用户名: 密码: 验证码:
miRNA作为肿瘤标记物与肝癌发生关系的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是人类常见的、高恶性程度的肿瘤之一,位居全球恶性肿瘤发病率的第5位、肿瘤死因的第3位。肝癌的发病率以亚洲和非洲国家为高,在我国更是成为恶性肿瘤的第2位杀手。引起肝癌发病的主要因素包括肝炎病毒(HBV、 HCV)感染、食品黄曲霉素(aflatoxin, AF)污染、饮水微囊藻毒素(Microcystin,MC)污染以及遗传因素等。尽管目前提出了多种理论解释肝癌的发生和发展,但是这种疾病的确切发生机制仍不清楚。
     内源性表达的小分子非编码RNA,称为微小RNA(microRNA, miRNA)是近年发现的一类核酸组分,广泛参与生物基因的表达调控,人类基因组中约1/3基因的表达可看到miRNA调控的存在,并在细胞生长、分化、凋亡及肿瘤发生中发挥了关键作用。研究显示miRNA的表达异常贯穿于肝癌发生的整个过程,某些关键miRNA表达水平的失衡是肝癌发生和演进的重要分子事件。鉴于miRNA变化具有的前瞻性,即在肿瘤形成之前其已呈现可检出的表达异常。研究miRNA与肝细胞转化、成瘤演进过程中的变化,对于临床的早期诊断与治疗、以及监测环境微量污染物潜在致癌作用具有重要意义。
     本研究探讨了miRNA在肝癌病人组织和淡水污染物——微囊藻毒素诱导肝细胞恶性转化中的差异表达,筛选与肝癌相关的miRNA作为生物标记物,为临床诊断与治疗,以及环境毒物致肝癌发生提供科学依据。
     第一部分:miRNA在肝细胞性肝癌临床组织样本中差异表达的检出及其生物学的研究
     目的
     探寻肝细胞性肝癌(HCC)中异常表达的特征性miRNA,分析其引发HCC的可能机制及其作为临床检测生物标记物的可能性。
     二、方法
     1、利用MicroRNA microarray技术,分析比较临床肝癌组织与其同源癌旁组织miRNA差异表达谱。
     2、利用荧光定量RT-PCR技术比较miR-491-3p和miR-875-3p在85例HCC组织中的差异表达。
     3、构建miR-491和miR-875前体质粒,转染入HepG2细胞,流式细胞技术分析其对细胞周期的影响。
     三、结果
     1、四例HCC组织miRNA差异表达谱显示,在癌组织中发生明显上调miRNA22种,下调miRNA20种。
     2、荧光定量RT-PCR技术筛检发现,miR-491-3p在HCC病人组织中下调比例为41.2%,在非肝硬化及非静脉侵袭的癌组织中下调更为明显,且与细胞分化程度相关。miR-875-3p在HCC病人组织中下调比例为60%,在非肝硬化及非包膜侵袭的癌组织中下调更为明显,且与细胞分化程度相关。
     3、流式细胞检测显示,miR-491-3p可以引起细胞的凋亡增加,而miR-875-3p则引起细胞阻滞于G0/G1期。
     四、结论
     HCC中普遍存在miRNAs的表达异常。其中miR-491-3p和niR-875-3p在HCC中明显下调,且与肝癌的临床特征相关联,可能成为发展肝癌临床诊断和治疗技术的分子靶点。
     第二部分:miRNA在微囊藻毒素-LR诱导肝癌发生中的作用
     一、目的
     建立MC-LR诱导肝细胞恶性转化模型,分析其miRNA的差异表达,并探讨miRNA作为MC-LR诱导肝癌发生监测分子靶标的可能性及意义。
     二、方法
     1、MC-LR连续刺激WRL-68细胞后,采用MTT法检测细胞增殖及血清依赖情况,流式细胞技术观察细胞周期变化,裸鼠成瘤实验显示细胞恶性程度。
     2、利用MicroRNA microarray技术MC-LR诱导恶性转化细胞进行miRNA差异表达谱分析。
     3、小鼠MC-LR饮水喂养,通过血清ALT、 AST和组织切片分析小鼠肝损伤状态。
     4、荧光定量RT-PCR技术测定小鼠肝脏miR-21、 miR-122、 miR-195、 miR-221、 miR-222、 miR-338-5p和miR-491-3p的差异表达。
     三、结果
     1、 MC-LR连续刺激WRL-68细胞25代后,细胞增殖增强、血清依赖性下降、出现多倍体峰,且能在裸鼠体内成瘤,证实MC-LR可以导致体外细胞恶性转化。
     2、MC-LR导致体外细胞恶性转化miRNA差异表达谱显示,有126个明显改变(2倍以上变化),其中78种miRNA表达上调,48种miRNA表达下调。
     3、MC-LR80ug/L组连续饮水9个月,小鼠肝细胞双核明显增加,提示MC-LR可引起小鼠肝细胞基因组不稳定,具有发生恶性转化的潜能。
     4、荧光定量RT-PCR技术测定显示,小鼠肝脏慢性MC-LR毒染过程中,miR-21、 miR-221和miR-222表达上调,miR-122、 miR-338-5p和niR-491-3p表达下调,miR-195在40ug/L组表达上调,而80ug/L组表达下调。
     四、结论
     本研究显示,MC-LR诱导的体内外肝细胞恶性转化过程中均存在miRNA的差异表达。miRNA的特征性表达可能成为环境污染物的分子检测指标。
Hepatocellular carcinoma (HCC) is the fifth most common malignant cancer and the third leading cause of death of cancer-related death. Although most cases occur in Asia and Africa, the incidence has been steadily increasing in the west over the last20years. The major etiologies of HCC include hepatitis B or C virus infection, aflatoxin or water pollution and hereditary factor. It has been known that the hepatocarcinogenesis involves a complex, multistep process, which is linked tightly to chronic liver damage. A variety of molecular alterations that can result in the loss of cell-cycle checkpoints, resistance to apoptosis or activation of oncogenic pathways occurred at the initiation stage and in the development of liver cancer. However, neither of these molecular alterations has steadily been revealed in hepatocellular carcinomas. Recent studies suggested that miRNA expression alteration could play an important role in pathogenesis of HCC.
     MiRNAs are small non-coding RNAs of20-22nucleotides, which control a wide range of biological processes including developmental timing, cell proliferation, differentiation, apoptosis, and metabolism, etc. MiRNAs interact with target mRNAs at specific sites within their3'-untranslated regions (UTRs) to inhibit protein translation or induce the target mRNAs cleavage. More than60%of human protein-coding genes are predicted to contain miRNAs binding sites and therefore subject to miRNAs regulation. Furthermore, aberrant expression of miRNAs has been associated with various human diseases. A considerable body of evidence support that miRNAs can control the regulation of cancer development, and also represented in the environmental pollutant-and toxicant-induced carcinogenesis. All of the investigated human cancers, including HCC, are characterized by globally abnormal miRNA expression patterns. Moreover, the association demonstrated between the characteristic miRNA expression patterns and cancer types suggests that different response of miRNAs is observed among cancers from different tissues of origin. The special changes of miRNAs expression in cells can stimulate a cascade of cancer development. Therefore, the assay of miRNAs expression alteration in early stages of cancer promises an insight into the underlying mechanisms of carcinogenesis.
     In the present study, we sought to explore the altered expression of miRNAs underscored in HCC patients and the MC-LR-induced hepatocarcinogenesis. We consider that these results will promise to identify HCC and MC-LR-related miRNA alterations in tumorigenesis, which could be taken as biomarkers for using diagnosis in HCC or in water environmental monitoring, even for the development of miRNA-based prevention and treatment of hepatocellular carcinoma.
     Part Ⅰ miRNA profiling in hepatocellular carcinoma is associated with clinical features
     Objective
     In this present study, we examined the expression profiles of miRNA in4pairs of HCC tumorous tissue and adjacent non-tumorous tissue by microRNA microarray method and then identified differentially expressed miR-491-5p and miR-875-5p in85patients to analysis the correlation between HCC and their clinic phenotype. Different miRNA expression could have relevance to the clinical behavior HCC and the miRNA expression may prognosticate disease outcome in HCC.
     Methods
     1. MicroRNA microarray experimentation including labeling, hybridization, scanning, normalization and data analysis was conducted by Exiqon A/S Technology Platform (Vedbaeck, Denmark).
     2. TaqMan microRNA real-time quantitative-PCR analysis85HCC tumorous tissue and adjacent non-tumorous tissue for miR-491-3p and miR-875-3p.
     3. The recombinant plasmids expressing miR-491-3p and miR-875-3p were obtained by transfection of pEGFP-C1-miR-491and pEGFP-C1-miR-875into HepG2cells. We used PI staining to determine the cell cycle.
     Result
     1. The first aim of the present study was to investigate whether aberrantly expressed miRNAs between HCC tissues (T) to their corresponding normal tissues (NT). We identified22miRNAs were significantly upregulated expressed and20miRNAs were significantly downregulated expressed in the HCC tissues (mean fold change>2or<0.5).
     2. MiRNA specific real-time RT-PCR was used to test miR-491-3p and miR-875-3p expression lever in85HCC tissues to their corresponding normal tissues. The relative expression lever of these miRNAs significantly differed in T and NT. MiR-491-3p (41.2%) and miR-875-3p (60%)(Wilcoxon signed-rank test) were down-regulated in T.
     3. Of all variables tested, the statistical analysis only revealed that the miR-491-3p and miR-875-3p expression lever is lower in non-cirrhosis compared with cirrhosis (p=0.017and p<0.001) and in poorly differentiation (p<0.001and p<0.001).
     4. The transfection of pEGFP-C1-miR-491cells represented a significant enhanced proportion of apoptosis in cell cycle analysis, and the transfection of pEGFP-C1-miR-875cells had a significant enhanced proportion of G0/G1phase and a reduced of G2/M and S phase.
     Conclusion
     In the present study, we have shown for the first time that the expression of miR-491-3p and miR-875-3p were downregulated in HCC. Results reported here may provide a useful clue for the research into HCC. Further investigation is needed to expound the function of miR-491-3p and miR-875-3p in the HCC, which may lead to finding new methods to diagnose, treat and prevent HCC.
     Part II Alteration of microRNA Expression Profile Linked to Microcystin-LR-Induced Tumorigenicity
     Objective
     MC-LR has been shown to be a cyclic heptapeptide that acts as a potent hepatotoxin and cancinogen. However, the mechanism for its carcinogenic action remains to be determind. In this work, we used MC-LR to induce the malignant transformation in vitro and in vivo, and analyzed the miRNA expressed alteration in the transformed cells for addressing the miRNA role in the process.
     Methods
     1. The cultured WRL-68cells were continuously exposed to low concentration (10μg/L) of MC-LR for25passages (25MC10). We tested for their growth kinetics, resistance to serum-induced terminal, cell cycle and tumorigenicity in nude mice to investigate the transformed cells.
     2. MicroRNA microarray experimentation including labeling, hybridization, scanning, normalization and data analysis was conducted by Exiqon A/S Technology Platform (Vedbaeck, Denmark).
     3. The mice were fed on commercial laboratory chow and give MC-LR water. Serum was separated by centrifugation, and serum AST and ALT activities were estimated. Liver sections were taken and fixed in4%neutral-buffered formalin and prepared for examination under a photomicroscope.
     4. TaqMan microRNA real-time quantitative RT-PCR analysis mice liver for miR-21、 miR-122、 miR-195、 miR-221、 miR-222、 miR-338-5p and miR-491-3p.
     Result
     1. The cultured WRL-68cells were continuously exposed to low concentration (lOμg/L) of MC-LR for25passages (25MC10). Compared to the mocked treated parental cells, the induced25MC10cells represented a higher growth rate, a resistance to serum-induced terminal differentiation, and the tumorigenicity phenotype in nude mice xenograft test.
     2. Array-based miRNA expression profiles showed that78of miRNAs were up-regualted and48were down-regualted respectively in the25MC10cells.
     3. While treatment of MC-LR80ug/L in9months, serum AST and ALT activities were remarkably increased. The histological pattern was significant increased of dicaryon in hepatoceyte, which showed MC-LR induced malignant transformation in vivo.
     4. MiRNA specific real-time quantitative RT-PCR was used to test. miR-21、 miR-221and miR-222were upregulated, and miR-122、. miR-338-5p and miR-491-3p were downregulated in MC-LR-treatment livers. miR-195were upregulated in40ug/L group, but downregulated in80ug/L group.
     Conclusion
     These results suggest that chronic exposure to MC-LR can alternate the miRNA expression profile of hepatocarcinogenesis in vitro and in vivo. The characteristic miRNA alterations could be taken as the molecular targets for developing environment molecular inspection techniques.
引文
1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362:1907-1917.
    2. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia S, Croce CM, Schmittgen TD, Ghoshal K and Jacob ST. Methylation Mediated Silencing of MicroRNA-1 Gene and Its Role in Hepatocellular Carcinogenesis. Cancer Res,2008; 68 (13):5049-5958.
    3. Zhu ZZ, Cong WM. Roles of hepatitis B virus and hepatitis C virus in hepato-carcinogenesis. Zhonghua Ganzangbing Zazhi.2003; 11:574-576.
    4. Ross RK, Yuan JM, Yu MC, Wogan GN, Qian GS, Tu JT, Groopman JD, Gao YT, Henderson BE. Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet.1992; 339:943-946.
    5. Chen CJ, Wang LY, Lu SN, Wu MH, You SL, Zhang YJ, Wang LW, Santella RM. Elevated aflatoxin exposure and increased risk of hepatocellular carcinoma. Hepatology.1996; 24:38-42.
    6. Tang ZY. Hepatocellular carcinoma-cause, treatment and metastasis. World J Gastroenterol.2001; 7:445-454.
    7.俞顺章,赵宁,资晓林等。饮水中微囊藻毒素与我国原发性肝癌关系的研究中华肿瘤杂志2001,23(2):96-99.
    8. Ueno Y, Nagata S, Tsutsumi T, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 1996,17:1317-21.
    9. Huy TT, Abe K. Molecular epidemiology of hepatitis B and C virus infections in Asia. Pediatr Int.2004,46(2):223-30.
    10. Yoon SY, Kim JM, Oh JH, Jeon YJ, Lee DS, Kim JH, Choi JY, Ahn BM, Kim S, Yoo HS, Kim YS, Kim NS. Gene expression profiling of human HBV-and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags. Int J Oncol.2006,29(2):315-27.
    11. Divella R, Lacalamita R, Tommasi S, Coviello M, Daniele A, Garrisi VM, Abbate I, Simone G, Gadaleta C, Paradiso A, Quaranta M. PAI-1, t-PA and circulating hTERT DNA as related to virus infection in liver carcinogenesis. Anticancer Res. 2008,28(1A):223-8.
    12. Brechot C, Kremsdorf D, Soussan P, Pineau P, Dejean A, Paterlini-Brechot P, Tiollais P. Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC): molecular mechanisms and novel paradigms. Pathol Biol (Paris).2010, 58(4):278-87.
    13. Wei Y, Neuveut C, Tiollais P, Buendia MA. Molecular biology of the hepatitis B virus and role of the X gene. Pathol Biol (Paris).2010,58(4):267-72.
    14. Arsura M, Cavin LG. Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett. 2005,18; 229(2):157-69.
    15. Shukla R, Yue J, Siouda M, Gheit T, Hantz O, Merle P, Zoulim F, Krutovskikh V, Tommasino M, Sylla BS. Proinflammatory Cytokine TNF-{alpha} Increases the Stability of Hepatitis B Virus X Protein Through NF-{kappa}B Signaling. Carcinogenesis.2011 Mar 31. [Epub ahead of print]
    16. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene:clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994;54:4855-4878;
    17. Shepherd T, Tolbert D, Benedetti J, Macdonald J, Stemmermann G, Wiest J, DeVoe G, Miller MA, Wang J, Noffsinger A. Alterations in exon 4 of the p53 gene in gastric carcinoma. Gastroenterology.2000;118:1039-1044;
    18. Hiyama T, Tanaka S, Kitadai Y, Ito M, Sumii M, Yoshihara M, Shimamoto F, Haruma K, Chayama K. p53 Codon 72 polymorphism in gastric cancer susceptibility in patients with Helicobacter pylori-associated chronic gastritis. Int J Cancer.2002; 100:304-308.
    19. Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC. TP53 and liver carcinogenesis. Hum Mutat.2003; 21:201-216.
    20. Dumont P, Leu JI, Della Pietra AC 3rd, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet.2003; 33:357-365.
    21. Matakidou A, Eisen T, Houlston RS. TP53 polymorphisms and lung cancer risk:a systematic review and meta-analysis. Mutagenesis.2003; 18:377-385.
    22. Lee JM, Shun CT, Wu MT, Chen YY, Yang SY, Hung HI, Chen JS, Hsu HH, Huang PM, Kuo SW. The associations of p53 overexpression with p53 codon 72 genetic polymorphism in esophageal cancer. Mutat Res.2006; 594:181-188.
    23. Zhang YJ. Interactions of chemical carcinogens and genetic variation in hepatocellular carcinoma. World J Hepatol.2010 Mar 27; 2(3):94-102.
    24. Golli-Bennour EE, Kouidhi B, Bouslimi A, Abid-Essefi S, Hassen W, Bacha H. Cytotoxicity and genotoxicity induced by aflatoxin B1, ochratoxin A, and their combination in cultured Vero cells. J Biochem Mol Toxicol.2010; 24(1):42-50.
    25. Besaratinia A, Kim SI, Hainaut P, Pfeifer GP. In vitro recapitulating of TP53 mutagenesis in hepatocellular carcinoma associated with dietary aflatoxin B1 exposure. Gastroenterology.2009; 137(3):1127-37.
    26. Gouas D, Shi H, Hainaut P. The aflatoxin-induced TP53 mutation at codon 249 (R249S):biomarker of exposure, early detection and target for therapy. Cancer Lett.2009; 286(1):29-37.
    27.覃玉、胡晓抒、赵金扣江苏省肝癌与地理因素回归分析,中国肿瘤,2003,12(11):630-632.
    28. Falconer IR, Smith JV, Jackson AR, et al. Oral toxicity of a bloom of the Cyanobacterium microcystis Aeruginosa administered to mice over periods up to 1 year. J Toxicol Environ Health,1988,24(3):291-305.
    29. Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, et al. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol, 1992,118:420-424.
    30. Andrew R. Humpage, Ian R. Falconer Microcystin-LR and liver tumor promotion: Effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environmental Toxicology,1999,14(1):61-75.
    31. Runnegar M, Berndt N, Kong SM, et al. In vivo and in vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem. Biophys. Res. Commu, 1995,216:162-169.
    32. Runnegar M, Berndt N and Kaplowitz N. Microcystin uptake and inhibition of protein phosphatases:effects of chemoprotectants and selfinhibition in relation to known hepatic transporters. Toxicol. Appl. Pharmacol,1995,134,264-272.
    33. Ding WX, Shen HM, Zhu HG, et al. Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutation Research,1999,442:69-77.
    34. Rao PV, Bhattacharya R, Parida MM, et al. Freshwater cyanobacterium Microcystis aeruginosa (UTEX 2385) induced DNA damage in vivo and in vitro. Env Tox Pharm,1998,5:1-6.
    35. Mankiewicz J, Walter Z, Tarczynska M, Palyvoda O, Wojtysiak-Staniaszczyk M, Zalewski M. Genotoxicity of cyanobacterial extracts containing microcystins from water reservoirs as determined by SOS chromotest and comet assay. Environ Toxicol,2002,17:341-450.
    36. Zegura B, Sedmak B, Filipic M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon,2003,41:41-48.
    37. Zhan L, Sakamoto H, Sakuraba M, et al. Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells. Mutat Res,2004,557:1-6.
    38. Lankoff A, Bialczyk J, Dziga D, et al. Carmichael, H. Lisowska, A. Wojcika. Inhibition of nucleotide excision repair (NER) by microcystin-LR in CHO-K1 cells. Toxicon,2006,48:957-965.
    39.董玲,段丽菊,张慧珍等微囊藻毒素-LR致小鼠肝、肾和睾丸细胞DNA-蛋白质交联的研究卫生研究,2008,37:144-146.
    40. Moreno I, Pichardo S, Jos A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon,2005,45:395-402.
    41. Lunn RM, Zhang YJ, Wang LY, et al. p53 mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan. Cancer Res,1997,57:3471-3477.
    42. de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA,1998,95:8847-8851.
    43. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 2002, 99:15524-15529.
    44. Calin GA, Liu CG, Sevignanic C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci.2004, 101:11755-11760.
    45. Calin GA, Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol.2006; 33(2):167-73.
    46. Wang WX, Kyprianou N, Wang X, Nelson PT. Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. Cancer Res.2010 Nov 15; 70(22):9137-42.
    47. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.2004,64,3753-3756.
    48. Yanaihara N, Caplen N, Bowman F, Seike M, Kumamoto K,Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell.2006,9,189-198.
    49. Saito M, Schetter AJ, Mollerup S, Kohno T, Skaug V, Bowman ED, Mathe EA, Takenoshita S, Yokota J, Haugen A, Harris CC. The Association of MicroRNA Expression with Prognosis and Progression in Early-Stage, Non-Small Cell Lung Adenocarcinoma:A Retrospective Analysis of Three Cohorts. Clin Cancer Res. 2011; 17(7):1875-82.
    50. Davoren PA, McNeill RE, Lowery AJ, Kerin MJ and Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Molecular Biology.2008,9:76-87.
    51. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.2005; 65:6029-33.
    52. Lu J, Getz G, Miska EA, E lvarez-Saavedra A, Lamb J and Peck D. MicroRNA expression profiles classify human cancers. Nature,2005; 435:834-838.
    53. Zhang BH, Pan XP, Cobb GP and Anderson TA. microRNAs as oncogenes and tumor suppressors. Developmental Biology 2007,302:1-12.
    54. Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene,2006; 25:2537-45.
    55. Jiang J, Gusev Y, Aderca I, et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res,2008; 14:419-27.
    56. Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated to clinical features an oncogene/tumor suppressor gene mutations. Hepatology,2008; 47:1955-63.
    57. Li WX, Lu Xie, He XH, et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer,2008; 123:1616-1622.
    58. Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol,2008; 23:87-94.
    59. Varnholt H, Drebber U, Schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 2008; 47: 1223-32.
    60. Pogribny IP, Tryndyak VP, Boyko A, et al. Induction of microRNAome deregulation in rat liver by longterm tamoxifen exposure. Mutat Res,2007; 619: 30-37.
    61. Aurora EK, and Frank JS. Oncomirs — microRNAs with a role in cancer. Nature Reviews Cancer,2006; 6(4):259-69.
    62. Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biology,2003,4 (7):42.
    63. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science,2003,299 (5612):1540.
    64. "Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP.The microRNAs of Caenorhabditis elegans.Genes & Development, 2003,17(8):991.
    65. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell,2005,120 (1):21-24.
    66. Cullen BR. Viruses and microRNAs. NATURE GENETICS SUPPLEMENT 2006; 38:s25-s30.
    67.O'Farrell F, Esfahani SS, Engstro'm Y and Kylsten P. Regulation of the Drosophila lin-41 Homologue dappled by let-7 Reveals Conservation of a Regulatory Mechanism Within the LIN-41 Subclade. DEVELOPMENTAL DYNAMICS,2008; 237:196-208.
    68. Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R and Wulczyn FG. Regulation of miRNA expression during neural cell specification. European Journal of Neuroscience,2005; 21:1469-1477.
    69. Heike V. The role of microRNAs in primary liver cancer. Annals of Hepatology 2008; 7(2):104-113.
    70.熊霞辉;陈梅红.MicroRNA参与的调控网络。医学分子生物学杂志,2007,04
    71. Bhattacharyya, Suvendra N.; Habermacher, Regula; Martine, Ursula; et al. Cell, 2006,125(6):1111-1124.
    72. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, Croce CM, Tang ZY, Wang XW. Identification of metastasis-related microRNAs in hepatocellular carcinoma.Hepatology.2008; 47(3):897-907.
    73. Bartel, D.P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116:281-297.
    74. Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M.A., Xu, C.,Mason, W.S., Moloshok, T., Bort, R., et al. miR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol,2004; 1:17-24.
    75. Kutay H, Bai S, Datta J, et al. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Bio-chem,2006,99 (3):671-678.
    76. Chen XM. MicroRNA signatures in liver diseases. World J Gastroenterol,2009, 15(14):1665-1672.
    77. Lewis AP, Jopling CL. Regulation and biological function of the liver-specific miR-122. Biochem Soc Trans.2010; 38(6):1553-7.
    78. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.2006; 3(2):87-98.
    79. Fernandez-Hernando C, Suarez Y, Rayner KJ, Moore KJ. MicroRNAs in lipid metabolism. Curr Opin Lipidol.2011r; 22(2):86-92.
    80. Coulouarn C, FactorVM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene,2009,28 (40):3526-3536.
    81. Bai S, Nasser MW, Wang B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem,2009,284 (46):32015-32027.
    82. Bhattacharyya SN, Habermacher R, Martine U, Closs E1, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell,2006,125 (6):1036-1038.
    83. Hatzoglou M, Fernandez J, Yaman I, Closs E. Regulation of cationic amino acid transport:the story of the CAT-1 transporter. Annu Rev Nutr,2004,24:377-399.
    84. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calm GA, Giovannini C, Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M. Cyclin G1 Is a Target of miR-122a, a MicroRNA Frequently Down-regulatedin Human Hepatocellular Carcinoma. Cancer Res,2007; 67(13):6092-6099.
    85. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun,2008,375 (3):315-320.
    86. Tsai WC, Hsu WC, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, Hsu MT, Hsiao M, Huang HD and Tsou AP. MicroRNA-122, a Tumor Suppressor MicroRNA that Regulates Intrahepatic Metastasis of Hepatocellular Carcinoma. HEPATOLOGY 2009; 49:1571-1582.
    87. Coulouarn C, Factor VM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene,2009,28 (40):3526-3536.
    88. BAI S, NASSER MW, WANG B, e t al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem,2009,284 (46):32015-32027.
    89. Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, Chung AY, Jooi LL, Lee CG. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol.2010; 53(1):57-66.
    90. Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T, Nagano H, Doki Y, Mori M, Hayashi N. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. J Hepatol.2010; 52(5):698-704.
    91. Lan FF, Wang H, Chen YC, Chan CY, Ng SS, Li K, Xie D, He ML, Lin MC, Kung HF. Hsa-let-7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int J Cancer.2011; 128(2):319-31.
    92. Chan, JA; Krichevsky, AM; Kosik, KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res.2005; 65(14):6029-33.
    93. Marquez RT, Wendlandt E, Galle CS, Keck K, Mc-Caffrey AP. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 2010; 298:G535-G541.
    94. Taub R, Greenbaum LE, Peng Y. Transcriptional regulatory signals define cytokine-dependent and-independent pathways in liver regeneration. Semin Liver Dis 1999; 19:117-127.
    95. Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K, Iba H. miR-21 Gene expression triggered by AP-1 is sustained through a doublenegative feedback mechanism. J Mol Biol 2008; 378:492-504.
    96. Loffl er D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K, Cvijic H, Ullmann AK, Stadler PF, Horn F. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 2007; 110:1330-1333.
    97. Zhou R, Hu G, Liu J, Gong AY, Drescher KM, Chen XM. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 2009; 5:e1000681.
    98. Cressman DE, Greenbaum LE, Haber BA, Taub R. Rapid activation of post-hepatectomy factor/nuclear factor kappa B in hepatocytes, a primary response in the regenerating liver. J Biol Chem 1994; 269:30429-30435.
    99. FitzGerald MJ, Webber EM, Donovan JR, Fausto N. Rapid DNA binding by nuclear factor kappa B in hepatocytes at the start of liver regeneration. Cell Growth Differ 1995; 6:417-427.
    100. Vinciguerra M, Sgroi A, Veyrat-Durebex C, Rubbia-Brandt L, Buhler LH, Foti M. Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology 2009; 49:1176-1184.
    101. Jiang Z, Johnson HJ, Nie H, Qin J, Bird TA, Li X. Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J Biol Chem 2003; 278:10952-1095.
    102. Marquez RT, Wendlandt E, Galle CS, Keck K, Mc-Caffrey AP. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 2010; 298:G535-G541.
    103. Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, Rogler LE, Zavolan M, Tuschl T, Rogler CE. Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirusassociated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 2008; 173: 856-864.
    104. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schemer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129:1401-1414.
    105. Meng FY, Henson R, Janek HW, Ghoshal K, Jacob ST, and Patel T. MicroRNA-21 Regulates Expression of the PTEN Tumor Suppressor Gene in Human Hepatocellular Cancer Gastroenterology,2007; 133:647-658.
    106. Horie Y, Suzuki A, Kataoka E, Sasaki T, Hamada K, Sasaki J, Mizuno K, Hasegawa G, Kishimoto H, Iizuka M, Naito M, Enomoto K, Watanabe S, Mak TW, Nakano T. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J ClinInvest 2004; 113:1774-1783.
    107. Wan XW, Jiang M, Cao HF, He YQ, Liu SQ, Qiu XH, Wu MC, Wang HY. The alteration of PTEN tumor suppressor expression and its association with the histopathological features of human primary hepatocellular carcinoma. J Cancer Res Clin Oncol 2003; 129:100-106.
    108. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 1998; 280:1614-1617.
    109. Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza. G, Croce CM, Bolondi L, Negrini M. MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2008; 12:2189-2204.
    110. Rhee JS, Coussens LM. RECKing MMP function:implications for cancer development. Trends Cell Biol 2002; 12:209-211.
    111. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001; 107:789-800.
    112. Wick M, Haronen R, Mumberg D, Burger C, OlsenBR, Budarf ML, Apte SS, Muller R. Structure of the human TIMP-3 gene and its cell cycle-regulated promoter. Biochem J 1995; 311 (Pt2):549-554.
    113. Beaulieu E, Kachra Z, Mousseau N, Delbecchi L, Hardy J, Beliveau R. Matrix metalloproteinases and their inhibitors in human pituitary tumors. Neurosurgery 1999; 45:1432-1440; discussion 1440-1441.
    114. Spurbeck WW, Ng CY, Vanin EF, Davidoff AM. Retroviral vector-producer cell-mediated in vivo gene transfer of TIMP-3 restricts angiogenesis and neuroblastoma growth in mice. Cancer Gene Ther 2003; 10:161-167.
    115. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008; 28:5369-5380.
    116. Ogasawara S, Yano H, Momosaki S, Nishida N, Takemoto Y, Kojiro S, Kojiro M. Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues. Oncol Rep 2005; 13:1043-1048.
    117. Yao J, Liang L, Huang S, Ding J, Tan N, Zhao Y, Yan M, Ge C, Zhang Z, Chen T, Wan D, Yao M, Li J, Gu J, He X. MicroRNA-30d promotes tumor invasion and metastasis by targeting Galphai2 in hepatocellular carcinoma. Hepatology.2010; 51(3):846-56.
    118. Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, Ge C, Yao J, Chen T, Wan D, Wang H, Gu J, Yao M, Li J, Tu H, He X..Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA [J]. Nature Cell Biology,2010,12 (4):390-399.
    119. Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H, Zhou T, Xiang H, Gao F, Yu X, Liao J, Ward T, Xia P, Emenari C, Ding X, Thompson W, Ma K, Zhu J, Aikhionbare F, Dou K, Cheng SY, Yao X. Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res.2011; 71(5):1721-9.
    120. Wong CC, Wong CM, Au SL, Ng IO. RhoGTPases and Rho-effectors in hepatocellular carcinoma metastasis:ROCKN Rho move it. Liver Int.2010; 30(5):642-56.
    121. Liu N, Zhang H, Wu K, Fan D. What is the relationship between epidermal growth factor-like domain 7 and RhoC in metastasis of hepatocellular carcinoma? Hepatology.2010; 51(6):2235-6.
    122. Wang X, Wang J, Ma H, Zhang J, Zhou X. Downregulation of miR-195 correlates with lymph node metastasis and poor prognosis in colorectal cancer. Med Oncol.2011 Mar 10. [Epub ahead of print]
    123. Liu L, Chen L, Xu Y, Li R, Du X. microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun.2010; 400(2):236-40.
    124. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer.2009; 125(2):345-52.
    125. Xu T, Zhu Y, Xiong YJ, Ge YY, Yun JP and Zhuang SM. MicroRNA-195 Suppresses Tumorigenicity and Regulates G1/S Transition of Human Hepatocellular Carcinoma Cells. HEPATOLOGY 2009; 50(1):113-21.
    126. Da tta J, KutayH, Nasse rMW, et al. M ethylation m ediated silenc ing ofM icroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res,2008, 68:5049-5058.
    127. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L and Negrini M. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene,2008; 1-11.
    128. Matsuoka S, Edwards MC, Bai C, et al. p57kip2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev,1995,9:650-662.
    129. Watanabe H, Pan ZQ, Schreiber-Agus N, et al. Suppression of cell transformation by the cyclin — dependent kinase inhibitor p57kip2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci USA,1998, 95:1392-1397.
    130. Wong WL, Lung WM, Law TY, Lai BS, Chan YY, TO KF, and Wong N. MicroRNA-223 Is Commonly Repressed in Hepatocellular Carcinoma and Potentiates Expression of Stathminl. Gasteroenterology,2008; 135:257-269.
    131. Zheng P, Liu YX, Chen L, Liu XH, Xiao ZQ, Zhao L, Li GQ, Zhou J, Ding YQ, Li JM. Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res. 2010;9(10):4897-905.
    132. Gan L, Guo K, Li Y, Kang X, Sun L, Shu H, Liu Y. Up-regulated expression of stathmin may be associated with hepatocarcinogenesis. Oncol Rep.2010; 23(4):1037-43.
    133. Jeon TY, Han ME, Lee YW, Lee YS, Kim GH, Song GA, Hur GY, Kim JY, Kim HJ, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO. Overexpression of stathminl in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br J Cancer.2010; 102(4):710-8.
    134. Trovik J, Wik E, Stefansson IM, Marcickiewicz J, Tingulstad S, Staff AC, Njolstad TS, Vandenput Ⅰ, Amant F, Akslen LA, Salvesen H. Stathmin overexpression identifies high risk patients and lymph node metastasis in endometrial cancer. Clin Cancer Res.2011 Jan 26. [Epub ahead of print]
    135. Wang Y, Lee TC, Ma ZI, Wang J, Ren JW, Yang YC, Tantoso E, Li KB, Ooi LP, Tan P, and Lee GL. Profiling MicroRNA Expression in Hepatocellular Carcinoma Reveals MicroRNA-224 Up-regulation and Apoptosis Inhibitor-5 as a MicroRNA-224-specific Target. The Journal of Biological Chemistry,2008; 283: 13205-13215.
    136. 李琼,王阁,王红中,杨志祥,单锦露,陈川,张志敏,许文,王东,李增鹏MicroRNA在HepG2肝癌细胞表达差异谱的研究。重庆医学,2007;36:2024-2028.
    137. Ivanovska I, Ball AS, Diaz RL, et a 1. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol,2008; 28(7):2167-2174.
    138. Tagawa H, Karube K, Tsuzuki S, et al. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci,2007; 98(9):1482-1490.
    139. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature,2005,435:834-838.
    140. Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet,2006; 38 (9):1060-1065.
    1. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340:745-50.
    2. El-Serag HB, Davila JA, Petersen NJ, McGlynn KA. The continuing increase in the incidence of hepatocellular carcinoma in the United States:an update. Ann Intern Med 2003.
    3. El-Serag HB, Mason AC, Key C. Trends in survival of patients with hepatocellular carcinoma between 1977 and 1996 in the United States. Hepatology. 2001 Jan; 33(1):62-5.
    4. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia 5. Croce CM, Schmittgen TD, Ghoshal K and Jacob ST. Methylation Mediated Silencing of MicroRNA-1 Gene and Its Role in Hepatocellular Carcinogenesis. Cancer Res,2008; 68 (13):5049-5958.
    5. Lu J, Getz G, Miska EA, E lvarez-Saavedra A, Lamb J and Peck D. MicroRNA expression profiles classify human cancers. Nature,2005; 435:834-838.
    6. Zhang BH, Pan XP, Cobb GP and Anderson TA. microRNAs as oncogenes and tumor suppressors. Developmental Biology 2007,302:1-12.
    7. Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene,2006; 25:2537-45.
    8. Jiang J, Gusev Y, Aderca I, et al. Association of microRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res,2008; 14:419-27.
    9. Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated to clinical features an oncogene/tumor suppressor gene mutations. Hepatology,2008; 47:1955-63.
    10. Li WX, Lu Xie, He XH, et al. Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. Int. J. Cancer,2008; 123:1616-1622.
    11. Huang YS, Dai Y, Yu XF, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol,2008; 23:87-94.
    12. Varnholt H, Drebber U, Schulze F, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 2008; 47: 1223-32.
    13. Linggi B, Carpenter G. ErbB receptors:new insights on mechanisms and biology. Trends Cell Biol,2006,16 (12):649-656.
    14. Carpenter G ErbB24:mechanism of action and biology. Exp Cell Res,2003, 284(1):66-77.
    15. Srinivasan R, Poulsom R, Hurst HC,et al. Expression of the c-erbB24/HER4 protein and mRNA in normal human fetal and adult tissues and in a survey of nine solid tumour types. J Pathol,1998,185 (3):236-245.
    16. Starr A, Greif J, Vexler A, et al. ErbB4 in creases the proliferation potential of human lung cancer cells and its blockage can be used as a target for anti-cancer therapy. Int J Cancer,2006,119(2):269-274.
    17. Tang CK, Concepcion XZ, Milan M, et al. Ribozyme-mediated down-regulation of erbB-4 in estrogen receptor-positive breast cancer cells inhibits proliferation both in vitro and in vivo. Cancer Res,1999,59:5315-5322.
    18. Lodge AJ, Anderson JJ, Gullick WJ, et al. Type 1 growth factor receptor expression in node positive breast cancer:adverse prognostic significance of c-erbB-4. J Clin Pathol,2003,56(4):300-304.
    19. Wang P, Xu TY, Guan YF, et al. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor:role of nicotinamide mononucleotide. Cardiovasc Res,2009,81(2):370-380.
    20. Adya R, Tan BK, Punn A, et al. Visfatin induces human endothelial VEGF and MMP2-P9 production via MAPK and PI3K/Akt signalling pathways:novel insights into visfatin-induced angiogenesis. Cardiovasc Res,2008,78(2):356-365.
    21.Desrivieres S, Kunz C, Barash Ⅰ, Vafaizadeh V, Borghouts C, Groner B. The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition. J Mammary Gland Biol Neoplasia, 2006,11:75-87
    22. Zeng X, Xu H, Glazer RI. Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1 (PDK1) is associated with the induction of protein kinase Calpha. Cancer Res,2002,62:3538-3543.
    23. Cheshire DR, Isaacs WB. Beta-catenin signaling in prostate cancer:an early perspective. Endocr Relat Cancer.2003,10(4):537-560.
    24. Cong F, Zhang J. A protein knockdown strategy to study the function of beta-catenin in tumorigenesis. BMC Mol Bilo,2003,4(1):10.
    25. Chang Q. Sustained JNK 1 activation is associated w ith altered histone H3 methylations in human liver cancer. Hepatol,2009,50 (10):323-333.
    26. Cavigeli M, Dolfi F, Claret FX. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO,1995,14 (15),5957-5964.
    27. O & Reilly L. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature,2009,461 (3):659-663.
    28. Shimono A, Okuda T, Kondoh H. N-myc-dependent repression of ndrl, a gene identified by direct subtraction of whole mouse embryo cDNAs between wild type and N-myc mutant. Mech Dev,1999,83:39-52.
    29.俞顺章,赵宁,资晓林等。 饮水中微囊藻毒素与我国原发性肝癌关系的研究中华肿瘤杂志2001,23(2):96-99
    30. Ueno Y, Nagata S, Tsutsumi T, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 1996,17:1317-21.
    31.覃玉、胡晓抒、赵金扣江苏省肝癌与地理因素回归分析,中国肿瘤,2003,12(11):630-632.
    32. Falconer IR, Smith JV, Jackson AR, et al. Oral toxicity of a bloom of the Cyanobacterium microcystis Aeruginosa administered to mice over periods up to 1 year. J Toxicol Environ Health,1988,24(3):291-305.
    33. Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, et al. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol, 1992,118:420-424.
    34. Andrew R. Humpage, Ian R. Falconer Microcystin-LR and liver tumor promotion: Effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environmental Toxicology,1999,14(1):61-75.
    35. Gutierrez-Ruiz, M.C., Bucio, L., Souza, V., Gomez, J.J., Campos, C., and Carabez, A. (1994). Expression of some hepatocyte-like functional properties of WRL-68 cells in culture. In Vitro Cell Dev Biol Anim 30A,366-371.
    36. Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G.V., Ciafre, S.A., and Farace, M.G. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282,23716-23724.
    37. Kutay, H., Bai, S., Datta, J., Motiwala, T., Pogribny, Ⅰ., Frankel, W., Jacob, S.T., and Ghoshal, K. (2006). Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99,671-678.
    38. Wang, Y, Lee, A.T., Ma, J.Z., Wang, J., Ren, J., Yang, Y, Tantoso, E., Li, K.B., Ooi, L.L., Tan, P., and Lee, C.G. (2008). Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 283,13205-13215.
    39. Connolly E, Melegari M, Landgraf P, Tchaikovskaya T, Tennant BC, Slagle BL, Rogler LE, Zavolan M, Tuschl T, Rogler CE. Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirusassociated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 2008; 173: 856-864.
    40. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129:1401-1414.
    41. Meng FY, Henson R, Janek HW, Ghoshal K, Jacob ST, and Patel T. MicroRNA-21 Regulates Expression of the PTEN Tumor Suppressor Gene in Human Hepatocellular Cancer Gastroenterology,2007; 133:647-658.
    42. Lindberg K, Helguero LA, Omoto Y, Gustafsson JA, Haldosen LA. Estrogen receptor beta represses Akt signaling in breast cancer cells via downregulation of HER2/HER3 and upregulation of PTEN-implications for tamoxifen sensitivity. Breast Cancer Res.2011 Apr 14; 13(2):R43.
    43. Wang S, Cheng Z, Yang X, Deng K, Cao Y, Chen H, Pan L. Effect of wild type PTEN gene on proliferation and invasion of multiple myeloma. Int J Hematol. 2010 Jul;92(1):83-94
    44. Liu C, Yu J, Yu S, Lavker RM, Cai L, Liu W, Yang K, He X, Chen S. MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol.2010 Jul; 53(1):98-107.
    45. Tian T, Nan KJ, Guo H, Wang WJ, Ruan ZP, Wang SH, Liang X, Lu CX. PTEN inhibits the migration and invasion of HepG2 cells by coordinately decreasing MMP expression via the PI3K/Akt pathway. Oncol Rep.2010 Jun; 23(6):1593-600.
    46. Bartel, D.P. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116:281-297.
    47. Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M.A., Xu, C.,Mason, W.S., Moloshok, T., Bort, R., et al. miR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol,2004; 1:17-24.
    48. Coulouarn C, FactorVM, Andersen JB, et al. Loss of miR-122 expression in liver cancer correlates with supp ression of the hepatic phenotype and gain of metastatic properties. Oncogene,2009,28 (40):3526-3536.
    49. Bai S, Nasser MW, Wang B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib [J]. J Biol Chem,2009,284 (46):32015-32027.
    50. Fornari F, Gramantieri L, Giovannini C, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res,2009,69 (14):5761-5767.
    51.LIN CJ, GONGHY, TSENG HC, et al. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun,2008,375 (3):315-320.
    52. Tsai WC, Hsu WC, Lai TC, Chau GY, Lin CW, Chen CM, Lin CD, Liao YL, Wang JL, Chau YP, Hsu MT, Hsiao M, Huang HD and Tsou AP. MicroRNA-122, a Tumor Suppressor MicroRNA that Regulates Intrahepatic Metastasis of Hepatocellular Carcinoma. HEPATOLOGY 2009; 49:1571-1582.
    53. Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L and Negrini M. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene,2008; 1-11
    54. Matsuoka S, Edwards MC, Bai C, et al. p57kip2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene [J]. Genes Dev,1995,9:650-662.
    55. Watanabe H, Pan ZQ, Schreiber-Agus N, et al. Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57kip2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci USA,1998,95:1392-1397.
    56. Wang X, Wang J, Ma H, Zhang J, Zhou X. Downregulation of miR-195 correlates with lymph node metastasis and poor prognosis in colorectal cancer. Med Oncol. 2011 Mar 10. [Epub ahead of print]
    57. Liu L, Chen L, Xu Y, Li R, Du X. microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun.2010 Sep 17; 400(2):236-40.
    58. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer.2009 Jul 15; 125(2):345-52.
    59. Xu T, Zhu Y, Xiong YJ, Ge YY, Yun JP and Zhuang SM. MicroRNA-195 Suppresses Tumorigenicity and Regulates G1/S Transition of Human Hepatocellular Carcinoma Cells. HEPATOLOGY 2009; 50(1):113-21
    60. Huang XH, Wang Q, Chen JS, Fu XH, Chen XL, Chen LZ, Li W, Bi J, Zhang LJ, Fu Q, Zeng WT, Cao LQ, Tan HX, Su Q. Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma:miR-338 is downregulated. Hepatol Res.2009; 39(8):786-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700