用户名: 密码: 验证码:
微流控芯片注射成型及模内键合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着微流控芯片研究的不断深入,对低成本、大批量、一次性使用芯片的需求日益迫切,聚合物微流控芯片已成为微型便携分析仪器产业化和商业化的主要方向。目前,用于实验室研究的单件、小批量芯片制备已经能够实现,但如何实现聚合物微流控芯片高效、低成本制造才是该技术产业化所面临的关键难题。本文提出一种聚合物微流控芯片的注射成型及模内键合技术,实现了聚合物微流控芯片的注射成型和热键合工艺的有效集成,并利用数值模拟和实验研究的方式,研究了聚合物微流控芯片注射成型及模内键合工艺与相关理论,提高了微流控芯片的成型质量,为微流控芯片的批量化生产提供一个新思路。
     分析传统聚合物微流控芯片制造工艺,基于注射成型工艺中模内装配技术,提出一种微流控芯片注射成型及模内键合的制造工艺方案,对浇注系统、抽芯油缸及温度控制系统的设计进行了对比分析。最终,实现聚合物微流控芯片的成型、对准和键合的有效集成。
     在注射成型工艺中,首先针对微流控芯片宏观翘曲变形进行了实验研究,通过模流分析软件对芯片充填过程的压力分布进行了分析,揭示了注射成型工艺参数对制件的翘曲的影响规律,对成型工艺参数进行了初步优化。然后,利用单因素实验法,研究注射成型工艺参数对横向和纵向微观微通道复制度的影响。适当地增加模具温度、熔体温度可以减小不同位置微通道上宽的差距,使微通道形貌均匀一致;通过提高注射速度可有效降低微注射成型对高模具温度和熔体温度的要求。最后,优化了成型工艺参数,当模具温度90℃、熔体温度245℃、注射速度35cm3/s、保压压力140MPa,保压时间3s时,所成型微流控芯片的翘曲量较小、微通道形貌一致性良好。
     基于聚合物力学基础理论,分析模内键合过程中微流控芯片微通道的变形机理。进行了PMMA材料的高温力学性能实验,获得其相关力学性能参数,在玻璃转化温度附近时,PMMA表现出明显的粘弹性性能。利用有限元分析软件仿真分析了PMMA微流控芯片模内键合过程中微通道变形情况,与实验结果进行对比分析,揭示了键合工艺参数对微通道变形的影响规律。研究结果表明,采用广义Maxwell材料模型能较好的模拟聚合物微流控芯片键合过程中微通道的变形。随着键合温度、键合压力和键合时间的提升,芯片的微通道变形增加;键合温度和键合压力是影响微通道变形的主要因素。在键合过程中微通道顶部会与两侧壁发生粘合,对微通道变形影响很大,主要体现在上宽和高度方向上。
     基于吸附理论和扩散理论分析了微流控芯片模内键合过程中键合强度的形成机理。利用分子动力学软件对PMMA芯片模内键合过程进行模拟,同时进行了芯片模内键合实验及强度测试实验,对微流控芯片键合强度的形成机理进行了验证,研究了键合环境对芯片键合强度形成的影响规律。研究结果表明,芯片键合强度的形成是界面分子扩散和吸附共同作用的结果。适当的增加键合压力,可以显著的提升键合强度,并缩短键合时间。而键合温度和键合时间的提升,增加键合界面间分子的相互扩散,提高界面分子间的作用力,从而提高键合强度。
     综合考虑模内键合过程中微通道变形及键合强度,论文选取键合温度102℃,键合压力1.8MPa和键合时间240s作为优化工艺参数。采用模内实验对优化工艺参数进行验证,所制备微流控芯片的键合强度达到了350KPa,且微通道网络密封性良好,芯片微通道高度为36μm,上宽为85μm,下宽为38μm,最大变形不超过10%,变形较小,满足要求。
Abstract:With the deepening of research on microfluidic chip, demand on low-cost, high-volume, single-use chips is increasingly urgent.polymer microfluidic chips have become a main research direction of industrialization and commercialization in mini portable analytical instruments. Currently, one-piece or small quantities manufacturing of chips for laboratory studies have been able to achieve, but how to achieve a polymer microfluidic chips efficient, low-cost manufacturing is a critical challenges for industrialization. This paper presents a new technology on injection molding and bonding polymer microfluidic chip,to achieve effective integration of injection molding and thermal bonding. With numerical simulation and experimental study, the key technologies were studied on the process of injection molding and in-mold bonding polymer microfluidic chip to improve molding quality, which can provide a new idea for industrialization of microfluidic chip.
     Basing on analysis of the traditional polymer microfluidic chip manufacturing process and in-mold assembly technology, the processes of molding, alignment and bonding of the substrate and cover sheet were integrated in an injection mold. It was compared and analyzed on the design of gating system, core pulling cylinders and temperature control system to achieve effective integration molding, aligning, in-mold bonding polymer microfluidic chip ultimately.
     In the injection molding process, the microfluidic chip warpage was investigated experimentally. The pressure distribution in the substrate and the cover sheet filling process was analyzed by mold flow analysis software. The influence of process parameters on the warpage was revealed, and a preliminary process optimization for the injection molding molding was achieved. Based on preliminary optimization, the single factor injection molding experiments were carried out to research the influence of process parameters on the degree of replication of transverse and longitudinal micro-channel. The uniform micro-channel morphology can be got by increasing mold temperature and melt temperature appropriately. The requirements for high mold temperature and melt temperature can be reduced by increasing injection speed in micro-injection molding. And the optimal combination of process parameters was obtained. Mold temperature of90℃, melt temperature of245℃, injection speed of 35cm3/s, holding pressure of140MPa, dwell time of3s, ensure warpage small and micro-channel morphology uniform.
     Based on polymer mechanics theory, deformation mechanism of microfluidic chip microchannel was analyzed in in-mold bonding process. The mechanical performance test of PMMA at high temperature was carried out to obtain its parameters of mechanical properties. At the vicinity of the glass transition temperature, PMMA materials exhibit significant viscoelastic properties. Simulation was carried out by finite element analysis software to analyze the microchannel deformation of PMMA microfluidic chip in in-mold bonding process. Combined with experimental results, the influence of bonding temperature, bonding pressure and bonding time on the micro-channel deformation was obtained. With bonding temperature, bonding pressure and bonding time increasing, the deformation of chip microchannel increases, and bonding temperature and bonding pressure are the main influence on microchannel deformation. In the process of in-mold bonding, the top and side walls of microchannel could be adhered, which had a great influence on the micro-channel deformation, mainly reflected in the top width and height direction. Generalized Maxwell material model could be used to simulate the microchannel deformation of polymer microfluidic chip in the process of in-mold bonding.
     The formation mechanism of bonding strength was analyzed in the process of in-mold bonding basing on adsorption theory and diffusion theory. A molecular dynamics software was used to simulate for bonding process of PMMA chip. In-mold bonding experiments and bonding strength test experiments were also carried out to study and verify the influence of process parameters on the formation of the bonding strength. The results show that the formation of bonding strength is results of diffusion and adsorption of interface moleculars. An appropriate increase in pressure can significantly improve the bonding strength and shorten the bonding time. With the bonding temperature and bonding time increasing, the mutual diffusion of interface molecules is increased to improve the interface force, thereby to increase the bonding strength.
     Considering the microchannel deformation and bonding strength in in-mold bonding process, the bonding temperature of102℃, pressure of1.8MPa bonding and bonding time of240s were selected as the optimal process parameters. Under the optimal process parameters, the experiments of in-mold bonding was carried out. The bonding strength of microfluidic chip was350KPa, its micro-channel networks was sealed well, and the deformation of chip micro-channel is small, the height of36μm, the top width of85μm, width at the bottom of38μm. The maximum deformation was not more than10%, meeting the requirements of application.
引文
[1]Abdelgawad M, Wheeler A R. The digital revolution:a new paradigm for microfluidics[J]. Advanced Materials,2009,21(8):920-925.
    [2]Fair R B, Khlystov A, Tailor T D, et al. Chemical and biological applications of digital-microfluidic devices [J]. Design & Test of Computers, IEEE, 2007,24(1):10-24.
    [3]Fouillet Y, Jary D, Chabrol C, et al. Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems [J]. Microfluidics and Nanofluidics,2008,4(3):159-165.
    [4]Miller E M, Wheeler A R. Digital bioanalysis[J]. Analytical and bioanalytical chemistry,2009,393(2):419-426.
    [5]Ghosh K K, Burns L D, Cocker E D, et al. Miniaturized integration of a fluorescence microscope[J]. nAture methods,2011,8(10):871-878.
    [6]Date A, Pasini P, Daunert S.Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms [J]. Analytical and Bioanalytical Chemistry,2010,398(1):349-356.
    [7]秦建华,林炳承.微流控芯片实验室[M].北京:科学出版社,2006.
    [8]Nge P N, Rogers C I, Woolley A T. Advances in microfluidic materials, functions, integration, and applications [J]. Chemical reviews, 2013,113(4):2550-2583.
    [9]Mark D, Haeberle S, Roth G, et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications[J]. Chemical Society Reviews, 2010,39(3):1153-1182.
    [10]方肇伦.微流控分析芯片制作及应用[M].北京:化学工业出版社,2005.
    [11]方肇伦,方群.微流控芯片发展与展望[J].现代科学仪器,2001(4):3-6.
    [12]Lee W G, Kim Y, Chung B G, et al. Nano/Microfluidics for diagnosis of infectious diseases in developing countries[J]. Advanced drug delivery reviews, 2010,62(4):449-457.
    [13]Yager P, Edwards T, Fu E, et al. Microfluidic diagnostic technologies for global public health[J]. Nature,2006,442(7101):412-418.
    [14]Yager P, Domingo G J, Gerdes J. Point-of-care diagnostics for global health[J]. Annu. Rev. Biomed. Eng.,2008,10:107-144.
    [15]Kovarik M L, Ornoff D M, Melvin A T, et al. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field[J]. Analytical chemistry,2013,85(2):451-472.
    [16]Tsao C W, DeVoe D L. Bonding of thermoplastic polymer microfluidics[J]. Microfluidics and nanofluidics,2009,6(1):1-16.
    [17]Kuo J S, Chiu D T. Disposable microfluidic substrates:transitioning from the research laboratory into the clinic[J]. Lab on a Chip,2011,11(16):2656-2665.
    [18]Ren K, Zhou J, Wu H. Materials for Microfluidic Chip Fabrication[J]. Accounts of Chemical Research,2013,46 (11):2396-2406.
    [19]郑小林,鄢佳文,胡宁,等.微流控芯片的材料与加工方法研究进展[J].传感器与微系统,2011(6):1-4.
    [20]Becker H, Gartner C. Polymer microfabrication technologies for microfluidic systems[J]. Analytical and Bioanalytical Chemistry,2008,390(1):89-111.
    [21]Ruzicka J, Hansen E H. Integrated microconduits for flow injection analysis[J]. Analytica Chimica Acta,1984,161:1-25.
    [22]J P S, D W. Slicon semiconductor wafer for analyzing micronicbiological samples:U.S. Patent 4,908,112[P].1990-3-13.
    [23]Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing[J]. Sensors and actuators B:Chemical, 1990,1(1-6):244-248.
    [24]Manz A, Harrison D J, Verpoorte E M J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems:Capillary electrophoresis on a chip[J]. Journal of Chromatography A, 1992,593(1-2):253-258.
    [25]Jacobson S C, Hergenroder R, Koutny L B, et al. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices[J]. Analytical Chemistry,1994,66(7):1107-1113.
    [26]Woolley A T, Mathies R A. Ultra-high-speed DNA sequencing using capillary electrophoresis chips[J]. Analytical chemistry,1995,67(20):3676-3680.
    [27]Woolley A T, Hadley D, Landre P, et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device[J]. Analytical Chemistry,1996,68(23):4081-4086.
    [28]Woolley A T, Sensabaugh G F, Mathies R A. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips [J]. Analytical chemistry,1997,69(11):2181-2186.
    [29]Burns M A, Johnson B N, Brahmasandra S N, et al. An integrated nanoliter DNA analysis device[J]. Science,1998,282(5388):484-487.
    [30]方肇伦.微流控分析芯片[M].北京:科学出版社,2003.
    [31]Soper S A, Ford S M, Qi S, et al. Peer Reviewed:Polymeric Microelectromechanical Systems. [J]. Analytical chemistry, 2000,72(19):642-651.
    [32]Song S, Lee K Y. Polymers for microfluidic chips[J]. Macromolecular Research, 2006,14(2):121-128.
    [33]Nikcevic I. Development of techniques and materials for microfluidic devices [D]. University of Cincinnati,2008.
    [34]Rashid M, Dou Y, Auger V, et al. Recent developments in polymer microfluidic devices with capillary electrophoresis and electrochemical detection[J]. Micro Nanosyst,2010,2(2):108-136.
    [35]Ogilvie I, Sieben V J, Floquet C, et al. Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC[J]. Journal of Micromechanics and Microengineering,2010,20(6):1-8.
    [36]Wang Y, He Q, Dong Y, et al. In-channel modification of biosensor electrodes integrated on a polycarbonate microfluidic chip for micro flow-injection amperometric determination of glucose[J]. Sensors and Actuators B:Chemical, 2010,145(1):553-560.
    [37]Fuhrmann G, Nelles G, Rosseli S, et al. POLYMERIC SUBSTRATE HAVING AN ETCHED-GLASS-LIKE SURFACE AND A MICROFLUIDIC CHIP MADE OF SAID POLYMERIC SUBSTRATE:U.S. Patent 20,130,121,892[P]. 2013-5-16.
    [38]Peng Z, Soper S A, Pingle M R, et al. Ligase Detection Reaction Generation of Reverse Molecular Beacons for near Real-Time Analysis of Bacterial Pathogens Using Single-Pair Fluorescence Resonance Energy Transfer and a Cyclic Olefin Copolymer Microfluidic Chip[J]. Analytical chemistry, 2010,82(23):9727-9735.
    [39]Yu J, Liu Z, Liu Q, et al. A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection[J]. Sensors and Actuators A:Physical,2009,154(2):288-294.
    [40]Yu S, Qu Y, Li T, et al. Fabrication of PDMS microfluidic chip used in Ultraviolet integrated biological chip[C]//Optoelectronics and Microelectronics (ICOM),2012 International Conference on. IEEE,2012:553-555.
    [41]Nunes P S, Ohlsson P D, Ordeig O, et al. Cyclic olefin polymers:emerging materials for lab-on-a-chip applications[J]. Microfluidics and Nanofluidics, 2010,9(2-3):145-161.
    [42]Zhang W, Lin S, Wang C, et al. PMMA/PDMS valves and pumps for disposable microfluidics[J]. Lab on a Chip,2009,9(21):3088-3094.
    [43]Hwang K, Kim J, Suh K, et al. Low-cost polymer microfluidic device for on-chip extraction of bacterial DNA[J]. Sensors and Actuators B:Chemical, 2011,155(1):422-429.
    [44]Chen Y, Zhang L, Chen G. Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips [J]. Electrophoresis, 2008,29(9):1801-1814.
    [45]Goral V N, Hsieh Y, Petzold O N, et al. Hot embossing of plastic microfluidic devices using poly (dimethylsiloxane) molds [J]. Journal of Micromechanics and Microengineering,2011,21(1):1-8.
    [46]Liu J, Jin X, Sun T, et al. Hot embossing of polymer nanochannels using PMMA moulds[J]. Microsystem Technologies,2013:1-6.
    [47]Yang S, DeVoe D L. Microfluidic Device Fabrication by Thermoplastic Hot-Embossing[M]. Springer,2013.
    [48]Xu Y, Huang L, Yung K, et al. Low cost fabrication of microelectrodes on plastic substrate[J]. Microsystem technologies,2011,17(3):361-366.
    [49]Huang L, Yung K, Xu Y, et al. Injection molded plastic microfluidic biochips with integrated pumping electrode[C]//Nano/Micro Engineered and Molecular Systems (NEMS),2010 5th IEEE International Conference on. IEEE,2010: 1017-1020.
    [50]宋满仓,刘莹,祝铁丽,等.塑料微流控芯片的注塑成型[J].纳米技术与精密工程,2011,9(4):329-334.
    [51]Kim B S, Lee K G, Choi H W, et al. Facile fabrication of plastic template for three-dimensional micromixer-embedded microfluidic device[J]. BioChip Journal,2013,7(2):104-111.
    [52]Rahmanian O, DeVoe D L. Pen microfluidics:rapid desktop manufacturing of sealed thermoplastic microchannels[J]. Lab on a Chip,2013,13,1102-1108.
    [53]Li H, Fan Y, Kodzius R, et al. Fabrication of polystyrene microfluidic devices using a pulsed C02 laser system[J]. Microsystem technologies, 2012,18(3):373-379.
    [54]Chen Q, Maccioni G, Chen Q, et al. Fabrication of microstructures on different materials by diode-pumped solid state laser writing for microfluidics applications[J]. Microsystem Technologies,2013,19:1185-1194.
    [55]Whitesides G M, Ostuni E, Takayama S, et al. Soft lithography in biology and biochemistry[J]. Annual review of biomedical engineering,2001,3(1):335-373.
    [56]Becker H, Heim U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures [J]. Sensors and Actuators A:Physical,2000,83(1-3):130-135.
    [57]Chien R. Hot embossing of microfluidic platform[J]. International communications in heat and mass transfer,2006,33(5):645-653.
    [58]Martynova L, Locascio L E, Gaitan M, et al. Fabrication of plastic microfluid channels by imprinting methods [J]. Analytical Chemistry, 1997,69(23):4783-4789.
    [59]Juang Y J, Lee L J, Koelling K W. Hot embossing in microfabrication. Part I: Experimental[J]. Polymer Engineering & Science,2002,42(3):539-550.
    [60]Huang M S, Chiang Y C, Lin S C, et al. Fabrication of microfluidic chip using micro-hot embossing with micro electrical discharge machining mold[J]. Polymers for Advanced Technologies,2012,23(1):57-64.
    [61]Pemg B Y, Wu C W, Shen Y K, et al. Microfluidic chip fabrication using hot embossing and thermal bonding of COP[J]. Polymers for Advanced Technologies,2010,21(7):457-466.
    [62]Eusner T, Hale M, Hardt D E. Process robustness of hot embossing microfluidic devices[J]. Journal of manufacturing science and engineering,2010,132(3):1-8.
    [63]杜晓光,关艳霞,王福仁,等.聚甲基丙烯酸甲酯微流控分析芯片的简易热压制作法[J].高等学校化学学报,2003,24(11):1962-1966.
    [64]王晓东,罗怡,刘冲,等.塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16(22):2061-2063.
    [65]王晓东,刘冲,王立鼎.面向聚合物微结构制作的热压成形设备的研制[J].中国机械工程,2005,16(14):1229-1232.
    [66]Liu J, Wang L, Liu C, et al. Hot embossing methods for plastic microchannel fabrication.[J]. Chinese Journal of Mechanical Engineering(English Edition), 2006,19(2):223-225.
    [67]罗怡,王晓东,刘冲,等.一种新型微流控芯片金属热压模具的制作工艺研究[J].中国机械工程,2005,16(17):1505-1507.
    [68]王晓东,刘冲,马骊群,等.塑料微流控芯片的制作及其自动化[J].高技术通讯,2004,14(7):45-48.
    [69]贺永,傅建中,陈子辰.聚合物微流体芯片热压成型的建模研究[J].浙江大学学报(工学版),2005,39(12):1911-1914.
    [70]Jena R K, Yue C Y, Lam Y C, et al. Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique[J]. Sensors and Actuators B:Chemical,2012,163(1):233-241.
    [71]Focke M, Stumpf F, Faltin B, et al. Microstructuring of polymer films for sensitive genotyping by real-time PCR on a centrifugal microfluidic platform[J]. Lab on a Chip,2010,10(19):2519-2526.
    [72]Svoboda M, Schrott W, Slouka Z, et al. Plastic microfluidic systems made by imprinting against an epoxy stamp [J]. Microelectronic Engineering, 2010,87(5):1527-1530.
    [73]Borenstein J T, Charest J L, Jeon J S, et al. THREE-DIMENSIONAL MICROFLUIDIC PLATFORMS AND METHODS OF USE AND MANUFACTURE THEREOF:U.S. Patent Application 12/898,307[P]. 2010-10-5.
    [74]Jeon J S, Chung S, Kamm R D, et al. Hot embossing for fabrication of a microfluidic 3D cell culture platform[J]. Biomedical microdevices, 2011,13(2):325-333.
    [75]Jeon J S.3D cyclic olefin copolymer (COC) microfluidic chip fabrication using hot embossing method for cell culture platform. Massachusetts Institute of Technology,2010.
    [76]Belligundu S, Shiakolas P S. Study on two-stage hot embossing microreplication: silicon to polymer to polymer [J]. Journal of Micro/Nanolithography, MEMS, and MOEMS,2006,5(2):3-8.
    [77]Koesdjojo M T, Tennico Y H, Rundel J T, et al. Two-stage polymer embossing of co-planar microfluidic features for microfluidic devices[J]. Sensors and Actuators B:Chemical,2008,131(2):692-697.
    [78]Tan H, Gilbertson A, Chou S Y. Roller nanoimprint lithography [J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 1998,16(6):3926-3928.
    [79]Yeo L P, Ng S H, Wang Z, et al. Micro-fabrication of polymeric devices using hot roller embossing[J].Microelectronic Engineering,2009,86(4):933-936.
    [80]Yeo L P, Ng S H, Wang Z F, et al. Investigation of hot roller embossing for microfluidic devices [J]. Journal of Micromechanics and Microengineering, 2010,20(1):1-10.
    [81]Ng S H, Wang Z F. Hot roller embossing for microfluidics:process and challenges[J]. Microsystem technologies,2009,15(8):1149-1156.
    [82]Vig A L, Makela T, Majander P, et al. Roll-to-roll fabricated lab-on-a-chip devices[J]. Journal of Micromechanics and Microengineering,2011,21(3):1-6.
    [83]Focke M, Kosse D, Muller C, et al. Lab-on-a-Foil:microfluidics on thin and flexible films[J]. Lab on a Chip,2010,10(11):1365-1386.
    [84]Liedert R, Amundsen L K, Hokkanen A, et al. Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria[J]. Lab on a Chip,2012,12(2):333-339.
    [85]Fiorini G S, Chiu D T. Disposable microfluidic devices:fabrication, function, and application[J]. BioTechniques,2005,38(3):429-446.
    [86]Gervais L, De Rooij N, Delamarche E. Microfluidic Chips for Point-of-Care Immunodiagnostics[J]. Advanced Materials,2011,23(24):151-176.
    [87]Attia U M, Marson S, Alcock J R. Micro-injection moulding of polymer microfluidic devices[J]. Microfluidics and nanofluidics,2009,7(1):1-28.
    [88]Beebe D J, Mensing G A, Walker G M. Physics and applications of microfluidics in biology [J]. Annual review of biomedical engineering, 2002,4(1):261-286.
    [89]McCormick R M, Nelson R J, Alonso-Amigo M G, et al. MicroChannel electrophoretic separations of DNA in injection-molded plastic substrates [J]. Analytical Chemistry,1997,69(14):2626-2630.
    [90]Loke Y W, Tor S B, Chun J, et al. Micro Injection-Molding of Cyclic Olefin Copolymer Using Metallic Glass Insert[J].2007,(1):1-4.
    [91]Chien R. Micromolding of biochip devices designed with microchannels[J]. Sensors and Actuators A:Physical,2006,128(2):238-247.
    [92]Chen C, Chen S, Liao W, et al. Micro injection molding of a micro-fluidic platform[J]. International Communications in Heat and Mass Transfer, 2010,37(9):1290-1294.
    [93]Wu C, Chen C, Fan K, et al. Design and fabrication of polymer microfluidic substrates using the optical disc process[J]. Sensors and Actuators A:Physical, 2007,139(1):310-317.
    [94]Singh A, Pfleging W, Beiser M, et al. Transparent thin thermoplastic biochip by injection-moulding and laser transmission welding[J]. Microsystem Technologies,2013, (9):1-9.
    [95]Fu G, Tor S B, Hardt D E, et al. Effects of processing parameters on the micro-channels replication in microfluidic devices fabricated by micro injection molding[J]. Microsystem technologies,2011,17(12):1791-1798.
    [96]刘莹.基于微流控芯片的微结构制品注塑成型工艺技术研究[D].大连理工大学,2012.
    [97]宋满仓,刘莹,祝铁丽,等.微流控芯片注塑成型缺陷的成因与对策[J].机械工程学报,2011,47(6):33-38.
    [98]Griffiths C A, Bigot S, Brousseau E, et al. Investigation of polymer inserts as prototyping tooling for micro injection moulding[J]. The International Journal of Advanced Manufacturing Technology,2010,47(1-4):111-123.
    [99]Singh A, Robert L, Michel G, et al. Microfluidic biochip injection moulded using a patterned SU-8/Si mould insert[J]. Journal of Polymer Engineering, 2011,31(2-3):293-298.
    [100]Hansen T S, Selmeczi D, Larsen N B. Fast prototyping of injection molded polymer microfluidic chips [J]. Journal of Micromechanics and Microengineering,2010,20(1):1-8.
    [101]Marson S, Attia U M, Lucchetta G, et al. Flatness optimization of micro-injection moulded parts:the case of a PMMA microfluidic component[J]. Journal of Micromechanics and Microengineering, 2011,21(11):115024-115033.
    [102]王岩.基于微流控芯片的微注射成型技术[D].大连:大连理工大学硕士论文,2008.
    [103]Hainberger R, Bruck R, Kataeva N, et al. Nanopatterned polymethylpentene substrates fabricated by injection molding for biophotonic applications [J]. Microelectronic Engineering,2010,87(5):821-823.
    [104]Utko P, Persson F, Kristensen A, et al. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments[J]. Lab on a Chip,2011,11(2):303-308.
    [105]Tanzi S, Qstergaard P F, Matteucci M, et al. Fabrication of combined-scale nano-and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process [J]. Journal of Micromechanics and Microengineering,2012,22(11):115008-115019.
    [106]Geiger E J, Mair D A, Svec F, et al. Development of an injection molding tool for complex microfluidic geometries [J]. Microsystem technologies, 2011,17(9):1537-1540.
    [107]宋满仓,刘莹,祝铁丽,等.微流控芯片基片与盖片一体化注塑成型研究[J].材料科学与工艺,2013,21(1):13-17.
    [108]李凯.1+1式微流控芯片注射成型流动平衡研究[D].中南大学,2012.
    [109]Kim G, Lee J, Heo Y, et al. Fabrication of Polymeric Biochips With μ-Fluidic Channel by Injection Molding Technology [J]. Journal of Mechanical Engineering and Automation,2012,2(1):17-22.
    [110]Becker H, Gartner C. Two-component injection molding for micofluidic devices[C]//SPIE MOEMS-MEMS. International Society for Optics and Photonics,2012:1-6.
    [111]Mair D A, Geiger E, Pisano A P, et al. Injection molded microfluidic chips featuring integrated interconnects [J]. Lab on a Chip,2006,6(10):1346-1354.
    [112]Lee L J, Madou M J, Koelling K W, et al. Design and fabrication of CD-like microfluidic platforms for diagnostics:polymer-based microfabrication[J]. Biomedical Microdevices,2001,3(4):339-351.
    [113]杨芯苹.应用于微流体组件之微射出成型研究[D].台南:国立成功大学硕士论文,2003.
    [114]Tsao C W, DeVoe D L. Bonding of thermoplastic polymer microfluidics[J]. Microfluidics and nanofluidics,2009,6(1):1-16.
    [115]Fuentes H V, Woolley A T. Phase-changing sacrificial layer fabrication of multilayer polymer microfluidic devices [J]. Analytical chemistry, 2008,80(1):333-339.
    [116]Umbrecht F, Muller D, Gattiker F, et al. Solvent assisted bonding of polymethylmethacrylate:characterization using the response surface methodology [J]. Sensors and Actuators A:Physical,2009,156(1):121-128.
    [117]Ng S H, Tjeung R T, Wang Z F, et al. Thermally activated solvent bonding of polymers[J]. Microsystem Technologies,2008,14(6):753-759.
    [118]Mair D A, Rolandi M, Snauko M, et al. Room-temperature bonding for plastic high-pressure microfluidic chips[J]. Analytical chemistry, 2007,79(13):5097-5102.
    [119]Chen H, McClelland A A, Chen Z, et al. Solventless adhesive bonding using reactive polymer coatings[J]. Analytical chemistry,2008,80(11):4119-4124.
    [120]Tang L, Lee N Y. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature[J]. Lab on a Chip,2010,10(10):1274-1280.
    [121]孟斐,陈恒武,方群,等.聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究[J].高等学校化学学报,2002,23(7):1264-1268.
    [122]Kuo J S, Zhao Y, Schiro P G, et al. Deformability considerations in filtration of biological cells[J]. Lab on a Chip,2010,10(7):837-842.
    [123]Sikanen T, Aura S, Heikkila L, et al. Hybrid ceramic polymers:New, nonbiofouling, and optically transparent materials for microfluidics[J]. Analytical chemistry,2010,82(9):3874-3882.
    [124]Bhattacharya S, Singh R K, Mandal S, et al. Plasma modification of polymer surfaces and their utility in building biomedical microdevices [J]. Journal of Adhesion Science and Technology,2010,24(15-16):2707-2739.
    [125]张宗波,罗怡,王晓东,等.塑料超声波焊接及其用于聚合物MEMS器件键合的研究进展[J].焊接,2008,(8):9-15.
    [126]Zhang Z, Wang X, Luo Y, et al. Thermal assisted ultrasonic bonding method for poly (methyl methacrylate)(PMMA) microfluidic devices [J]. Talanta, 2010,81(4):1331-1338.
    [127]Ng S H, Wang Z F, de Rooij N F. Microfluidic connectors by ultrasonic welding[J]. Microelectronic Engineering,2009,86(4):1354-1357.
    [128]Zhang Z, Luo Y, Wang X, et al. Bonding of planar poly (methyl methacrylate)(PMMA) nanofluidic channels using thermal assisted ultrasonic bonding method[J]. Microsystem technologies,2010,16(12):2043-2048.
    [129]Buch J S, Kimball C, Rosenberger F, et al. DNA Mutation Detection in a Polymer Microfluidic Network Using Temperature Gradient Gel Electrophoresis[J]. Analytical Chemistry,2004,76(4):874-881.
    [130]Chen Z, Zhang L, Chen G. A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips [J]. Electrophoresis, 2010,31(15):2512-2519.
    [131]Wang X, Zhang L, Chen G. Hot embossing and thermal bonding of poly (methyl methacrylate) microfluidic chips using positive temperature coefficient ceramic heater[J]. Analytical and bioanalytical chemistry,2011,401(8):2657-2665.
    [132]Locascio L E, Perso C E, Lee C S. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate[J]. Journal of Chromatography A,1999,857(1-2):275-284.
    [133]Roy S, Yue C Y, Wang Z Y, et al. Thermal bonding of microfluidic devices: Factors that affect interfacial strength of similar and dissimilar cyclic olefin copolymers[J]. Sensors and Actuators B:Chemical,2012,161(1):1067-1073.
    [134]Hromada L P, Nablo B J, Kasianowicz J J, et al. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipidmembrane chip[J]. Lab Chip,2008,8(4):602-608.
    [135]Browne A W, Hitchcock K E, Ahn C H. A PDMS pinch-valve module embedded in rigid polymer lab chips for on-chip flow regulation[J]. Journal of Micromechanics and Microengineering,2009,19(11):1-9.
    [136]Mehta G, Lee J, Cha W, et al. Hard top soft bottom microfluidic devices for cell culture and chemical analysis[J]. Analytical chemistry,2009,81(10):3714-3722.
    [137]Sun Y, Kwok Y C, Nguyen N T. Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation[J]. Journal of Micromechanics and Microengineering, 2006,16:1681-1688.
    [138]Ahn C H, Jin-Woo C, Beaucage G, et al. Disposable smart lab on a chip for point-of-care clinical diagnostics[J]. Proceedings of the IEEE, 2004,92(1):154-173.
    [139]Kelly R T, Woolley A T. Thermal bonding of polymeric capillary electrophoresis microdevices in water [J]. Analytical chemistry, 2003,75(8):1941-1945.
    [140]Du L, Chang H, Song M, et al. A method of water pretreatment to improve the thermal bonding rate of PMMA microfluidic chip[J]. Microsystem technologies, 2012,18(4):423-428.
    [141]姚李英,张瑜,陈涛,等.激光制备PMMA基PCR微流控芯片的热压键合研究[J].激光杂志,2006,27(1):75-77.
    [142]刘晓为,李玲,王蔚,等.PMMA毛细管电泳芯片热压键合参数研究[C]//中国微米纳米技术学会第十一届学术年会,哈尔滨,2009:234-235.
    [143]刘军山.PMMA集成毛细管电泳芯片制作工艺研究[D].大连:大连理工大学,2005.
    [144]Bhattacharyya A, Klapperich C M. Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices[J]. Lab on a Chip,2007,7(7):876-882.
    [145]Chen Z, Gao Y, Lin J, et al. Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template[J]. Journal of Chromatography A,2004,1038(1):239-245.
    [146]Zhu X, Liu G, Guo Y, et al. Study of PMMA thermal bonding[J]. Microsystem technologies,2007,13(3-4):403-407.
    [147]朱学林.电化学检测的PMMA集成毛细管电泳芯片制作工艺研究[D].合肥:中国科学技术大学,2006.
    [148]Nayak N C, Yue C Y, Lam Y C, et al. Thermal bonding of PMMA:effect of polymer molecular weight[J]. Microsystem technologies,2010,16(3):487-491.
    [149]Liqun D U, Chang H, Song M, et al. The effect of injection molding PMMA microfluidic chips thickness uniformity on the thermal bonding ratio of chips [J]. Microsystem technologies,2012,18(6):815-822.
    [150]Xu L R, Sengupta S, Kuai H. An experimental and numerical investigation of adhesive bonding strengths of polymer materials [J]. International journal of adhesion and adhesives,2004,24(6):455-460.
    [151]文伟力.聚合物微流控芯片的制作、检测及仿真研究[D].吉林:吉林大学,2007.
    [152]李经民.热塑性聚合物立体结构微流控器件制作方法及相关理论研究[D].大连:大连理工大学,2010.
    [153]卢景景.聚合物微纳流控通道热键合过程的顶部填充机制研究[D].合肥:合肥工业大学,2010.
    [154]蒋炳炎,蓝才红,刘瑶,等.一种用于聚合物微流控芯片模内键合的方法:中国,CN101575084[P].2009-11-11.
    [155]蒋炳炎,陈闻,周洲,等.用于微流控芯片制造的旋转多工位注射成型模具:中国,CN102069564 A[P].2011-5-25.
    [156]蒋炳炎,楚纯朋,周洲.一种微流控芯片注塑成型及键合的模具:中国,CN102059781B[P].2013-3-13.
    [157]蓝才红.聚合物微流控芯片模内键合微通道变形研究[D].长沙:中南大学,2009.
    [158]刘瑶.聚合物微流控芯片模内键合温度控制与键合工艺研究[D].长沙:中南大学,2010.
    [159]徐征,王继章,杨铎,等.辅助溶剂对PMMA微流控芯片模内键合的影响 [J].光学精密工程,2012,20(2):321-328.
    [160]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003.
    [161]Her S, Liang Y. The finite element analysis of composite laminates and shell structures subjected to low velocity impact[J]. Composite Structures, 2004,66(1-4):277-285.
    [162]Nicholls R L, Miller K, Elliott B C. Numerical analysis of maximal bat performance in baseball[J]. Journal of Biomechanics,2006,39(6):1001-1009.
    [163]朱伯芳.有限单元法原理与应用[M].北京:水利水电出版社,2009.
    [164]Xu G, Yu L, Lee L J, et al. Experimental and numerical studies of injection molding with microfeatures[J]. Polymer Engineering & Science, 2005,45(6):866-875.
    [165]Xie L, Ziegmann G. Influence of processing parameters on micro injection molded weld line mechanical properties of polypropylene (PP)[J], Microsystem technologies,2009,15(9):1427-1435.
    [166]Griffiths C A, Dimov S S, Brousseau E B, et al. The effects of tool surface quality in micro-injection moulding[J]. Journal of Materials Processing Technology,2007,189(1):418-427.
    [167]刘莹,宋满仓,王敏杰,等.微结构塑件注射成型试验研究与缺陷分析[J].高分子材料科学与工程,2010,(05):104-107.
    [168]Arruda E M, Boyce M C, Jayachandran R. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers[J]. Mechanics of Materials,1995,19(2-3):193-212.
    [169]Boyce M C, Parks D M, Argon A S. Large inelastic deformation of glassy polymers, part I:rate dependent constitutive model[J]. Mechanics of Materials, 1988,7(1):15-33.
    [170]Richeton J, Ahzi S, Daridon L, et al. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures[J]. Polymer,2005,46(16):6035-6043.
    [171]陈火红,尹伟奇,薛小香.MSC. Marc二次开发指南.科学出版社,2004.
    [172]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000.
    [173]蒋炳炎,刘瑶,李代兵,等.PMMA微流控芯片高效键合工艺研究[J].塑料工业,2010(004):33-36.
    [174]陈艳,张科慧.Boltzmann叠加原理在聚合物粘弹性理论中的应用[J].西北师范大学学报(自然科学版),2005,41(5):90-92.
    [175]朱锡雄,黄旭升.高聚物PMMA的受力变形行为与粘弹-塑性本构理论模型[J].宁波大学学报(理工版),1996,9(3):56-71.
    [176]Baldan A. Adhesion phenomena in bonded joints[J]. International Journal of Adhesion and Adhesives,2012,38:95-116.
    [177]Fourche G. An overview of the basic aspects of polymer adhesion. Part I: Fundamentals[J]. Polymer Engineering & Science,1995,35(12):957-967.
    [178]马冬玲,赵高明,益小苏.塑料焊接方法及其机理[J].现代塑料加工应用,1993,(3):49-53.
    [179]Anderson T H, Donaldson S H, Zeng H, et al. Direct measurement of double-layer, van der Waals, and polymer depletion attraction forces between supported cationic bilayers[J]. Langmuir,2010,26(18):14458-14465.
    [180]王彦红,张树海,造型粉制备的黏结理论[J].山西化工,2008,28(2):30-31.
    [181]张瑜.PMMA基PCR生物芯片的准分子激光微加工、键合、封装技术研究[D].北京:北京工业大学,2004.
    [182]李建华.聚合物微流控芯片制作关键技术研究[D].上海:上海交通大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700