用户名: 密码: 验证码:
切换广义系统稳定性分析与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一类重要的特殊混杂系统,切换广义系统由若干连续时间或离散时间广义子系统构成,根据切换策略在子系统间切换达到控制目的,具有较强的工程应用背景。与正常切换系统相比,由于自身结构的复杂性及正则性、脉冲模消除、状态跳变及一致初始状态等问题的存在,同时在实际控制系统中,非线性扰动、时滞和不确定性等因素的影响不可避免,使得对切换广义系统稳定性分析与控制器设计更复杂和更具挑战性,还有很多控制理论研究和实际应用问题有待解决。
     本文利用公共Lyapunov函数方法联合凸组合技术,多Lyapunov函数和平均驻留时间方法等工具,分别针对切换广义系统的H∞记忆状态反馈控制,H∞保性能控制,输入-状态稳定,以及一致有限时间有界性和有限时间稳定等控制问题展开讨论。全文主要研究工作共分六章,概括如下:
     1)分别讨论了连续时间和离散时间不确定时滞切换广义系统的鲁棒H∞控制和记忆状态反馈镇定问题。首先,针对一类连续时间不确定时变时滞切换广义系统,在假设不确定参数项范数有界的情况下,通过构造适当的Lyapunov泛函,引入记忆状态反馈的控制思想,设计相应的切换规则,给出了基于线性矩阵不等式表示的使得系统正则、无脉冲且渐近稳定的充分条件及鲁棒H∞记忆状态反馈控制器的设计方法,使得系统具有一定的干扰抑制水平同时又是状态反馈可切换镇定的。然后,将研究结果推广并对一类离散时间不确定时滞切换广义系统进行了讨论。
     2)首先,给出了鲁棒H∞保性能控制的定义,并分别针对含有常数时滞和时变时滞的两类不确定切换广义系统进行了讨论,得到了基于线性矩阵不等式表示的鲁棒H∞保性能控制器存在的充分条件。然后以此为研究基础,利用公共Lyapunov函数方法联合凸组合技术,设计相应的切换规则,针对同时含有不确定性参数、时变时滞及非线性外部扰动的切换广义系统的鲁棒H∞保性能控制和记忆状态反馈镇定问题进行了研究。
     3)把一致有限时间稳定和有限时间有界的概念在切换广义系统上进行了推广。通过构造多Lyapunov函数,在任意给定的切换规则作用下,利用平均驻留时间方法讨论了连续时间时变时滞切换广义系统的一致有限时间有界、有限时间稳定及状态反馈镇定等控制问题。然后,再通过构造切换Lyapunov函数,同样采用平均驻留时间方法推广研究了一类不确定离散时间时滞切换广义系统的一致有限时间稳定和有限时间有界问题,另外分别给出了状态反馈控制器的设计方案。与实际应用较困难的状态转移矩阵方法相比,该方法在一定程度上降低了控制器的设计难度。
     4)采用平均驻留时间方法并结合Gronwall-Bellman不等式技术,按照输入-状态稳定的定义,分别考虑子系统全是输入-状态稳定和子系统不全是输入-状态稳定两类情况,讨论了一类非线性时变时滞切换广义系统的输入-状态稳定问题。在保证控制输入有界的前提下,该方法无需构造控制输入的具体结构和Lyapunov函数,只需要设计相应的切换规则,即可保证系统整体是输入-状态稳定的。
As an important class of special hybrid systems, switched descriptor systems, whichcomprise a collection of continuous-time or discrete-time descriptor subsystems together witha switching rule that specifies the switching among the subsystems to achieve the controlobjectives, can be used to describe a wide range of engineering systems. Compared with thenormal switched systems, the structure of switched descriptor systems is very complicatedbecause of the existences of a large number of practical problems, such as regularity,eliminating the pulse mode, state jump and the compatibility of initial state and so on.Moreover, in many actual systems, there exist random perturbation, time-delay, uncertainty,nonlinear disturbance and other factors, so it is inevitably difficult to analyze and design thecontroller, and a lot of control theory research and practical problems in engineeringapplication need to be dealt with for switched descriptor systems.
     Based on the common Lyapunov function method combined with the convex combinationtechnique, multiple Lyapunov function method and the average dwell time method, thecontrol issues of robust H∞memory state feedback control, robust H∞guaranteed costcontrol,input-to-state stability,uniform finite time stability and finite time boundness arediscussed respectively. This paper is divided into six chapters, and the main study contents areas follow:
     1) The problems of robust H∞control and memory state feedback stabilization forcontinuous-time and discrete-time uncertain switched descriptor systems with delays arediscussed respectively. First, suppose that the uncertain parameters are norm bounded, and theidea of memory state feedback control is introduced for a class of uncertain time-varyingdelayed switched descriptor systems with nonlinear disturbance. Sufficient conditions for theexistences of robust H∞memory state feedback controller in terms of linear matrixinequalities (LMIS) and switching rules are presented based on the common Lyapunovfunction and linear matrix inequality approach, and the designed controllers ensure that theclosed-loop systems satisfy the index with a presented H∞disturbance attenuation level γ.Then, the results are generalized to study a class of discrete-time uncertain switcheddescriptor systems with delays.
     2) First, the concepts of robust H∞guaranteed cost control is proposed. Then, theproblems for uncertain switched descriptor systems with constant time delays andtime-varying delays are addressed respectively. The delay-dependent sufficient conditions androbust H∞guaranteed cost control controller in terms of linear matrix inequalities arepresented. Based on the above research foundation, and the common Lyapunov functionmethod combined with the convex combination technique, designing the correspondingswitching rules, the problems of robust H∞guaranteed cost control and memory statefeedback stabilization for uncertain switched descriptor systems with time-varying delay andnonlinear perturbation are discussed.
     3) The problems of uniform finite-time stability, finite-time boundedness and statefeedback stabilization for continuous-time and discrete-time uncertain switched descriptorsystems are addressed based on the multiple Lyapunov funcntions,switched Lyapunovfuncntions approaches and average dwell time technique. First, the concepts of uniformfinite-time stability and finite-time boundedness are generalized to switched descriptorsystems. In addition, sufficient conditions for the existences of state feedback controllers interms of linear matrix inequalities are obtained with arbitrary switching rules, whichguarantee that the continuous-time and discrete-time uncertain switched descriptor systemsare uniform finite-time stable and finite-time bounded respectively. Compared with statetransition matrix method, to some extent, the proposed results reduce the difficulty ofcontroller designing in actual application.
     4) Based on the average dwell time approach and Gronwall-Bellman inequality approach,the control issue of input-to-state stability for a class of nonlinear time-delayed switcheddescriptor systems is divided into two cases to discuss. When each subsystem is input-to-statestable, or some subsystems are not input-to-state stable, according to the definition ofinput-to-state stable, suppose that the control inputs are bounded and design thecorresponding switching rules, the sufficient conditions are given dispense with constructingthe Lyapunov function and specific form of control input, which guarantee that the nonlineartime-delayed switched descriptor systems are input-to-state stable.
引文
1. Cassandras C G, Pepyne D L, Wardi Y. Optimal control of a class of hybrid systems[J]. IEEETransactions on Automatic Control,2001,46(3):398-415.
    2. Alur R, Courcoubetis C, Halbwachs N, et al. The algorithmic analysis of hybrid systems[J].Theoretical Computer Science,1995,138(1):3-34.
    3. Hedlund S, Rantzer A. Convex dynamic programming for hybrid systems[J]. IEEE Transactions onAutomatic Control,2002,47(9):1536-1540.
    4. Zhang M, Tarn T J. A hybrid switching control strategy for nonlinear and under actuated mechanicalsystems[J]. IEEE Transaetions on Automatic Control,2003,48(10):1777-1782.
    5. Decarlo R A, Branicky M S, Pettersson S, et al. Perspectives and results on the stability andstabilizability of hybrid systems[J]. Proceedings of the IEEE,2000,88(7):1069-1082.
    6. Michel A N, Bo H. Towards a stability theory of general hybrid systems[J]. Automatica,1999,35(3):371-384.
    7. Demenico M, Giancarlo F T, Manfred M. Stability and stabilization of piecewise affine and hybridsystems: An LMI approach[C]. Proceedings of the39th IEEE Conference on Decision and Control,Sydney, NSW,2000,1:504-509.
    8. Ezzine J, Haddad A H. Controllability and observability of hybrid systems[J]. International Journal ofControl,1989,49(6):2045-2055.
    9. Bemporad A, Ferri T G, Morari M. Observability and controllability of piecewise affine and hybridsystems[J]. IEEE Transactions on Automatic Control,2000,45(10):1864-1867.
    10. Pettersson S, Lennartson B. Stability and robustness for hybrid systems[C]. Proceedings of the35thIEEE Conference on Decision and Control, Kobe, Japan,1996,2:1202-1207.
    11. Liu B, Hill D J. Comparison principle and stability of discrete-time impulsive hybrid systems[J]. IEEETransactions on Circuits and Systems,2009,56(1):233-245.
    12. Lee T H, Ji D H, Park J h, et al. Decentralized guaranteed cost dynamic control for synchronization ofa complex dynamical network with randomly switching topology[J]. Applied Mathematics andComputation,2012,219(3):996-1010.
    13. Lin X Z, Du H B, Li S H, Zou Y. Finite-time stability and finite-time weightedL2-gain analysis forswitched systems with time-varying delay[J]. IET Control Theory and Applications,2013,7(7):1058-1069.
    14. Valdivia V, Todd R, Rebecca F J, et al. Behavioral modeling of a switched reluctance generator foraircraft power systems[J]. IEEE Transactions on Industrial Electronics,2014,61(6):2690-2699.
    15. Wang Y E, Sun X M, Shi P, et al. Input-to-state stability of switched nonlinear systems with timedelays under asynchronous switching[J]. IEEE Transactions on Cybernetics,2013,43(6):2261-2265.
    16.史书慧.若干类切换系统的稳定性分析与设计[D]:[博士学位论文].沈阳:东北大学,2010.
    17. Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybridsystems[J]. IEEE Transactions on Automatic Control,1998,43(4):475-482.
    18. Broekett R W. Asymptotic stability and feedback stabilization[M]. Boston: Birkhauser,1983,181-191.
    19.胡柯.切换系统稳定性及时滞相关问题研究[D]:[博士学位论文].上海:上海交通大学,2008.
    20. Cheng D Z, Zhu Y H, Hu Q X. Stabilization of switched systems via common Lyapunov function[C].Proceedings of the6th Word Congress on Intelligent Control and Automation, Dalian, China,2006,1:183-187.
    21. Shorten R N, Narendra K S. On the stability and existence of common Lyapunov functions for stablelinear switching systems[C]. Proceedings of the37th IEEE Decision and Control, Tampa, USA,1998,4:3723-3724.
    22. Chaib S, Boutat D, Benali A, et al. Dynamic controller of switched linear systems: a commonLyapunov function approach[C]. Proceedings of the45th IEEE Conference on Decision and Control,San Diego, USA,2006,125-130.
    23. Kim B Y, Ahn H S. Necessary and sufficient condition for the existence of a common quadraticLyapunov function for switched linear interval systems[C]. Proceedings of the11th Internationalconference on Control Automation and systems, Gyeonggi-do, Korea,2011,97-102.
    24. Sun C, Fang B, Huang W. Existence of a common quadratic Lyapunov function for discrete switchedlinear systems with m stable subsystems[J]. IET Control Theory and Applications,2011,5(3):535-537.
    25. Chen Y Z, He Z H, Aleksandrow A Y. Existence of common Lyapunov function based on KKMlemma for switched Persiddkii-type systems[C]. International Conference on Electric Information andControl Engineering, Wuhan, China,2011,371-374.
    26. Narendra K S, Balakrishnan J. A common Lyapunov function for stable LTI systems with commutingA-matrices[J]. IEEE Transactions on Automatic Control,1994,32(19):2469-2471.
    27. Johansson M, Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybridsystems[J]. IEEE Transactions on Automatic Control,1998,43(4):555-559.
    28. Johansson M. Piecewise linear control systems: a computational approach[M]. New York: Springer-Verlag,2002.
    29. Liberzon D, Tempo R. Common Lyapunov functions and gradient algorithms[J]. IEEE Transactionson Automatic Control,2004,49(6):990-994.
    30. Gurvits L. Stability of discrete linear inclusion[J]. Linear Algebra and its Applications,1995,231:47-85.
    31. Liberzon D, Hespanha J P, Morse A S. Stability of switched linear systems: a Lie-algebraiccondition[J]. Systems and Control Letters,1999,37(3):117-122.
    32. Liberzon D. Switching in systems and control[M]. Boston: Birkhauser,2003.
    33.尹玉娟.脉冲切换广义系统的稳定性与鲁棒控制[D]:[博士学位论文].沈阳:东北大学,2006.
    34. Peleties P, Decarlo R A. Asymptotic stability of m-switched systems using Lyapunov-like functions[C].Proceedings of IEEE American Control Conference, Boston, USA,1991,1679-1684.
    35. Peleties P. Modeling and design of interacting continuous-time/discrete event systems[D]:[DoctoralDissertation]. West Lafayette: Purdue University,1992.
    36. Branicky M S. Stability of switched and hybrid systems[C]. Proceedings of the33th IEEE Conferenceon Decision and Control, Florida, USA,1994,3498-3503.
    37. Branicky M S. Studies in hybrid systems: modeling, analysis, and control[D]:[Doctoral Dissertation].Cambridge: Massachusetts Institute of Technology,1995.
    38. Ye H, Michel A N, Hou L. Stability theory for hybrid dynamical systems[J]. IEEE Transactions onAutomatic Control,1998,43(4):461-474.
    39. Ye H, Michel A N, Hou L. Stability theory for hybrid dynamical systems[C]. Proceedings of the34thIEEE Conference on Decision and Control, New Orleans, USA,1995,2679-2684.
    40. Niamsup P, Rajchakit M, Rajchakit G. Guaranteed cost control for switched recurrent neural networkswith interval time-varying delay[J]. Journal of Inequalities and Applications,2013:292.
    41.陈超,于达仁,鲍文等.基于多Lyapunov函数方法的航空发动机安全保护切换控制[C].Proceedings of29th Chinese Control and Decision Conference, Beijing, China,2010,5953-5957.
    42.丛屾,费树敏,李涛.时滞切换系统指数稳定性分析:多Lyapunov函数方法[J].自动化学报,2007,33(9):985-988.
    43. Xiang Z R, Qiao C H, Mahmoud M S. Finite-time analysis and H∞control for switched stochasticsystems[J]. Journal of the Franklin Institute,2012,349(3):915-927.
    44. Niu B, Zhao J. Robust H-infinity control for a class of switched nonlinear cascade systems viamultiple functions approach[J]. Applied Mathematics and Computation,2012,218(11):6330-6339.
    45. Morse A S. Supervisory control of families of linear set-point controllers, part1: exact matching[J].IEEE Transactions on Automatic Control,1996,41(10):1413-1431.
    46. Hespanha J P, Morse A S. Stability of switched systems by average dwell time[C]. Proceedings of the38th IEEE Conference on Decision and Control, New York, USA,1999,2655-2660.
    47. Lee S H, Kim T H, Lim J T. A new stability analysis of switched systems[J]. Automatica,2000,36(6);917-922.
    48. Mancilla J L, Garcia R A. An extension of LaSalle's invariance principle for switched systems[J].Systems and Control Letters,2005,55(5):376-384.
    49. Hespanha J P, Liberzon D, Angeli D, et al. Nonlinear norm-observability notions and stability ofswitched systems[J]. IEEE Transactions on Automatic Control,2005,50(7):154-168.
    50. Xiang Z R, Xiang W M. Stability analysis of switched systems under dynamical dwell time controlapproach[J]. International Journal of Systems Science,2009,40(4):347-355.
    51. Ma D, Liu J C. Robust exponential stabilization for network-based switched control systems[J].International Journal of Control, Automation, and Systems,2010,8(1):67–72.
    52.林相泽,都海波,李世华.离散线性切换系统的一致有限时间稳定分析和反馈控制及其在网络控制系统中的应用[J].控制与决策,2011,26(6):841-846.
    53.方志明,向峥嵘,陈庆伟.一类切换系统的输入-状态稳定性分析与优化控制[J].信息与控制,2011,40(2):155-162.
    54. Rosenbrock H H. Structural properties of linear dynamical Systems[J]. International Journal ofControl,1974,20(2):191-202.
    55. Dai L. Singular control systems[M]. Berlin: Springer-Verlag,1989.
    56.杨冬梅,张庆灵,姚波等.广义系统[M].北京:科学出版社,2004.
    57. Cobb D. Controllability, observability and duality in singular systems[J]. IEEE Transactions onAutomatic Control,1984,29(12):1076-1082.
    58. Wonham W M. Linear multivariable control: a geometric approach[M]. New York: Springer-Verlag,1979.
    59. Lewis F L. A survey of linear singular systems[J]. Circuits, Systems and Signal Processing,1986,5(1):3-36.
    60. Lewis F L. Preliminary notes on optimal control for singular systems[C]. Proceedings of24th IEEEConference on Decision and Control, Lauderdale, USA,1985,24:266–272.
    61. Ishihara J Y, Terra M H. On the Lyapunov theorem for singular systems[J]. IEEE Transactions onAutomatic Control,2002,47(11):1929-1930.
    62. Takaba K, Morihira N, Katayama T. A generalized Lyapunov theorem for descriptor systems[J].Systems&Control Letters,1995,24(1):49-51.
    63. Zhang Q L, Liu W Q, Hill D. A Lyapunov approach to analysis of discrete singular systems[J].Systems and Control Letters,2002,45(3):237-247.
    64. Varga A. On stabilization methods of descriptor systems[J]. Systems and Control Letters,1995,24(2):133-138.
    65. Zhang L Q, Lam J, Xu S Y. On positive realness of descriptor systems[J]. IEEE Transactions onCircuits and Systems,2002,49(3):401-407.
    66. Xu S Y, Lam J. New positive realness conditions for uncertain discrete descriptor systems: analysisand synthesis[J]. IEEE Transactions on Circuits and Systems,2004,51(9):1897-1905.
    67. Ren J C, Zhang Q L. Robust H-infinity control for uncertain descriptor systems by propor-tional-derivative state feedback[J]. International Journal of Control,2010,83(1):89-96.
    68. Fang M. Delayed-dependent robust H∞control for uncertain singular systems with state delay[J].Acta Automatica Sinica,2009,35(1):65–70.
    69. Ren J C, Zhang Q L. Robust normalization and guaranteed cost control for a class of uncertaindescriptor systems[J]. Automatic,2012,48(8):1693-1697.
    70. Zhang Y Q, Liu C X, Mu X W. Robust finite-time H∞control of singular stochastic systems viastatic output feedback[J]. Applied Mathematics and Computation,2012,218(9):5629-5640.
    71. Yang C Y, Zhang Q L, Huang S D. Input-to-state stability of a class of Lurie descriptor systems[J].International Journal of Robust and Nonlinear Control,2013,23(12):1324-1337.
    72. Hassan L, Zemouche A, Boutayeb M. Robust observer and observer-based controller for time-delaysingular systems[J]. Asian Journal of Control,2014,16(1):80-94.
    73. Araujo J M, Barros P R, Dorea C E. Dynamic output feedback control of constrained descriptorsystems[J]. Transactions of the Institute of Measurement and Control,2013,35(8):1129-1138.
    74. Belov A A. Anisotropic controller design for descriptor systems with respect to the output variable[J].Automation and Remote Control,2013,74(11):1838-1850.
    75. Koehler M. On the closest stable descriptor systems in the respective spaces RH2and RF infinity[J].Linear Algebra and Its Applications,2014,443:34-49.
    76. Wang Z H, Shen Y, Zhang X L. Actuator fault estimation for a class of descriptor systems[J].International Journal of Systems Science,2014,45(3):487-496.
    77.全庆贻,颜钢锋,赵光宙.微分代数混杂系统稳定性及其在电力系统中的应用[J].电工技术学报,2004,19(6):51-57.
    78. Ma R C, Zhao J. Backstepping design for global stabilization of switched nonlinear systems in lowertriangular form under arbitrary switchings[J]. Automatica,2010,46(11):1819-1923.
    79. Zhao G L, Wang J C. Finite time stability andL2gain analysis for switched linear systems withstate-dependent switching[J]. Journal of the Franklin Institute,2013,350(5):1075-1092.
    80. Zhang H G, Liu Z W, Huang G B. Novel delay-dependent robust stability analysis for switchedneutral-type neural networks with time-varying delays via SC technique[J]. IEEE TransactionsSystems, Man, and Cybernetics. Part B, Cybernernetics,2010,40(6):1480-1491.
    81. Daniel G, Michal I, Steven L. Optimal control and scheduling of switched systems[J]. IEEETransactions on Automatic Control,2011,56(1):135-140.
    82. Liu C Y, Gong Z H. Modeling and optimal control of a time-delayed switched system in fed-batchprocess[J]. Journal of The Franklin Institute-Engineering and Applied Mathematics,2014,351(2):840-856.
    83. Zhou J, Zhang Q L, Men B. Input-to-state stability of a class of descriptor systems[J]. InternationalJournal of Robust and Nonlinear Control,2014,24(1):97-109.
    84. Zhang Y Q, Liu C X, Mu X W. Robust finite-time H∞control of singular stochastic systems viastatic output feedback. Applied Mathematics and Computation,2012,218(9):5629-5640.
    85. Reis T. Controllability and observability of infinite-dimensional descriptor systems[J]. IEEETransactions on Automatic Control,2008,53(4):929-940.
    86. Zhang B. Controllability and observability at infinity of linear time-varying descriptor systems[J]. IETControl Theory and Applications,2009,3(12):1641-1647.
    87. Liao F C, Tomizuka M, Cao M J, et al. Optimal preview control for discrete time descriptor causalsystems in a multirate setting[J]. International Journal of Control,2013,86(5):844-854.
    88. Boukas E K. Optimal guaranteed cost for singular linear systems with random abrupt changes[J].Optimal Control Applications and Methods,2010,31(4):335-349.
    89. Xie G M, Wang L. Stability and stabilization of switched descriptor systems under arbitraryswitching[C]. IEEE International Conference on Systems, Man and Cybernetics, Hague, Netherlands,2004,779-783.
    90. Meng B. Admissible switched control of singular systems[C]. Proceedings of the23th Chinese ControlConference, Shanghai, China,2004,1615-1619.
    91.尹玉娟,刘玉忠,赵军.一类切换线性广义系统的稳定性[J].控制与决策,2006,21(1):24-27.
    92.尹玉娟,赵军.具有脉冲作用的切换线性广义系统的稳定性[J].自动化学报,2007,33(4):446-448.
    93. Guan Z H, Hill D J, Shen X M. On hybrid impulsive and switching systems and application tononlinear control[J]. IEEE Transactions on Automatic Control,2005,50(7):1058-1062.
    94.尹玉娟,赵军.一类混杂脉冲切换广义系统的二次稳定[J].东北大学学报(自然科学版),2007,28(6):769-772.
    95. Meng B, Zhang J F. Output feedback based admissible control of switched linear singular systems[J].Acta Automatica Sinica,2006,32(2):179-185.
    96. Liu Y Z. The impulsive property of switched singular systems and its stability[C]. Proceedings of the7th World Congress on Intelligent Control and Automation, Chongqing, China,2008,6369-6372.
    97. Shi S, Zhang Q, Yuan Z, et al. Hybrid impulsive control for switched singular systems[J]. IET ControlTheory and Applications,2011,5(1):103-111.
    98.王天成,高在瑞.一类带有时滞的不确定广义系统的切换渐近稳定性[J].自动化学报,2008,34(8):1013-1016.
    99. Lin J X, Fei S M, Shen J, et al. Robust admissibility analysis of uncertain switched singular systems: aswitched Lyapunov function approach[J]. Journal of Southeast University (English Edition),2009,25(2):208-212.
    100. Lin J X, Fei S M. Robust exponential admissibility of uncertain switched singular time-delay systems[J]. Acta Automatica Sinica,2010,36(12):1773-1779.
    101. Zhai G S, Kou R, Imae J, et al. Stability analysis and design for switched descriptor systems[J].International Journal of Control, Automation, and Systems,2009,7(3):349-355.
    102. Lin J X, Fei S M. Robust exponential admissibility of uncertain switched singular time-delaysystems[J]. Acta Automatica Sinica,2010,36(12):1773-1779.
    103. Long F, Xiao Y, Chen X, et al. Disturbance attenuation for nonlinear switched descriptor systemsbased on neural network[J]. Neural Comput&Applic,2013,23:2211-2219.
    104. Pan T L,Yang K, Shen Y X, Gao Z R, Ji Z C. Finite-time Stability analysis for a class of ContinuousSwitched Descriptor Systems[J]. Mathematical Problems in Engineering,2014, http://dx.doi.org/10.1155/2014/979130.
    105.高在瑞,纪志成.一类切换广义时滞系统的时滞相关稳定性准则[J].控制与决策,2011,26(6):925-928.
    106.高在瑞,沈艳霞,纪志成.一类不确定切换奇异时滞系统的时滞依赖鲁棒镇定[J].信息与控制,2012,41(3):339-343.
    107. Zamani I, Shafiee M. On the issues of switched singular time-delay systems with slow switchingbased on average dwell-time [J]. International Journal of Robust and Nonlinear Control,2014,24(4):595-624.
    108. Wang W, Ma S P, Zhang C H. Stability and static output feedback stabilization for a class of nonlineardiscrete-time singular switched systems[J]. International Journal of Automation and Systems,2013,11(6):1138-1148.
    109.付主木,费树岷.一类不确定切换奇异系统的动态输出反馈鲁棒H∞控制[J].自动化学报,2008,34(4):482-487.
    110.付主木,费树岷.一类切换线性奇异系统的H∞控制[J].控制理论与应用,2008,25(4):693-698.
    111. Ma S P, Zhang C H, Zhen W. Delay-dependent stability and H∞control for uncertain discreteswitched singular systems with time-delay[J]. Applied Mathematics and Computation,2008,206(1):413-424.
    112. Koenig D, Marx. B. H∞filtering and state feedback control for discrete-time switched descriptorsystems [J]. IET Control Theory and Applications,2009,3(6):661-670.
    113. Gao L J, Wu Y Q. A design scheme of variable structure H∞control for uncertain singular Markovswitched systems based on linear matrix inequality method[J]. Nonlinear Analysis: Hybrid Systems,2007,1(3):306-316.
    114. Zhang H P, Dong H, Fan H D. Robust H-infinity filtering for uncertain discrete-time switched singularsystems with time-varying delays[C]. Proceedings of the3rd International Congress on Image andSignal Processing, Yantai, China,2010,3200-3206.
    115. Zhao Y Y, Yang J Y, Wen G H. H_infinity control for uncertain switched nonlinear singular systemswith time delay[J]. Nonlinear Dynamics,2013,74(3):649-665.
    116. Zhang X H, Zhang H Y, Zhang Q L. Guaranteed cost control for uncertain discrete switchedsingular systems[C]. Proceedings of the7th Asian Control Conference, Hong Kong, China,2009,192-196.
    117. Zhang X H, Zhang H Y, Bi S W. Guaranteed cost control for uncertain switched singular systems[C].Proceedings of the7th Chinese Control and Decision Conference, Guilin, China,2009,4569-4573.
    118.顾则全,刘贺平,廖福成,王允建.基于LMI的不确定时滞切换广义系统的保成本控制[J].系统工程与电子技术,2010,32(1):147-151.
    119.高在瑞,纪志成.一类切换奇异时滞系统的最优保成本控制[J].系统工程与电子技术,2011,33(6):1358-1361.
    120. Lin J X, Fei S M, Wu Q. Reliable H (a) filtering for discret-time switched singular systems withtime-varying delay[J]. Circuits Systems and Signal Processing,2012,31(3):1191-1214.
    121. Yang K, Shen Y X, Ji Z C. Robust H∞guaranteed cost control for uncertain delayed switchedsingular systems[C]. Proceedings of the31st Chinese Control Conference, Hefei, China,2012,2658-2661.
    122. Deaecto G S, Daafouz J, Geromel J C.H2and H-infinity Performance optimization of singularlyperturbed switched systems[J]. SIAM Journal on Control and Optimization,2012,50(3):1597-1615.
    123.杨坤,沈艳霞,纪志成.不确定时变时滞切换广义系统的鲁棒H∞保性能控制[J].控制与决策,2013,28(5):787-791.
    124. Wang Y Y, Shi P, Wang Q B, et al. Exponential H-infinity filtering for singular Markovian jumpsystems with mixed mode-dependent time-varying delay[J]. IEEE Transactions on Circuits andSystems I-Regular Papers,2013,60(9):2440-2452.
    125. Yang K, Shen Y X, Ji Z C. Memory state feedback control for uncertain nonlinear switched singularsystems with time-varying delay[C]. Proceedings of the32nd Chinese Control Conference, Xian,China,2013,2073-2077.
    126.尹玉娟,刘玉忠,赵军.线性广义切换系统解的存在唯一性[C]. Proceedings of24th ChineseControl and Decision Conference, Guangzhou, China,2005,105-108.
    127.谢湘生,胡刚.一类滞后奇异线性切换系统解的性态[C]. Proceedings of the26th Chinese ControlConference, Zhangjiajie, China,2007,93-96.
    128. Xie X S. Convergence criteria of solutions for a class of switched linear singular systems with timedelay[C]. Proceedings of the5th International Conference on Natural Computation, Tianjin, China,2009,495-499.
    129. Boukhobza T, Hamelin F. Discrete mode observability of structured switching descriptor linearsystems: a graph-theoretic approach[J]. Automatica,2013,49(10):3042-3048.
    130. Meng B, Zhang J F. Reachability conditions for switched singular systems[J]. IEEE Transactions onAutomatic Control,2006,51(2):482-488.
    131. Meng B, Zhang J F. Reachability analysis of switched linear discrete singular systems[J]. Journal ofControl Theory and Applications,2006,4(1):11-17.
    132.孟斌,张继峰.切换线性奇异系统能达的必要条件[J].航空学报,2005,26(2):224-228.
    133. Meng B, Zhang J F. Controllability conditions for switched linear singular systems[J]. Dynamics ofContinuous Discrete and Impulsive Systems-series B-applications&Algorithms,2007,14(5):641-657.
    134. Clotet J, Ferrer J, Magret M D. Switched singular linear systems[C]. Proceedings of the17thMediterranean Conference on Control and Automation, Thessaloniki, Greece,2009,1343-1347.
    135. Zames G. Feedback and optimal sensitivity: model reference transformation, multiplicative seminorms, and approximate inverses[J]. IEEE Transactions on Automatic Control,1981,26(2):301-320.
    136.付主木,费树岷,高爱云.切换系统的H∞控制[M].北京:科学出版社,2009.
    137.俞立.鲁棒控制—线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    138. Petersen I R. A Stabilization algorithm for a class of uncertain linear systems[J]. Systems and ControlLetters,1987,8(4):351-357.
    139. Petersen I R, Hollot C V. A Riccati equation to the stabilization of uncertain linear systems[J].Automatica,1986,22(4):397-411.
    140. Dai L. Singular Control Systems Lecture Notes in Control and Information Sciences[M]. New York:Springer-Verlag,1989.
    141. Chang S, Peng T. Adaptive guaranteed cost control of systems with uncertain parameters[J]. IEEETransactions on Automatic Control,1972,17(4):474-483.
    142. Moon Y S, Park P G, Kwon W H, et al. Delay-dependent robust stabilization of uncertainstate-delayed systems[J]. International Journal of Control,2001,74(14):1447-1455.
    143.付主木,费树岷,薄煜明,李涛.一类不确定切换奇异系统的鲁棒H∞控制[J].南京理工大学学报(自然科学版),2008,32(3):269-273.
    144. Amato F, Cosentino C, Merola A. Sufficient conditions for finite-time stability and stabilization ofnonlinear quadratic systems[J]. IEEE Transactions on Automatic Control,2010,55(2):430-434.
    145. Dorato P. Short time stability in linear time-varying systems[C]. Proceedings of the IRE InternationalConvention Record, Part4. New York, USA,1961,83-87.
    146. Weiss L, Infante E. Finite time stability under perturbing forces and on product spaces[J]. IEEETransactions on Automatic Control,1967,12(1):54-59.
    147. Wang Y J, Shi X M, Zuo Z Q, et al. On finite-time stability for nonlinear impulsive switchedsystems[J]. Nonlinear Analysis: Real World Applications,2013,14(1):807-814.
    148. Long L J, Zhao J. H∞control of switched nonlinear systems in p-normal form using multipleLyapunov functions[J]. IEEE Transactions on Automatic Control,2012,57(5):1285-1291.
    149. Muller M A, Lierzon D. Input/output-to-state stability and state-norm estimators for switchednonlinear systems[J]. Automatica,2012,48(9):2029-2039.
    150. Sun X M, Zhao J, Hill D J. Stability andL2-gain analysis for switched delay systems: a delaydependent method[J]. Automatica,2006,42(10):1769-1774.
    151. Sontag E D. Smooth stabilization implies coprime factorization[J]. IEEE Transactions on AutomaticControl,1989,34(4):435-443.
    152. Vu L, Chatterjee D, Liberzon D. Input-to-state stability of switched systems and switching adaptivecontrol[J]. Automatica,2007,43(4):639-646.
    153. Wang Y E, Wang R, Zhao J. Input-to-state stability of non-linear impulsive and switched delaysystems[J]. IET Control Theory and Applications,2013,7(8):1179-1185.
    154. Sun F L, Guan Z H, Zhang X H, et al. Exponential-weighted input-to-state stability of hybridimpulsive switched systems[J]. IET Control Theory and Applications,2012,6(3):430-436.
    155. Zhou Z, Yang C, Zhang Q, et al. Input-to-state stability for descriptor systems with non-linearperturbations[J]. IET Control Theory and Applications,2011,5(13):1561-1567.
    156. Zhou J, Li J T. Input-to-state stability of a class of discrete time descriptor systems[C]. Proceedings ofthe24th Chinese Control and Decision Conference, Taiyuan, China,2012,4260-4264.
    157. Zhou J, Zhang Q L, Meng B, et al. Input-to-state stability of a class of descriptor systems[J].International Journal of Robust and Nonlinear Control,2014,24(1):97-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700