloxopropenyl) pyrrolyl hydroxyamides. Journal of medicinal chemistry 48,3344-3353 (2005).
    40 Mannaerts, I. et al. Class Ⅱ HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29. PloS one 8, e55786 (2013).
    41 Nebbioso, A. et al. Selective class Ⅱ HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO reports 10,776-782 (2009).
    42 Lobera, M. et al. Selective class Ⅱa histone deacetylase inhibition via a nonchelating zinc-binding group. Nature chemical biology (2013).
    43 Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class Ⅱa histone deacetylases. Proceedings of the National Academy of Sciences 104, 17335-17340(2007).
    44 Schuetz, A. et al. Human HDAC7 harbors a class Ⅱa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. Journal of Biological Chemistry 283,11355-11363 (2008).
    45 Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325,834-840 (2009).
    1 Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics,2013. CA Cancer J Clin 63,11-30, doi:10.3322/caac.21166 (2013).
    2 Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355-365, doi:10.1038/35077225 (2001).
    3 Valverde, A. M., Sinnett-Smith, J., Van Lint, J. & Rozengurt, E. Molecular cloning and characterization of protein kinase D:a target for diacylglycerol and phorbol esters with a distinctive catalytic domain. Proc Natl Acad Sci U S A 91,8572-8576(1994).
    4 Johannes, F. J., Prestle, J., Eis, S., Oberhagemann, P. & Pfizenmaier, K. PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem 269, 6140-6148 (1994).
    5 Rozengurt, E., Rey, O. & Waldron, R. T. Protein kinase D signaling. J Biol Chem 280,13205-13208, doi:10.1074/jbc.R500002200 (2005).
    6 Wang, Q. J. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 27,317-323, doi:10.1016/j.tips.2006.04.003 (2006).
    7 Rykx, A. et al. Protein kinase D:a family affair. FEBSLett 546,81-86 (2003).
    8 Fu, Y. & Rubin, C. S. Protein kinase D:coupling extracellular stimuli to the regulation of cell physiology. EMBO Rep 12,785-796, doi:10.1038/embor.2011.139 (2011).
    9 Iglesias, T. & Rozengurt, E. Protein kinase D activation by mutations within its pleckstrin homology domain. J Biol Chem 273,410-416 (1998).
    10 Waldron, R. T. & Rozengurt, E. Protein kinase C phosphorylates protein kinase D activation loop Ser744 and Ser748 and releases autoinhibition by the pleckstrin homology domain. J Biol Chem 278,154-163, doi:10.1074/jbc.M208075200 (2003).
    11 Van Lint, J. et al. Protein kinase D:an intracellular traffic regulator on the move. Trends Cell Biol 12,193-200 (2002).
    12 Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104,409-420 (2001).
    13 Prigozhina, N. L. & Waterman-Storer, C. M. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol 14,88-98 (2004).
    14 Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298,1912-1934, doi:10.1126/science.1075762 (2002).
    15 Jaggi, M., Rao, P. S., Smith, D. J., Hemstreet, G P. & Balaji, K. C. Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochem Biophys Res Commun 307,254-260 (2003).
    16 Eiseler, T., Doppler, H., Yan, I. K., Goodison, S. & Storz, P. Protein kinase D1 regulates matrix metalloproteinase expression and inhibits breast cancer cell invasion. Breast Cancer Res 11, R13, doi:10.1186/bcr2232 (2009).
    17 Du, C., Jaggi, M., Zhang, C. & Balaji, K. C. Protein kinase D1-mediated phosphorylation and subcellular localization of beta-catenin. Cancer Res 69, 1117-1124, doi:10.1158/0008-5472.can-07-6270 (2009).
    18 Kim, M. et al. Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis 29, 629-637, doi:10.1093/carcin/bgm291 (2008).
    19 Guha, S., Tanasanvimon, S., Sinnett-Smith, J. & Rozengurt, E. Role of protein kinase D signaling in pancreatic cancer. Biochem Pharmacol 80,1946-1954, doi:10.1016/j.bcp.2010.07.002(2010).
    20 Guha, S., Rey, O. & Rozengurt, E. Neurotensin induces protein kinase C-dependent protein kinase D activation and DNA synthesis in human pancreatic carcinoma cell line PANC-1. Cancer Res 62,1632-1640 (2002).
    21 Hay, N. The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8, 179-183, doi:10.1016/j.ccr.2005.08.008 (2005).
    22 Barbet, N. C. et al. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7,25-42 (1996).
    23 Brunn, G J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277,99-101 (1997).
    24 Dorrello, N. V. et al. S6K1-and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314,467-471, doi:10.1126/science.1130276(2006).
    25 Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124,471-484, doi:10.1016/j.cell.2006.01.016 (2006).
    26 Scott, P. H., Brunn, G J., Kohn, A. D., Roth, R. A. & Lawrence, J. C., Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95,7772-7777 (1998).
    27 Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R. & Shepherd, P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344 Pt 2,427-431 (1999).
    28 Ballif, B. A. et al. Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci U S A 102,667-672, doi:10.1073/pnas.0409143102 (2005).
    29 Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121,179-193, doi:10.1016/j.cell.2005.02.031(2005).
    30 Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P. & Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101,13489-13494, doi:10.1073/pnas.0405659101 (2004).
    31 Johannessen, C.M. et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A 102,8573-8578, doi:10.1073/pnas.0503224102 (2005).
    32 Lee, J. Y., Chiu, Y. H., Asara, J. & Cantley, L. C. Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85 Src homology-2 domains. Proceedings of the National Academy of Sciences 108, 14157-14162, doi:10.1073/pnas.1107747108 (2011).
    33 Ni, Y, Sinnett-Smith, J., Young, S. H. & Rozengurt, E. PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors. PLoS ONE 8, e73149, doi:10.1371/journal.pone.0073149 (2013).
    34 Kisfalvi, K., Hurd, C., Guha, S. & Rozengurt, E. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells. J Cell Physiol 223,309-316, doi:10.1002/jcp.22036 (2010).
    35 Bollag, W. B., Dodd, M. E. & Shapiro, B. A. Protein kinase D and keratinocyte proliferation. Drug News Perspect 17,117-126 (2004).
    36 Ristich, V. L., Bowman, P. H., Dodd, M. E. & Bollag, W. B. Protein kinase D distribution in normal human epidermis, basal cell carcinoma and psoriasis. Br JDermatol 154,586-593, doi:10.1111/j.1365-2133.2005.07073.x (2006).
    37 Wislez, M. et al. Inhibition of mammalian target of rapamycin reverses alveolar epithelial neoplasia induced by oncogenic K-ras. Cancer Res 65, 3226-3235, doi:10.1158/0008-5472.can-04-4420 (2005).
    38 Ittner, A. et al. Regulation of PTEN activity by p38-PKD1 signaling in neutrophils confers inflammatory responses in the lung. Journal of Experimental Medicine 209,2229-2246, doi:10.1084/jem.20120677 (2012).
    39 Jiang, X., Sinnett-Smith, J. & Rozengurt, E. Carbachol induces p70S6K1 activation through an ERK-dependent but Akt-independent pathway in human colonic epithelial cells. Biochem Biophys Res Commun 387,521-524, doi:10.1016/j.bbrc.2009.07.060(2009).
    40 Carriere, A. et al. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem 286,567-577, doi:10.1074/jbc.M110.159046(2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700