用户名: 密码: 验证码:
超磁致伸缩执行器磁机耦合模型及自感知应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩材料(Giant Magnetostrictive Material,简称GMM)是一种可实现磁-机械双向可逆能量转换的智能材料,且材料应用中同时兼具执行和传感功能;基于超磁致伸缩材料的执行器(Giant Magnetostrictive Actuator,简称GMA)具有快速响应、大行程量、负载能力强、高可靠性等特点,在精密驱动、流量控制、阀门结构、主动减振、换能器等高新技术领域具有较好的应用前景。本文以超磁致伸缩执行器为研究对象,针对超磁致伸缩材料内的磁畴角度偏转、磁化和磁弹性等磁机耦合关系以及执行器中有效磁场的优化、感知开展研究,建立了适用于超磁致伸缩执行器自感知应用的材料感知和执行器应用理论。研制了超磁致伸缩执行器,并搭建实验测试平台,实验测评了执行器的应用特性,且对执行器的自感知应用进行验证。研究结果有利于完善超磁致伸缩材料磁机耦合及磁弹性效应的本构模型,研究内容对执行器的自感知应用拓展具有理论指导意义。
     针对超磁致伸缩材料本构模型中的“磁问题”展开研究。基于自由能极小原理及磁畴偏转理论,采用坐标变换和图解法相结合,研究了超磁致伸缩材料在不同载荷作用下的磁畴偏转、跃迁特性,建立了简化的适用于材料磁感知应用的磁畴偏转数值方法,直观解释了GMM材料在不同载荷作用下的磁致伸缩机理;在此基础上,研究了磁畴偏转数值方法对材料本构参数的参数依赖性。研究结果表明:预压应力有利于压磁效应中90°畴的积累,但不利于磁弹性效应中磁畴的偏转和磁化的进行;[110]取向晶体中磁畴的偏转均可简化为平面内的磁畴旋转,磁畴的跃迁效应为磁畴角度所处平面间的跃迁变化,其中35.3°方向磁畴在压磁和磁弹性效应中的偏转及跃迁是材料具有大磁致伸缩效应的关键;各项异性常数K1和K2的不同取值将影响材料磁畴偏转特性和磁畴角度跃迁的临界载荷值,且材料磁畴偏转数值方法对磁晶各向异性常数和能量分布因子等具有明显的参数依赖性。
     在磁畴偏转数值方法的基础上,研究了超磁致伸缩材料磁机能量耦合中的磁弹性效应。通过实验测试完成超磁致伸缩材料磁畴偏转数值方法的本构参数辨识,完善了材料的磁畴偏转模型;在此基础上,研究载荷作用下磁畴偏转的磁机耦合理论及应变量输出特性;分析磁机耦合过程中的能量转换关系,建立输入-输出载荷参量间二端口网络的等效电路关系,论证基于磁畴偏转数值方法的材料自感知可行性,为执行器自感知的应用提供理论指导。其中,修正的磁畴偏转数值方法能够较好描述超磁致伸缩材料的磁化和应变量特性,进一步论证了压应力对压磁和磁弹性效应的贡献,压应力将增大材料的有效磁致伸缩应变,但达到同等应变量需更大的磁场载荷;研究内容完善了材料的磁机耦合理论,为超磁致伸缩执行器的自感知应用设计及论证提供基础理论指导。
     针对超磁致伸缩执行器中的磁和热问题展开研究,完成执行器自感知应用的设计优化和磁场感知关系的建立。解析优化超磁致伸缩执行器中励磁线圈结构及空间磁场分布,研究了考虑超磁致伸缩材料磁导率下执行器内有效磁场分布,修正材料轴向磁场分布的不均性,建立了考虑GMM磁导率下精确的励磁电流-磁场间的数学关系;计算分析超磁致伸缩执行器内的损耗和热传递,仿真明确不同励磁状态下GMA中温升特性;建立执行器中励磁线圈磁感知的数学关系,完善超磁致伸缩执行器的感知应用模型。研究结果表明:超磁致伸缩材料磁导率的不同取值将影响材料轴向磁场分布,其中,GMM材料的端部磁场将高于中间位置,且磁导率的增加有利于增强轴向磁场的均匀性,同时使得材料内平均磁场的数值减小。
     最后,设计制作了超磁致伸缩执行器,搭建实验测试平台。完成超磁致伸缩材料及其执行器输出机械特性、温度特性、动态特性的测试评价,论证了超磁致伸缩材料感知模型和执行器自感知应用模型的正确性。结果表明,所设计的超磁致伸缩执行器在15MPa压应力作用下,能够实现大于45μm、3.6MPa冲击力输出,其最大输出应力达到12.5MPa;GMA在静态、动态励磁下均存在应变量的滞回,且滞回重复性较好,其动态谐振频率在1200Hz左右,磁机耦合系数达0.572;在超磁致伸缩自感知验证中,预压应力载荷的感知误差为0.5~0.6的标准差,应变量感知数值与实测结果的最大误差小于2.5μm,重复试验误差约1μm,论证了所建立磁畴偏转数值方法的正确性和自感知应用的可行性。
As a new kinds of smart material, Giant magnetostrictive material (GMM) canmake energy conversion between magnetic and mechanical reversible, has bothactuator and sensor function. The giant magnetostrictive actuator (GMA) based onGMM has many merits, such as quick response, large strain, heavy load, and highprecision, etc. It has good application in the field of precision drive, flow control,valve control, damping, energy converter. The angle deflection of magnetic domain,magnetization, magnetostriction of GMM is studied in this paper, optimization andsensing relation of effective magnetic field in GMA is analyzed, then sensingrelation of GMM and application theory of GMA suit for self-sensing application isestabilished. A small structure GMA is manufactured, and the test platform isconstructed. Application characteristics of GMA are calculated in experiment, usedto prove the self-sensing model of GMA. The research results could be adopted inconsummating the constitutive model of GMM magnetomechanical coupling andmagnetostriction. The GMA constructed in this paper would have good applicationvalue in micro flow control valve, and the works also have theoretical significancefor the self-sensing application of GMA.
     Firstly, magnetization of the constitutive model in GMM is studied in thispaper. Based on the minimum principle of free energy and theory of magneticdomain deflection, the angle rotation and jump effects of magnetic domain in GMMwith input loads are analyzed, used technology of coordinate conversion andgeometry solution. Then a simple numerical analysis method of the magneticdomain deflection is established for self-sensing application, which can directlyreveal magnetostricitive effects of GMM with different input loads. Based on thosetheories, the parameter dependence of numerical method in magnetic domaindeflection is studied, used to perfect magnetic domain deflection numercial methodof GMM. The research results indicate that piezomagnetic effect of GMM is helpfulfor domain accumulation in90°direction, not advantage for moment rotation andmagnetization in magnetostriction. Magnetic domain deflection of [110] orientationcrystal would be simplify to plane rotation, and jump effect happened betweenplanes of reversible domain rotation, in which the rotation and jump effects of35.3°angle domain is the key factor of GMM in piezomagnetic effect andmagnetostriction. Different anisotropy constant K1and K2could influence thecritical load value of angle jump effect in magnetic domain rotation, and numericalmethod of magnetic domain deflection has obvious dependence on the anisotropy constant and energy distribution factors.
     Based on the analysis of magetic domain deflection, the magnetostriction ofGMM in the magnetomechanical coupling process is studied. The constitutiveparameters identification of GMM in domain deflection numerical method arefinished by experimental result, that could consummate the domain deflectionmodel. Then, the magnetomechanical coupling theory and strain outputcharacteristic based on domain rotation are researched with input loads. The energyconversion are analyzed in the process of magnetomechanical coupling, andtwo-port equivalent circuit of energy conversion is established. The feasibility ofself-sensing application of GMM based on domain deflection numerical method isanalyzed, used to support the theoretical guiding for actuator self-sensingapplication. More that, correctional domain deflection numerical method coulddescribe magnetization and magnetostriction characteristic of GMM, prove effectthat large pressive stress could increase the effective output strain inmagnetostriction, and need larger magnetic field loads for domain rotation and itsmagnetization. The research result consummates the magnetomechanical couplingtheory, and it would support the theorical guiding for actutor self-sensing designand application.
     Thirdly, the magnetic and thermal problem in GMA are also studied,mathematics function between the magnetic field and magnetic sensing in actuatorsensing application are constructed. Structure of driving coil and space magneticfield in the GMA are optimized. The effective magnetic field distribution in thecondition of GMM permeability is analyzed, axial magnetic field anisotropy ofmaterial is revised, used to establish the function between driving current andmagnetic field with consideration of GMM permeability. Magnetic loss and heattransformation in GMA are studied, and thermal characteristics with differentcurrent conditions are simulated. The function of magnetic sensing in GMA isestablished, used to consummate self-sensing model for the GMA application. Theresearch results describe that different GMM permeability value would influencedistribution of axial magnetic field in material, special the magnetic field interminal part is larger than the center part, and large GMM permeability valuewould increase the uniformity of axial magnetic field and decrease the averagemagnetic field in the material.
     Finally, the GMA prototype is designed and manufactured, the test platform isestablished. The output strain, output impact force, temperature characteristics aretested in this platform, the dynamic characteristic with different frequency isstudied. Experiments prove the validity of GMM sensing relation and GMA self-sensing application model. Results indicate that the GMA has3.6MPa impactstress and45μm output mechanical characteristic in the condition of15MPa pressstress, and it would has maximum12.5MPa output stress. The GMA designed in thispaper is suitable for the large strain load in actuator and damping field application.GMA has hysteresis with static and dynamic driving current, and has goodrepetition hysteresis curves. Its first dynamic syntony frequency is1200Hz, andmagnetomechanical coefficient could up to0.572. Specially, below the syntonyfrequency, the strain should have the positive frequency coefficient, the straindecreases against increasing frequency under larger syntony frequency. In thevalidation of GMM self-sensing, the deviation of pressive stress could reach0.5~0.6, and the maximum error between the self-sensing and test value is below2.5μm, the repeated test error of experimentals is approximately1μm. Those resultscould prove the validity of numerical method in domain deflection and feasibility ofself-sensing application in GMA.
引文
[1]孙宝元.现代执行器技术[M].长春:吉林大学出版社,2003:1-13.
    [2]杨华勇.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010:48-74.
    [3] Grunwald A, Olabi A G. Design of A Magnetostrictive (MS) Actuator[J].Sensors and Actuators A,2008,144:161-175.
    [4] Karunanidhi S, Singaperumal M. Design, Analysis and Simulation ofMagnetostrictive Actuator and Its Application to High Dynamic ServoValve[J]. Sensors and Actuators A,2010,157:185-197.
    [5]胡权霞,于敦波,等. Fe-Ga磁致伸缩材料研究进展[J].稀有金属,2013,37(1):164-170.
    [6]贾振元,王福吉,等.超磁致伸缩材料传感/执行器的原理与应用[J].振动测试与诊断,2013,33(4):539-546.
    [7]陈定方,卢全国,等. Galfenol合金应用研究进展[J].中国机械工程,2011,22(11):1370-1377.
    [8]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社,2003:112-131.
    [9]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].杭州:浙江大学博士学位论文,2005:17-18.
    [10]刘敬华,张天丽,等.巨磁致伸缩材料及应用研究进展[J].中国材料进展,2012,31(4):1-12.
    [11]薛光明,何忠波,等.超磁致伸缩材料在液压阀中的应用现状[J].液压与气动,2013,4:94-98.
    [12] Claeyssen F, Lhermet N. Actuators Based on Giant MagnetostrictiveMaterials[C].8th International Conference on New Actuators,Bremen,Germany,2002:158-153.
    [13]宣振兴,邬义杰,王慧忠,等.超磁致伸缩材料发展动态与工程应用研究现状[J].轻工机械,2011,29(1):116-119.
    [14] Engdahl S. Simulation of the Magnetostrictive Performance of Terfenol-D inMechanical Devices[J]. J. Appl. Phys.,1988,63(8):3924-3926.
    [15]贺西平.稀土超磁致伸缩换能器[M].北京:科学出版社,2006:56-72.
    [16] Xu H, Pei Y M, Fang D N. An Energy-based Dynamic Loss Hysteresis Modelfor Giant Magnetostrictive Materials[J]. Int. J. Solids. Struct.,2013,50(5):672-679.
    [17] Chakrabarti S. Fully Coupled Discrete Energy-averaged Model forTerfenol-D[J]. J. Appl. Phys.,2012,111(5):054505.
    [18] Clark A E. Magnetostrictive Rare Earth-Fe2Compounds[J]. Ferromagneticmaterials,1980,l:531-589.
    [19] Delince F, Genon A, Gillard J M. Numerical Computation of theMagnetostrictive Effect in Ferromagnetic Materials[J]. J. Appl. Phys.,1991,69:5794-5710.
    [20] Benatar J G, Flatau A B. FEM Implementation of A MagnetostrictiveTransducer[J]. Smart Structures and Materials,2005,5764:482-493.
    [21] Karim A, Mondher B.3D FEM of Magnetostriction Phenomena UsingCoupled Constitutive Laws[J]. International Journal of AppliedElectromagnetics and Mechanics,2004(19):367-371.
    [22]贺西平,孙进才,李斌.低频大功率稀土磁致伸缩弯张换能器的有限元设计理论及实验研究:理论部分[J].声学学报,2000,25(6):521-527.
    [23] Jin K, Kou Y, Zheng X J. A Nonlinear Magneto-thermo-elastic CoupledHysteretic Constitutive Model for Magnetostrictive Alloys[J]. J. Magn. Magn.Mater.,2012,324(12):1954-1961.
    [24] Jin K, Kou Y, Zheng X J. The resonance Frequency Shift Characteristic ofTerfenol-D Rods for Magnetostrictive Actuator[J]. Smart. Mater. Struct.,2012,21(4):045020.
    [25] Eringin A E. Mechanics of continual[M]. New York:Wiley,1980:53-66.
    [26] Jiles D C. Introduction to Magnetism and Magnetic Materials[M]. New York:Chapman and Hall,1991:79-100.
    [27] Jiles D C, Atherton D L. Theory of Ferromagnetic Hysteresis[J]. J. Magn.Magn. Mater.,1986,61:48-60.
    [28] Wang B L, Jin Y M. Magnezation and Magnetostriction of Terfenol-D NearSpin Reorientation Boundary[J]. J. Appl. Phys.,2012,111(l0):103908.
    [29] Zhang C S, Ma T Y, Yan M. Induced additional anisotropy Influences onMagnetostriction of Giant Magnetostrictive Materials[J]. J. Appl. Phys,2012,112(10):103908.
    [30] Mei W, Okane T, Umeda T. Magnetostriction of Tb-Dy-Fe Crystals[J]. J. Appl.Phys.,1998,84:6208-6216.
    [31] Maugin G A. A Continuum Theory of Deformable Feerimagnetic Bodies,Themodynamics, Constitutive Theory[J]. J. Math. Phys.,1976,17(9):1739-1751.
    [32] Maugin G A. The Method of Virtual Power in Continuum Mechanics:Application to Coupled Field[J]. Acta Mech.,1980,35(1-2):1-70.
    [33]万永平,方岱宁,黄克智.磁致伸缩材料的非线性本构关系[J].力学学报,2001,33(6):749-757.
    [34] Wan Y P, Fang D N, HWang K C. Non-linear Constitutive Relations forMagnetostrictive Materials[J]. Inter. J. Non-linear Mechanics,2003,38(7):1053-1065.
    [35] Duenas T, Hsu L, Cannan G P. Magnetostrictive Composite MaterialSystems Analytical/Experimental[J]. Materials Research Society Symposiurn,Advances in Materials for Smart Systems-Fundamental and Applications,Invited Paper,Boston,1996.
    [36] Hsu L. Modeling the Response of Magnetostrictive Materials[D]. M. S.Thesis,UCLA,1998.
    [37] Moffet M B, Clark A E, Wun-Fogle M, Linberg J, Teter J P, McLaughlin E A.Characterization of Terfenol-D for Magnetostrictive Transducers[J]. J. Acoust.Soc. Am.,1991,89(3):1448-1455
    [38] Zheng X J, Liu X E. A Nonlinear Constitutive Model for Terfenol-D Rods[J]. J.APPl. Phys.,2005,97,053901.
    [39] Zheng X J, Sun L. A Nonlinear Constitutive Model of Magneto-thermo-mechanical Coupling for Giant Magnetostrictive Materials[J]. J. APPl. Phys.,2006,100,063906.
    [40] Maugi G A, Goudj C. The Equations of Soft Ferromagnetic Elastic Plates[J].Int. J. Solids Struct.,1982,18:889-912.
    [41]冯雪.铁磁材料本构关系的理论和实验研究[D].北京:清华大学博士学位论文,2002:30-51.
    [42] Armstrong W D. Burst Magnetostriction in Tb0.3Dy0.7Fe1.9[J]. J. Appl. Phys.,1997,81:3548-3554.
    [43] Xie S H, Liu X Y, Zhou Y C. Correlation of Magnetic Domains andMagnetostrictive Strains in Terfenol-D Via Magnetic Force Microsropy[J]. J.Appl. Phys.,2011,109(6):063911.
    [44] Zhang C S, Ma T Y, Pan X W, Yan M. Domain Rotation Simulation of theMagnetostriction Jump Effect of <110> Oriented TbDyFe crystals[J]. Chin.Phys. Lett.,2012,29(2):027501.
    [45] Park W J, Son D R, Lee Z H. Modeling of Magnetostriction in Grain AlignedTerfenol-D and Preferred Orientation Change of Terfenol-D Dendrities[J]. J.Magn. Magn. Mater.,2002,248:223-229.
    [46] Jiles D J. Interpretation of the Magnetization Mechanism in Terfenol-D UsingBarkhausen Pulse-height Analysis and Irreversible Magnetostriction[J]. J.Appl. Phys.,1990,67(9):5013-5015.
    [47] Stoner E C, Wohlfarth E P. A Mechanism of Magnetic Hysteresis inHeterogeneous Alloys[J]. Phil. Trans. Roy. Soc.,1948,240:599-642.
    [48] Armstrong W D. A Directional Magnetization Potential Based Model ofMagnetoelastic Hysteresis[J]. J. Appl. Phys.,2002,91(4):2202-2210.
    [49]张辉,曾德长,刘仲武.压应力对Fe0.81Ga0.19单晶磁化和磁致伸缩的影响[J].物理学报,2011,60(6):067503.
    [50]张辉,曾德长. Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应[J].物理学报,2010,59(4):2808-2814.
    [51] Zhang H, Zeng D C. Magnetostriction and Its Inverse Effect in Tb0.3Dy0.7Fe2Alloy[J]. J. Appl. Phys.,2010,107:123918.
    [52] Annstrong W D. An Incremental Theory of Magneto-elastic Hysteresis inPseudo-cubic Ferro-magnetostrictive Alloys[J]. Joumal of Magnetism andMagnetic Materials,2003,263:208-218.
    [53] Jiles D C, Atherton D L. Theory of Ferromagnetic Hystersis[J]. J. Appl.Phys.,1984,55(6):2115-2120.
    [54] Jiles D C, Atherton D L. Fermmagnetic Hysteresis[J]. IEEE Trans. Magn.,1983,19(5):2183-2185.
    [55] Sablik M J, Burkhardt G L, Kwun H, Jiles D C. A Model for the Effect ofStress on the Low-frequency Harmonic Content of the Magnetic Induction inFerromagnetic Materials[J]. J. Appl. phys.,1988,63(8):3930-3932.
    [56] Jiles D C. A Self Consistent Generalized Model for the Calculation of MinorLoop Excursions in the Theory of Hysteresis[J]. IEEE Trans. Magn.,1992,28:2602-2604.
    [57] Lo C C, Kinser E, Jiles D C. Modeling the Interrelating Effects of PlasticDeformation and Stress on Magnetic Properties of Materials[J]. J. Appl.Phys.,2003,93(10):6626-6628.
    [58] Sablik M J. Modeling the Effect of Grain Size and Dislocation Density onHysteretic Magnetic Properties in Steels[J]. J. APPl. Phys.,2001,89(10):5610-5613.
    [59] Sablik M J, Jiles D C. A model for Hysteresis in Magnetostriction[J]. J. Appl.Phys.,1988,64(10):5402-5404.
    [60] Huang W M, Wang B W, Cao S Y, Sun Y, Weng L, Chen H Y. DynamicStrain Model With Eddy Current Effects for Giant MagnetostrictiveTransdueer[J]. IEEE Transactions on Magnetics,2007,43(4):1381-1384.
    [61] Calkins F T, Smith R C, Flatau A B. Energy-based Hysteresis Model forMagnetostrictive Transducers[J]. IEEE Transactions on Magneties,2000,36(2):429-439.
    [62] Wang Z B, Liu J H, Jiang C B, Xiu H B. The Stress-induced Anisotropy in the(110) Plane of the Magnetostrictive TbDyFe [110] Oriented Crystal[J]. J. Appl.Phys.,2011,108:063908.
    [63] Liu J H, Wang Z B, Jiang C B, Xu H B. Magnetostriction under High Prestressin Fe81Ga19Crystal[J]. J. Appl. Phys.,2010,108:033913.
    [64] Zhang H. Power Generation Transducer from Magnwtostrictive Materials[J]. J.Appl. Lett.,2011,98:232505.
    [65] Zhao X G, Lord D G. Magnetostriction and Susceptibilities of Twinned SingleCrystals of Terfenol-D[J]. J. Appl. Phys.,1998,83(11):7276-7278.
    [66] Yang Y V, Huang Y X, Jin Y M. Effects of Magnetocrystalline AnisotropyConstant K2on Magnetization and Magnetostriction of Terfenol-D[J]. J. Appl.Phys.,2011,98:012503.
    [67] Zhang H. Anisotropic Magnetomechanical Efect in Tb0.3Dy0.7Fe2Alloy[J]. J.Magn. Magn. Mater.,2012,324:190-195.
    [68] Frank C, Nicolas L, Ronan L L. Design and Construction of a ResonantMagnetostrictive Motor[J]. IEEE Transactions on Magnetics,1996,32(5):4749-4751.
    [69] Witthauer A, Kim G Y, Faidley L. Design and Characterization of aFlextensional Stage Based on Terfenol-D Actuator[J]. Int. J. Precis. Eng. Man.,2014,15(1):135-141.
    [70] Zhang K W, Zhang L, Fu L L. Magnetostrictive Resonators as Sensor andActuator[J]. Sensor Actuat. A-Phys,2013,200:2-10.
    [71] Toshiyuki U, Chee S K, Toshiro H. Linear Step Motor Based on MagneticForce Control Using Composite of Magnetostrictive and PiezoelectricMaterials[J]. IEEE Transactions on Magnetics,2007,43(1):11-14.
    [72] Li Y S, Zhu Y C, Wu H T. Modeling and Inverse Compensation for GiantMagnetostrictive Transducer Applied in Smart Material ElectrohydrostaticActuator[J]. J. Inter. Mater. Syst. Struct.,2014,25(3):378-388.
    [73]王福吉,刘巍,贾振元,等.超磁致伸缩薄膜悬臂梁静力学分析[J].大连理工大学学报,2011,51(3):346-350.
    [74]李知瑶,钟康民,王传洋.电致与磁致伸缩材料驱动的微型冲压机[J].制造业自动化,2014,36(1):93-95.
    [75]隋晓梅,陈文卓,等.基于流-热耦合模型的GMM智能构件温升控制系统设计[J].计算机测量与控制,2012,20(6):1548-1554.
    [76] Shankar K, Suresh V G, Sukhvinder S K.A Novel Hybrid Heat Sink UsingPhase Change Materials for Transient Thermal Management ofElectronics[J]. IEEE Transactions on Components and PackagingTechnologies,2005,28(2):281-289.
    [77] Carsie A M, Emmanuel K G, Joseph C, Thomas W K. Parametric Analysis ofCyclic Phase Change and Energy Storage in Solar Heat Receivers[C]. EnergyConversion Engineering Conference,1997,446-453.
    [78]李佳琪,邬义杰,等.基于直接液体冷却的GMA温控方法研究[J].机电工程,2011,28(7):779-783.
    [79] Simons R E, Chu R C. Application of Thermoelectric Cooling to ElectronicEquipment: A Review and Analysis[C].16th IEEE Semi. ThemtmSymposium,2000:1-9.
    [80] Yoshio Y, Hiroahi E, Jun S. Application of Giant Magnetostrictive Materials toPositioning Actuators[C]. International Conference on Advaced IntelligentMechatronie,1999:215-220.
    [81]丁凡,姚健娣,笪靖,等.高速开关阀的研究现状[J].中国工程机械学报,2011,9(3):351-358.
    [82]李跃松,朱玉川,等.超磁致伸缩执行器驱动的射流伺服阀参数优化[J].航空学报,2011,32(7):1336-1344.
    [83] Ma Y H, Mao J Q. Modeling and Control for Giant Magnetostrictive Actuatorswith Stress-Dependent Hysteresis[C].2008IEEE International Conference onAutomation and Logistics,2008:1083-1088.
    [84]贾振元,王福吉,张永顺,等.超磁致伸缩材料驱动微型电动机的原理与应用[J].中国机械工程,2003,13:1161~1164.
    [85] Claeyssen F, Lhermet N, Le L R. Design and Construction of a ResonantMagnetostrictive Motor[J]. IEEE Transactions on Magnetics,1996,32(5):4749-4751.
    [86] Joshi C H. Compact Magnetostrictive Actuators and Linear Motors[C].Proceedings of conference actuator2000,Bremen,Germany.
    [87] Kiesewetter L. The Application of Terfenol-D in Linear Motors[C].Proceeding2nc. International Conference Giant Magnetostrictive Alloys,Marbella,Spain,1988.
    [88] Kim W J, Sadighi A. A Novel Low-power Linear Magnetostrictive Actuatorwith Local Three-phase Excitation[J]. IEEE-ASME Transactions onMechatronics,2010,15(2):299-307.
    [89] Kim J, Doo J. Magnetostrictive Self-moving Cell Linear Motor[J].Mechatronics,2003,13:739-753.
    [90] Zhou N J, Blatchley C C, Lbeh C C. Design and Construction of a NovelRotary Magnetostrictive Motor[J]. J. Appl. phys.,2009,105(7):07F113.
    [91] Claeyssen F, Lhermet N, Letty R L. Design and Construction of a ResonantMagnetostrictive Motro[J]. IEEE Transactions on Magnetics,1996,32(5):4749-4751.
    [92] Ohmata K, Zaike M, Koh T. A Three-link Arm Type Vibration Control DeviceUsing Magnetostrictive Actuators[J]. Journal of Alloys and Compounds,1997,255(8):74-78.
    [93]顾仲权,朱金才,彭福军,等.磁致伸缩材料作动器在振动主动控制中的应用研究[J].振动工程学报,1998,4:387-388.
    [94] Wada M, Uchida H. Effects of the Compositional Change and theContamination on the Magnetic and Magnetostrictive Characteristics ofTbDyFe Films[J]. Journal of Alloys and Compounds,1997,258(1-2):174-178.
    [95]张文毓.磁致伸缩智能材料研究进展[J].传感器世界,2009,02:11-14.
    [96] Sitomer J L, Leis M D. Time Sharing Pulsed Rebalancing System[P]. USPatent No.3508444,1970.
    [97] Vischer D, Bleuler H. A New Approach to Sensorless and Voltage ControlledAMBs Based Network Theory Concepts[C].2nd Symposium on MagneticHearings held at the TOKYO University,1990.
    [98] Waanders J W. Piezoelectric Ceramics: Properties and Applications[R].Phillips Components Marketing Communications,1991.
    [99]郑健.双相对置超磁致伸缩自传感驱动水压伺服控制阀研究[D].北京:北京工业大学博士学位论文,2010:75-82.
    [100]Russell J L. Magnetostrictive Position Sensors Enter the Automotive MarketSpringfield[R]. Sensors Online (http://www.sensorsmag.com),2001,18(12).
    [101]Liao W H, Law W W, Chan K W. Implementation of Adaptive Structures withEnhanced Self-Sensing Piezoelectric Actuators[C]. IEEE ICIT02,Bangkok,Thailad,2002.
    [102]Takigami T, Oshima K, Hayakawa Y. Application of Self-Sensing Actuator toControl of A Cantilever Beam[C]. Proceedings of the American ControlConference Albuquerque,1997.
    [103]Anderson E H. Self-Sensing Piezoelectric Actuator (Analysis and Applicationto Controlled Structure)[C]. Proc33rd Struct. Dynam. Master. Conf,1992:2141-2155.
    [104]Wang D H, Liao W H. Semi-active Controllers for Magnetorheological FluidDampers[J]. Journal of Intelligent Material Systems and Structures,2005:16.
    [105]Simon D E. Experimental Evaluation of Semiactive MagnetorheologicalPrimary Suspensions for Heavy Truck Applications[D]. Master Thesis,Virginia Polytechnic Institute and State Uiversity,1998.
    [106]鲁军.磁控形状记忆合金电磁-机械可逆转换及应用基础研究[D].沈阳:沈阳工业大学博士学位论文,2010,72-73.
    [107]Clephas B, Janocha H. Simultaneous Sensing and Actuation of aMagnetostrictive Transducer[C]. Proceedings SPIE,1998,3329:174-184.
    [108]Kuhnen K, Schommer M, Janocha H. Design of a Smart MagnetostrictiveActuator by Sensing the Variation of Magnetic Flux[C]. Proceedings of the lthInternational Conference of Sensor2003,Nuremberg,2003:267-272.
    [109]王博文.超磁致伸缩材料制备与器件设计[M].北京:冶金工业出版社,2003:5-7.
    [110]Armstrong W D. Fully Three-dimensional Model of Magnetoelastic Hysteresisin Terfenol-D[C]. Proc. of SPIE conference on Smart Materials andIntergrated Systems,San Diego,2003:5053.
    [111]Decoker R, Kestens L, Houbaert Y. Modeling the Magnetostriction Coefficientof Polycrystalline Ferromagnetic Materials with Cubic Structure by Means ofFinite Element Method[J]. J. Magn. Magn. Mater.,2002:1218-1220.
    [112]刘冬梅,许毓春.压电铁电材料与器件[M].武汉:华中理工大学出版社,1990:67-96.
    [113]Raghunathan A, Melikhov Y, Snyder J E, Jiles D C. Generalized Form ofAnhysteretic Magnetization Function for Jiles-Atherton Theory ofHysteresis[J]. J. Appl. Lett.,2009,95:172510.
    [114]张成明.超磁致伸缩致动器的电-磁-热基础理论研究与应用[D].哈尔滨:哈尔滨工业大学博士学位论文,2013:49-53.
    [115]Engdahl G. Handbook of Giant Magnetostrictive Materials[M]. San Diego:Academic press,2000:127-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700